钢的热处理缺陷分析
镀锌产品质量缺陷和判级标准全面解析

锌起伏
缺陷特征:在镀锌钢带表面呈现无规律波浪凸 起。(如下图) 产生原因:
1)锌液温度低于规定温度。 2)锌液中含铝量高,使锌层局部超厚。 3)气刀角度偏高。 4)气刀压力偏低,速度缓慢。
夹杂
缺陷特征:夹杂有明显的点状、块状、长条状或柳叶 状。(如下图)点状、小黑条状夹杂易与氧化铁皮细 孔、脏物压入混淆。 产生原因:
残留有氧化物; 3、退火炉内保护气体氧含量或露点偏高,导致钢
带还原不充分; 4、机组速度过快,退火不完全,钢带入锌锅温度
较低。
锌花不均
缺陷特征:肉眼观察带钢表面锌花局部出现大小不等(如下 图)。
产生原因: 1、原料上下板面或局部粗糙度不均匀; 2、脱脂不良,钢带清洁度差; 3、镀锌时上下板面冷却速度不同、气刀刀唇到带钢上下板面 的距离不一致、上下板面气刀的风速和风量不同等都会造成 上下板面锌花大小不均; 4、板面覆盖氧化铁皮沿带钢成规律型波动、带钢划伤或炉辊 结瘤等,这些缺陷会增加锌花的结晶点,使镀层表面锌花较 小且不均匀; 5、当气刀与带钢不平行,出现夹角时,易产生带钢横断面上 的锌花不均匀;当沉没辊、稳定辊出现轴振动或带钢存在浪 形时,较易出现该问题;另外连续退火炉采用区温控制时, 或辐射管使用不对称时,带钢的温度易产生波动,会产生带 钢低温区锌花小、高温区锌花大的现象; 6、带钢入锌锅温度、锌液温度、镀后冷却温度的影响。
1)气刀的缝隙发生了局部堵塞。 2)气刀局部缺口或损坏。 3)板形不好。
气刀刮伤
缺陷特征:钢带上的锌层被气刀嘴刮伤,在板面上 留下沿轧制线方向的痕迹或沟痕,连续或断续,刮 痕条数、轻重程度不等,轻者形成印痕,重者形成 沟痕,露出钢板基体,锌层破坏。 产生原因:
1)钢带规格薄,板形不好。 2)钢带张力小,运行时出现摆动。 3)钢带距离喷嘴太近。 4)稳定辊未起稳定作用。
热处理常见缺陷分析与对策-学习总结

热处理常见缺陷分析与对策时 间:2020.10.28 学习人:吴俊 部 门:试验检测中心基本知识点:1、热处理缺陷直接影响产品质量、使用性能和安全。
2、热处理缺陷中最危险的是:裂纹。
有:淬火裂纹、延迟裂纹、冷处理裂纹、回火裂纹、时效裂纹、磨削裂纹和电镀裂纹。
其中生产中最常见的裂纹是纵火裂纹。
3、热处理缺陷中最常见的是:热处理变形,它有尺寸变化和形状畸变。
4、淬火获得马氏体组织,以保证硬度和耐磨性。
淬火后应进行回火,以消除残余应力,如W6Mo5Cr4V2应进行一次回火。
5、亚共析钢淬火加热温度: +(30-50)度。
6、高速钢应采用调质处理即淬火+高温回火。
7、回火工艺若控制不当则会产生回火裂纹。
8、热处理过热组织可通过多次正火或退火消除,严重过热组织则应采用高温变形和退火联合作用才能消除。
9、渗氮零件基本组织为回火索氏体。
其原始组织中若有大块F 或表面严重脱碳,则易出现针状组织。
10、有色金属最有效的强化手段是固溶处理和固溶处理+时效处理。
11、疲劳破坏有疲劳源区、裂纹疲劳扩展和瞬时断裂三个阶段。
12、高速钢的热组织为:共晶莱氏体,也有可能晶界会熔化。
13、应力腐蚀开裂的必要条件之一是:存在拉应力。
14、65Mn 钢第二类回火脆性温度区间为250-380。
钼能有效抑制第二类回火脆性。
15、热处理时发生的组织变化中,体积比容变化最大的是马氏体。
16、防止淬裂的工艺措施:等温淬火、分级淬火、水-油淬火和水-空气双液淬火。
17、高温合金热处理产生的特殊热处理缺陷有:晶间氧化、表面成分变化、腐蚀点、晶粒粗大及混合晶粒等。
