高考数学必考题型以及题型分析
数学2024高考试卷解析

数学2024高考试卷解析一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合A = {xx^2-3x + 2 = 0},B={xx>1},则A∩ B = ( )A. {1}B. {2}C. {1,2}D. varnothing解析:先求解集合A,对于方程x^2-3x + 2 = 0,分解因式得(x - 1)(x - 2)=0,解得x = 1或x = 2,所以A={1,2}。
又因为B = {xx>1},所以A∩ B={2},答案为B。
2. 复数z=(1 + i)/(1 - i),则z的共轭复数¯z=( )A. -iB. iC. 1 - iD. 1 + i解析:对z=(1 + i)/(1 - i)进行化简,分子分母同时乘以1 + i,得到z=frac{(1 +i)^2}{(1 - i)(1 + i)}=frac{1 + 2i+i^2}{2}=i,共轭复数实部相同,虚部相反,所以¯z=-i,答案为A。
3. 已知向量→a=(1,2),→b=(m, - 1),若→a⊥→b,则m = ( )A. 2C. (1)/(2)D. -(1)/(2)解析:因为→a⊥→b,根据向量垂直的性质→a·→b=0,即1× m+2×(- 1)=0,解得m = 2,答案为A。
4. 函数y=sin(2x+(π)/(3))的最小正周期是(\space)A. πB. 2πC. (π)/(2)D. (2π)/(3)解析:对于函数y = Asin(ω x+φ),其最小正周期T=(2π)/(ω),这里ω = 2,所以T=π,答案为A。
5. 在等差数列{a_n}中,a_1=1,公差d = 2,则a_5=( )A. 9B. 11C. 13D. 15解析:根据等差数列通项公式a_n=a_1+(n - 1)d,当n = 5时,a_5=1+(5 - 1)×2=1 + 8 = 9,答案为A。
2023高考数学常考的知识点与题型

2023高考数学常考的知识点与题型高考数学常考题型有哪些1、函数与导数主要考查数学集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
2、平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些数学基础题或中档题。
3、数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。
4、不等式主要考查数学不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
5、概率和统计这部分和我们的生活联系比较大,属数学应用题。
6、空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。
主要考察对定理的熟悉程度、运用程度。
7、解析几何高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考数学题型归纳总结

高考数学题型归纳总结高考数学,作为一个非常重要的科目,是所有考生们备战高考的重点之一。
在数学考试中,题目的类型繁多,掌握不同类型的题目解题方法和技巧对于考生们提高解题效率、取得高分至关重要。
本文将对高考数学题型进行归纳总结,帮助考生们更好地备考。
一、选择题选择题是高考数学试卷中最常见的题型之一。
选择题根据答案的个数可以分为单选和多选两种。
在解答选择题时,考生们应该注意以下几点:1.仔细阅读题目,理解问题的要求和限制条件。
2.排除干扰项,选出正确答案。
可以通过代入法、排除法等方法来判断答案的正确性。
3.遇到容易涉及到计算的选择题,可以通过估算或者近似计算来快速得到答案。
二、填空题填空题是数学试卷中另一个重要的题型。
在解答填空题时,考生们应该注意以下几点:1.仔细阅读题目,理解问题的要求和限制条件。
2.填写答案时,要注意保持精确度。
特别是在涉及到小数、分数和根式的运算中,应尽量保留准确的计算结果。
3.反复检查,确保填写的答案符合题目的要求。
填空题常常涉及到多个空格的计算,需要检查各个空格的结果是否协调一致。
三、解答题解答题是数学试卷中的另一个重要部分,占据了相当比例的分值。
在解答题时,考生们应该注意以下几点:1.审题准确,理解问题的要求和限制条件。
要重点抓住问题中提到的关键信息。
2.合理组织解题思路。
可以通过列方程、画图、找规律等方法帮助解题。
3.清晰明了地书写解题过程和最终答案。
要注重条理性,将每一步都清楚地展示出来。
4.回顾检查。
解答题往往涉及到多步运算,需要仔细检查每一步的计算是否准确,以免因为粗心导致得分丢失。
四、证明题证明题是数学试卷中的难点之一。
在解答证明题时,考生们应该注意以下几点:1.阅读、理解题目要求。
要仔细审题,找出问题的关键点,掌握问题的要求。
2.建立合理的思维框架,构思证明过程。
可以采用逆证法、归纳法、反证法等方法展开证明。
3.清晰明了地展示证明过程和结论。
在书写证明过程时,要注重逻辑推理的连贯性,使用准确的数学符号和语言加以解释。
高考数学常考题型和答题技巧