18、感应加热淬火缺陷有:表层硬度低、硬化层深度不合格、变形大、残留应力大、尖角过热及软点与软带。
19、弹簧钢的组织状态一般为:T+M 。
20、氢脆条件:氢的存在、三项应力和对氢敏感的组织。
21、断裂有脆性断裂和韧性断裂。
绝大多数热处理裂纹属脆性断裂。
22、高碳钢淬火前应进行球化退火。
23、时效变形的主要影响因素有:化学成分、回火温度和时效温度。
40Cr钢汽车半轴淬火缺陷分析及热处理工艺改进

( 湖南工程学 院 机械工程 学院 , 湘潭 410) 111
摘 要 :根据 4 C 钢汽车半轴的实际淬火工艺, Or 分析 了淬火开裂的主要原 因, 并针对淬火开裂的主要 形式 , 定 出了三种 热处理 工 艺方案 并 实施 .通过 分析 热 处理后 的金 相显 微组 织和硬 度数 据 , 制 确定 出最 终的热处理工艺及其主要参数. 试验结果表明:0 r 4 C 钢在 80℃油淬后 , 6 再进行 8 0℃淬入 5 ~l 6 0 的盐水冷却、8 5 0℃回火, 强度、 使 硬度低的网状铁素体相对量有所下降, 可有效的防止淬火开裂 , 并提 高其 疲 劳寿命. 关键词:汽车半轴 ; 淬火开裂; 热处理工艺; 力学性能; 显微组织 中 图分 类号 :TGI 2 7 文 献标识 码 :A 文章编 号 :1 7 一 I 9 2 0 ) 4 0 3 - 0 6. 1 6 1 1 X( 0 8 0 - 0 3 4
3 4
湖南工 程学 院学报
2 0 年 08
从裂 纹处取 样 进行 金 相分 析 , 现 所有 的裂纹 发
1 淬火缺 陷分析
热处理之所 以能使金属材料的性能发生变化 ,
主要 是 因为金属 材料 的 内部组 织结构 可 以发 生一 系
均沿原奥 氏体 晶界 发展 , 纹 两侧 的组 织 与杆 部基 裂
织为铁素体加珠光体 , 含有较少的合金元素 , 属于低 淬透性合金调质钢, 经适当热处理后具有较高的强
度、 良好 的塑 性 和 韧 性 , 具 有 良好 的综 合 力 学 性 即
能. 与片状珠光体组织相 比, 在强度相同时 , 回火索 氏体的塑性和韧性有较大幅度提高. 锻造后进行正 火以消除过热倾向, 法兰盘加工后 , 整体进行调质处 理 , 后 加 工 花 键. 质 后 要 求 杆 部 硬 度 为 2 ~ 最 调 9
钢板常见质量缺陷及原因分析

钢板常见质量缺陷及原因分析一、热轧钢板1辊印:是一组具有周期性、大小形状基本一致的凹凸缺陷,并且外观形状不规则。
原因:1)一方面由于辊子疲劳或硬度不够使辊面一部分掉肉边凹;另一方面可能是辊子表面粘有异物,使表面部分呈凸出状;2)轧钢或精整加工时,压入钢板表面形成凹凸缺陷。
2表面夹杂:在钢板表面有不规则的点状块状或车条状的非金属夹杂物,其颜色一般呈红棕色、黄褐色、灰白色或灰黑色。
原因:1)板坯皮下夹杂轧后暴露,或板坯原有的表面夹杂轧后残留在钢板表面上;2)加热炉耐火材料及泥沙等非金属物落在板坯表面上,轧制时压入板面。
3氧化铁皮:氧化铁皮一般粘附在钢板表面,分布于板面的局部或全部,呈黑色或红棕色;铁皮有的疏松脱落,有的压入板面不易脱落;根据外观形状不同有:红铁皮、块状铁皮、条状铁皮、线状铁皮、木纹状铁皮、流星状铁皮、纺锤状铁皮、拖曳状铁皮和散状铁皮等,其压入深度有深有浅。
原因:1)压入氧化铁皮的生成取决于板坯加热条件,加热时间逾长,加热温度愈高,氧化气氛愈强,生成氧化铁皮就愈多,而且不容易脱落,产生一次铁皮难于除尽,轧制时被压入钢板表面上;2)大立辊设定不合理,铁皮未挤松,难于除掉;3)由于高压除鳞水管的水压低,水咀堵塞,水咀角度不对及使用不当等原因,使钢板表面的铁皮没有除尽,轧制后被压入到钢板表面;4)氧化铁皮在沸腾钢中发生较多,在含硅较高的钢中容易产生红铁皮。
4厚薄不均:钢板各部分厚度不一致称厚薄不均,凡厚度不均匀的钢板,一般为偏差过大,局部钢板厚度超过规定的允许偏差。
原因:1)辊缝的调整和辊型的配置不当;2)轧辊和轧辊两侧的轴瓦磨损不一样;3)板坯加热温度不均。
5麻点:钢板表面呈现有局部或连续的凹坑叫麻点,其大小不同,深度不等。
原因是加热过程中,板坯氧化严重,轧制时铁皮压入表面,脱落后形成细小的凹坑。
6气泡:钢板表面上有无规律分布的圆形凸包,有时呈蚯蚓式的直线状,其外缘比较光滑,内有气体;当气泡轧破后,呈现不规则的细裂纹;某些气泡不凸起,经平整后,表面光亮,剪切断面呈分层状。
T12钢热处理工艺要点

金属材料与热处理技术课程设计题目:T12钢热处理工艺课程设计院(系):冶金材料系专业年级:材料1201负责人:陈博唐磊,杨亚西,合作者:谭平,潘佳伟,多杰仁青指导老师:**2013年12月热处理工艺课程设计任务书热处理工艺卡目录基本资料 (4)工艺规范 (5)T12锉刀热处理 (6)1锉刀材料的选择 (6)2锉刀的热处理工艺 (6)2.1 球化退火的具体工艺 (6)2.2 T12钢制锉刀,其工艺路线如下: (6)2.3淬火 (7)2.4回火 (8)2.5 局部淬火 (9)3 热处理后组织金相分析 (9)4质量检验 (14)5缺陷分析 (15)参考文献 (16)表1、碳素工具钢化学成分序号 牌号化学成分 C MnSi S P 不大于1 T7 0.65-0.74 ≤0.40≤0.350.030 0.035 2 T8 0.75-0.84 3 T8Mn 0.80-0.90 0.40-0.60 4T9 0.85-0.94 ≤0.40 5T10 0.95-1.04 6T11 1.05-1.14 7T12 1.15-1.24 8T13 1.25-1.35工艺规范1、临界点温度 (近似值)Ac1 =730°C 、, Accm =820°C 、 Ar1 =700°C2、正火规范正火温度 850~870°c, 空冷, 硬度 269 ~341HBW3、普通退火规范退火温度 760 ~770°C, 保温2 ~4h, 再以 <30°C/h 冷速, 随炉缓冷到 500 ~600°C,出炉空冷。
4、等温球化退火规范1) 760 ~770°C ×2 ~4h, 680~700°C ×4 ~6h, 等温后炉冷到 500 ~600°C, 出炉空冷, 硬度≤207HBW2) 750 ~770°C ×1~2h, 680 ~700°C ×2 --3h, 硬度 179 ~207HBW, 珠光体组织2~4级, 网状碳化物等级≤2级。
热镀锌带钢表面点状缺陷的分析和改进

11Metallurgical smelting冶金冶炼热镀锌带钢表面点状缺陷的分析和改进佟小磊(唐山钢铁集团责任有限公司,河北 唐山 063000)摘 要:随着社会经济的不断发展,越来越多的新技术和新工艺逐渐应用到热镀锌带钢生产活动当中。
而在热镀锌带制造过程中,由于受到点状缺陷的影响,难以提升整体的制作效果,同时还严重阻碍了相关生产活动的顺利进行,难以有效提升整体的工作质量和水平。
基于此,在本次研究中就结合热镀锌带钢表面点状缺陷形成的原因进行研究讨论,并提出相应的工作建议,加强改进,有效提升整体的生产质量。
通过加强热镀锌带钢表面点状缺陷的改进工作,有效提升其整体的工艺质量和水平。