高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧1.解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2.因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3.配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
4.换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元一换兀一解兀一还元5.待定系数法待定系数法是在已知对象形式式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6.复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(__)(__)=0两种情况为或型②配成平方型:(__)2+(__)2=0两种情况为且型数学中两个最伟大的解题思路求值的思路列欲求值字母的方程或方程组2)求取值范围的思路列欲求范围字母的不等式或不等式组数学解题小技巧1、精神要放松,情绪要自控最易导致紧张、焦虑和恐惧心理的是入场后与答卷前的“临战”阶段,此时保持心态平衡的方法有三种:①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。
②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。
③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,(最好默念几遍:“阿弥陀佛或祖先保佑”呵呵,还真的管用)如此进行到发卷时。
高三数学必考题型及解析

高三数学必考题型及解析
高三数学必考题型及解析:
1.函数与导数:必考题型,其中最常考的知识点包括函数极值、最值、单调性和导数定义、求导法则、导数应用等。
2.数列与数学归纳法:必考题型,数列的通项公式、数列求和、递推
关系式以及数学归纳法的应用都是常见考点。
3.三角函数:必考题型,主要考察正弦、余弦、正切函数的性质、公式、图像及其应用等。
4.平面向量与解析几何:必考题型,平面向量的基本概念、运算、平
行四边形法则、点、直线的向量方程及其应用等都是常见考点。
5.三角形面积、周长等:必考题型,包括海龙公式及其应用,正弦、
余弦定理的应用等。
6.概率统计:必考题型,主要考察排列组合、概率、期望、方差等概
率统计知识点的应用。
7.解方程和解不等式:必考题型,主要考察一元一次方程、一元二次
方程、绝对值不等式等的解法。
8.数论:必考题型,主要考察整数、素数、质因数分解、同余方程、
最大公约数、最小公倍数等常见数论知识点。
以上就是高三数学必考题型及解析,大家可以在备考过程中加强相应
的知识点的复习和练习,以应对高考数学。
高考数学必备题型解析

高考数学必备题型解析引言高考数学作为高考考试的一部分,对学生的数学基础知识和解题能力提出了很高的要求。
因此,熟悉高考数学的题型,理解解题思路以及掌握解题技巧是十分重要的。
在本文中,我将详细解析高考数学中的几种必备题型,帮助同学们更好地应对高考数学考试。
一、选择题选择题在高考数学中占了相当大的比重。
正确地解答选择题可以有效地提高数学成绩。
下面是几种常见的高考数学选择题类型:1.1 平面几何题平面几何题是高考数学中的重点和难点之一。
常见的平面几何题类型包括求面积、求长度、判断几何关系等。
1.1.1 圆的相关题型圆的相关题型主要涉及到圆的面积、周长、弧长、扇形面积等。
解答这类题型时,首先要熟练掌握圆的相关公式,如圆的面积公式:S=πr2。
1.1.2 平面直角坐标系相关题型平面直角坐标系相关题型主要考察坐标计算和几何关系判断。
在解答这类题型时,要善于利用坐标计算公式和几何关系的性质,如两点间距离公式:d=√(x2−x1)2+(y2−y1)2。
1.2 解析几何题解析几何题主要考察函数的性质、图像的性质以及函数之间的关系。
解析几何题的解答需要运用函数的知识和性质,理清问题的思路。
1.2.1 直线与曲线的交点问题直线与曲线的交点问题是解析几何题中的重点内容。
在解答这类题型时,需要找出直线与曲线的方程,然后求解它们的交点。
1.2.2 图像的性质问题图像的性质问题主要考察函数图像的对称性、单调性、极值等特点。
在解答这类题型时,要根据函数的定义和性质进行推导。
二、填空题填空题是高考数学中另一种常见的题型。
正确地填写空格可以得到满分,因此要熟练掌握填空题的解题技巧。
下面是几种常见的高考数学填空题类型:2.1 几何题几何题是填空题的重点。
常见的几何题类型包括求角度、长度、面积等。
在解答这类题型时,要运用几何知识和定理,准确计算出所填写的空格。
2.1.1 直角三角形的题型直角三角形是几何题中的常见题型,常涉及到勾股定理、正弦定理、余弦定理等。
高考数学题型及知识点总结

高考数学题型及知识点总结一、概述在高中生涯的最后一站,高考中,数学是绝对不可忽视的一门科目。
不仅占据高考总分的比重较大,而且在综合素质评价中也具有重要地位。
本文将从数学题型和知识点两个方面对高考数学进行总结。
二、选择题选择题一直是高考数学中最普遍也是最常见的题型之一。
在选择题中,主要包括填空选择题和多项选择题。
对于填空选择题,学生需要选择合适的数字来填充空缺,而多项选择题则要求学生选择正确的选项。
1. 填空选择题填空选择题在高考中占据较大比例,主要考察学生对知识点的理解和运用。
例如,要求学生填入合适的数字使等式成立、求解方程的解集等。
在应对这类题目时,学生需要掌握基本的代数运算、方程求解法等知识点。
2. 多项选择题多项选择题则更加灵活多样,涉及的知识点也更加广泛。
其中包括但不限于函数、数列与级数、概率与统计等。
对于学生来说,解答多项选择题需要广泛的知识储备和对题目的整体把握能力。
因此,平时的系统学习和积累是解答此类题目的关键。
三、填空题填空题是高考中另一种常见的题型,主要考察学生对知识点的理解和应用能力。
与选择题不同,填空题要求学生填写合适的答案,作文格式通常较为固定。
1. 代数类填空题代数类填空题广泛应用于高考中,要求学生根据题目中提供的条件设置方程并求解。
例如,求二次函数的顶点坐标、解二元一次方程等。
在解答这类题目时,学生应灵活运用代数运算、方程求解的方法,并进行合理的计算。
2. 几何类填空题几何类填空题在高考中出现频率较高。
这类题目主要考察学生对几何知识的掌握和应用能力。
例如,要求学生确定三角形的面积、求解平面几何体的体积等。
在解答几何类填空题时,学生需要巩固几何知识,掌握几何图形的性质和计算方法。
四、解答题解答题也是高考数学中的一项重要内容,要求学生能够自主思考、灵活应用数学方法,并通过文字描述和计算进行解答。
1. 计算题计算题通常要求学生进行具体的计算和证明。
例如,计算函数的极限值、证明定理的正确性等。
高中数学题型归纳及方法