关键词:热镀锌带钢;表面;点状缺陷;分析;改进中图分类号:TG174.4 文献标识码:A 文章编号:11-5004(2021)04-0011-2 收稿日期:2021-02作者简介:佟小磊,男,生于1993年,汉族,河北承德人,本科,助理工程师,研究方向:镀锌。
通过加强对冷轧厂镀锌产线,热镀锌带钢出现点状缺陷的分析,加强亮点缺陷和麻点缺陷的形貌观测和成分分析。
在整个分析活动开展过程中,结合相应的生产工艺,能够充分了解到出现亮点缺陷的原因,主要是因为锌层表面出现了凹坑。
而麻点缺陷则是因为板面出现了轻微的硌伤,最终导致其表面的完整性被破坏,严重影响了其整体的使用性能,同时也对整个生产活动带来了许多负面影响。
在热镀锌带钢生产活动开展过程中,常常会因为锌锅表面的锌渣或杂质飞溅,而导致钢表面不完整现象出现,存在许多不可控因素的影响。
随着社会经济的不断发展,热浸镀锌钢板凭借耐蚀性,加工性,涂装性被广泛地应用到家电,汽车,建筑等多个行业当中,具有非常广阔的应用前景。
而在其实际的生产过程中,会受到诸多不可控因素的影响,从而降低其整体的生产质量,严重降低了其整体的经济效益。
对此,本文就着重分析热镀锌带钢表面点状缺陷形成的原因,通过表面显微观察和元素分析,加强缺陷形成机理的推导工作,并提出相应的控制措施。
各种缺陷的分析及产生原因

锻造成形过程中的缺陷及其防止方法一、钢锭的缺陷钢锭有下列主要的缺陷:(1)缩孔和疏松钢锭中缩孔和疏松是不可避免的缺陷,但它们出现的部位可以控制。
钢锭中顶端的保温冒口,造成钢液缓慢冷却和最后凝固的条件,一方面使锭身可以得到冒口中钢液的补缩,另一方面使缩孔和疏松集中于此处,以便锻造时切除。
(2)偏析钢锭中各部分化学成分的不均匀性称为偏析。
偏析分为枝晶偏析和区域偏析两种,前者可以通过锻造以及锻后热处理得到消除,后者只能通过锻造来减轻其影响,使杂质分散,使显微孔隙和疏松焊和。
(3)夹杂不溶于金属基体的非金属化合物称为夹杂。
常见的夹杂如硫化物、氧化物、硅酸盐等。
夹杂使钢锭锻造性能变化,例如当晶界处低熔点夹杂过多时,钢锭锻造时会因热脆而锻裂。
夹杂无法消除,但可以通过适当的锻造工艺加以破碎,或使密集的夹杂分散,可以在一定程度上改善夹杂对锻件质量的影响。
(4)气体钢液中溶解有大量气体,但在凝固过程中不可能完全析出,以不同形式残存在钢锭内部。
例如氧与氮以氧化物、氮化物存在,成为钢锭中夹杂。
氢是钢中危害最大的气体,它会引起“氢脆”,使钢的塑性显著下降;或在大型锻件中造成“白点”,使锻件报废。
(5)穿晶当钢液浇注温度较高,钢锭冷却速度较大时,钢锭中柱状晶会得到充分的发展,在某些情况下甚至整个截面都形成柱状晶粒,这种组织称为穿晶。
在柱状晶交界处(如方钢锭横截面对角线上),常聚集有易熔夹杂,形成“弱面”,锻造时易于沿这些面破裂。
在高合金钢锭中容易遇到这种缺陷。
(6)裂纹由于浇注工艺或钢锭模具设计不当,钢锭表面会产生裂纹。
锻造前应将裂纹消除,否则锻造时由于裂纹的发展导致锻件报废。
(7)溅疤当钢锭用上注法浇注时,钢液冲击钢锭模底而飞溅到钢锭模壁上,这些附着的溅沫最后不能和钢锭凝固成一体,便成溅疤。
溅疤锻造前必须铲除,否则会形成表面夹层。
二、轧制或锻制的钢材中的缺陷轧制或锻制的钢材中往往存在如下缺陷:(1)裂纹和发裂裂纹是由于钢锭缺陷未清除,经过轧制或锻造使之进一步发展造成的。
热处理专科毕业设计GCr15轴承钢球的热处理工艺及缺陷分析

GCr15轴承钢球的热处理工艺及缺陷分析摘要:本论文重点对GCr15轴承钢球热处理工艺的设计进行了讨论,同时对热处理后其可能存在的热处理工艺缺陷进行了分析。
钢球在不同热处理工艺下虽然都能达到其使用要求,但所需的成本却大不相同,因此在满足其使用要求的同时也应该注意生产成本。
热处理常常因操作、原材料等产生缺陷,但只要有正确的热处理工艺并严格按工艺进行加工热处理缺陷也是可以避免的,即使产生了缺陷也可以采取相应的措施及时修复缺陷。
关键词:GCr15 轴承钢球热处理设计热处理工艺热处理缺陷引言滚动轴承是机械工业十分重要的基础标准件之一;滚动轴承依靠元件间的滚动接触来承受载荷,与滑动轴承相比:滚动轴承具有摩擦阻力小、效率高、起动容易、安装与维护简便等优点。
缺点是耐冲击性能较差、高速重载时寿命低、噪声和振动较大。
图 1 轴承及钢球实物图滚动轴承的基本结构(图 1):内圈、外圈、滚动体和保持架等四部分组成。
常用的滚动体有球、圆柱滚子、滚针、圆锥滚子。
轴承的内、外圈和滚动体,一般是用轴承钢(如GCr15、GCr15SiMn)制造,热处理后硬度应达到61~65HRC。
当滚动体是圆柱或滚针时,有时为了减小轴承的径向尺寸,可省去内圈、外圈或保持架,这时的轴颈或轴承座要起到内圈或外圈的作用。
为满足使用中的某些需要,有些轴承附加有特殊结构或元件,如外圈带止动环、附加防尘盖等。
滚动轴承钢球的工作条件极为复杂,承受着各类高的交变应力。
在每一瞬间,只有位于轴承水平面直径以下的那几个钢球在承受载荷,而且作用在这些钢球的载荷分布也不均匀。
力的变化由零增加到最大,再由最大减小到零,周而往复得增大和减小。
在运转过程中,钢球除受到外加载荷外,还受到由于离心力所引起的载荷,这个载荷随轴承转速的提高而增加。
滚动体与套圈及保持架之间还有相对滑动,产生相对摩擦。
滚动体和套圈的工作面还受到含有水分或杂质的润滑油的化学侵蚀。
在某些情况下,轴承零件还承受着高温低温和高腐蚀介质的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢的热处理缺陷分析(2学时)
一、实验目的:
1、了解热处理各种热处理缺陷产生的原因及防止措施,
2、用金相显微镜观察及分析各种热处理缺陷,
3、学会用金相显微镜测定脱碳层的方法。
二、实验内容:
在各种热处理工艺中淬火缺陷最为常见,如硬度不足、软点、变形甚至开裂等,但产生的原因很多,须丛各个方面进行检查及分析。
其中金相检验较为方便,而占有重要地位。
(一)、热处理缺陷分析的一般步骤:
首先应了解零件的技术要求,使用材料、热处理工艺等。
1、零件的外观检查;有无裂纹、裂纹的情况、分布状况及大小,断口形貌。
2、硬度测量:判断热处理硬度是否达到技术要求,为金相检验提供数据。
3、必要时进行材料的化学成分分析;判断材料是否混料而误用成其它材料。
4、正确的取样;选取有代表性的部位,否则将得出错误结论。
5、金相检验:试样经磨制抛光后,必要时可在浸蚀之前检查裂纹形态和夹杂物的情况,
来判断是否是形成裂纹的原因。
6、作出结论:通过多方面的检验后,找出缺陷形成及产生的证据及原因,可能的话提
出改进的建议。
三、常见的热处理缺陷有如下几种;
1,、中碳钢及中碳合金钢淬火后正常组织是细小及中等粗细的马氏体。
当这种马氏体组织中有部分铁素体,就会使淬火马氏体的硬度下降,当铁素体数量越多硬度就越低,产生这种现象的主要原因是加热温度低于A C3。
所致。
2、另外在中碳钢及中碳合金钢淬火后正常组织是细小及中等粗细的马氏体。
当这种马氏体组织中夹有贝氏体或屈氏体,有时还伴有少量铁素体,就会使淬火马氏体的硬度下降,后两者的数量越多则硬度越低,产生这种现象的主要原因是冷却速度不够迅速。
马氏体+铁素体组织马氏体+屈氏体组织当马氏体太细小,同时又出现白色块状铁素体,这是淬火加热温度偏低所制。
2、高碳钢及高碳合金钢再淬火后的正常淬火组织应该是针状或细针状马氏体及均匀分布的小颗粒炭化物。
当组织中炭化物颗粒较多,这说明炭化物溶入不足,马氏体的碳及合金化浓度不够,甚至有部分未溶入奥氏体的珠光体小区域存在,这时还表现为硬度低或硬度不均匀。
这是淬火加热温度偏低所制。
有时组织中含有少量屈氏体,当含量多时表现为硬度不足,当含量少时只有用金相法进行检验。
为了确保质量一些钢材都有它的一套质量检验标准。
3、当淬火组织中马氏体针叶粗大,高碳钢中炭化物减少甚至消失,出现明显的残余奥
氏体,(一般马氏体针还会随淬火温度的增大而增大)这是淬火过热的原因。
它也会使硬度降低。
45#钢1000℃加热淬火(粗大的马氏体)T12钢1000℃加热淬火(马氏体及残余奥氏体)
当加热温度太高时,不仅马氏体针叶粗大,残余奥氏体数量增多,甚至会引起奥氏体晶界融化,这种现象叫过烧。
总的来说淬火加热温度过高,使试件内应力增大,致使工件产生裂纹造成产品报废。
4、在淬火加热时,由于加热介质中氧的存在而使试样表面发生氧化与脱碳。
脱碳层会直接影响工件的表面的硬度及耐磨性。
5、淬火时使用的冷却介质不当,或形状复杂的工件淬火时操作不当,或合金钢件,特别是合金工具钢件,如果淬入水中透冷,由于淬火应力过大,往往会形成工件开裂。
对于错综复杂的热处理缺陷必须进行认真的分析处理。
四、脱碳层深度的测定方法:
按GB224—86的标准,钢的脱
碳层的深度显微测定方法如下;
(一)、术语及定义
1、脱碳层可分成两部分;
(1)、全脱碳层
(2)、部分脱碳层
2、脱碳层的总深度包括全脱碳层的深度和部分脱碳层的深度。
(1)、全脱碳层是全部为铁素体组织的部分,就是由试样的边缘至最初发现有珠光体或其它组织的部分。
如图4—1。
(2)、部分脱碳层是其中只脱去一部分碳的区域。
(即有部分铁素体的部分),如果没有全脱碳层存在时,脱碳层就由部分脱碳层来计算。
即由试样的边缘测量到最后一颗铁素体晶粒处。
(二)试样的制畚:
1、试样从交货状态的钢材或零件截取,试样的磨光面必须垂直于轧(锻)方向。
2、试样被检查周遍长度不小于20mm。
对直径小于25mm的冷拔及高频淬火用钢材,必要时,可检查试样的全部周边。
3、实验时不允许用卷边或磨圆的试样。
为防止试样的卷边或磨圆,可将试样进行镶嵌或用夹具来进行磨制抛光。
4、试样的浸蚀,必须保证钢的脱碳层全部清楚地显示出来。
图—4 45#淬火出现的表面脱碳情况
(三)脱碳层深度的测定方法
1、测定脱碳层深度时,应该观察试样的全部周遍,并以总脱碳层的最大深度作为脱碳层深度,必要时可在技术条件中规定的钢的部分脱碳层与原始组织的界限。
注;在技术条件或双方协定有规定时,也可用全脱碳层的深度作为脱碳层深度。
2、测定脱碳层时,通常在放大100倍下进行,必要时也可在其他放大倍数下测定。
3、脱碳层深度以毫米计,也可用钢材及钢的零件的厚度或直径的百分比表示。
4、脱碳层深度的百分数按下式计算:
X= d ∕D╳100%
式中:X——脱碳层深度百分数
d——测量时一边的脱碳层深度,以毫米表示。
在技术条件有规定时也可用两对边的脱碳层深度之和来表示。
D——钢材及零件的厚度或直径,以毫米表示。
五、实验要求:
1、说明几种热处理缺陷产生的原因及防止方法。
(硬度不足,变形开裂,氧化脱碳)。
2、绘出所测试样的脱碳层的示意图,标明及计算出脱碳层深度。