高中数学题型归纳及方法一、函数题型。
1. 求函数定义域题型。
题目:求函数y = (1)/(√(x 1))+ln(x + 2)的定义域。
解析:对于(1)/(√(x 1)),要使根式有意义,则根号下的数大于0,即x 1>0,解得x>1。
对于ln(x + 2),对数函数中真数大于0,即x+2>0,解得x > 2。
综合起来,函数的定义域为x>1。
2. 函数单调性判断题型。
题目:判断函数y = x^2-2x + 3在(-∞,1)上的单调性。
解析:对于二次函数y = ax^2+bx + c(a≠0),其对称轴为x =-(b)/(2a)。
在函数y = x^2-2x + 3中,a = 1,b=-2,对称轴x = 1。
因为a = 1>0,二次函数开口向上,所以在对称轴左侧(-∞,1)上函数单调递减。
二、三角函数题型。
3. 三角函数化简求值题型。
题目:化简sin(α+β)cosβ-cos(α +β)sinβ并求值(已知α=(π)/(3))。
解析:根据两角差的正弦公式sin(A B)=sin Acos B-cos Asin B,这里A=α+β,B = β,所以sin(α+β)cosβ-cos(α+β)sinβ=sin(α+β-β)=sinα。
当α=(π)/(3)时,sinα=(√(3))/(2)。
4. 三角函数图象平移题型。
题目:将函数y=sin x的图象向左平移(π)/(3)个单位,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),求得到的函数解析式。
解析:将y = sin x的图象向左平移(π)/(3)个单位,根据“左加右减”原则,得到y=sin(x+(π)/(3))的图象。
再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则x的系数变为原来的(1)/(2),得到y=sin((1)/(2)x+(π)/(3))。
三、数列题型。
5. 等差数列通项公式求题型。
题目:已知等差数列{a_n}中,a_1=2,公差d = 3,求其通项公式a_n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学必考题型以及题型分析
大家觉得数学难不难?很多学生都觉得数学相当难,尤其是文科生。
数学对于文科生来说是拉开分数的关键。
数学学得好的同学能得130分以上,数学差的学生可能就只有几十分。
下面是小编为大家带来的高考数学必考题型以及题型分析,希望能帮到大家!
高考数学必考题型以及题型分析
第一,函数与导数
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
主要考察对定理的熟悉程度、运用程度。
第七,解析几何
高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。
以不变应万变。
一、高考各章节占比情况
1.集合(必修1)与简易逻辑,复数(选修)。
分值在10分左右(一两道选择题,有时达到三道),考查的重点是计算能力,集合多考察交并补运算,简易逻辑多为考查充分与必要条件及命题真伪的判别,复数一般考察模及分式运算。
2.函数(必修1指数函数、对数函数)与导数(选修),一般在高考中,至少三个小题一个大压轴题,分值在30分左右。
以指数函数、对数函数、及扩展函数函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)以选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。
压轴题,文科以三次函数为主,理科以含有ex ,lnx的复杂函数为主,以切线问题、极值最值问题、单调性问题、恒成立零点为设置条件,求解范围或证明结论为主。
3.立体几何(必修2):分值在22分左右(两小一大),两小题以基
本位置关系的判定与体积,内外截球,三视图计算为主,一大题以证明空间线面的位置关系和夹角计算为主,试题的命制载体可能趋向于不规则几何体,但仍以方便建系为原则。
4.解析几何(必修2+选修):必修2直线与圆的方程、选修圆锥曲线统称为解析几何,高考对解析几何的考查一般是三个小题一个大题,所占分值约30分。
其规律是线性规划、直线与圆各一个小题,涉及圆锥曲线的图形、定义或简单几何性质的问题一个小题,直线与圆锥曲线的综合问题一个大题。
圆锥曲线核心:运算,超越课本结论。
5.算法程序框图(必修3):一道选择题,主要以循环结构为主。
6.概率统计(必修3),排列、组合、二项式定理、(选修):分值在22分左右(两小一大),排列组合与二项式定理一般一个小题,大题理科以概率统计、文科以求概率的应用题为主理科考查重点为随机变量的分布列及数学期望,概率计算;文科以等可能事件、互斥事件、相互独立事件的概率求法为主。
特别要引起注意是以正态分布相关内容为题材,文科卷以抽样相关内容为题材设计试题。
7.三角函数(必修4):分值在20分左右(两小一大,大题或有或无)。
三角函数考题大致为以下几类:一是三角函数的恒等变形,即应用同角变换和诱导公式,两角和差公式,二倍角公式,求三角函数值及化简、证明等问题;二是三角函数的图象和性质,即图像的平移、伸缩变换与对称变换、画图与视图,与单调性、周期性和对称性、最值有关的问题;三是三角形中的三角问题.
高考对这部分内容的命题有如下趋势:⑴降低了对三角变形的要求,加强了对三角函数的图象和性质的考察.⑵多是基础题,难度属中档偏易.⑶强调三角函数的工具性,加强了三角函数与其他知识的综合,如与向量知识、三角形问题、解析几何、立体几何的综合。
以三角形为载体,以三角函数为核心,以正余弦公式为主体,考查三角变换及其应用的能力,已成为考试热点。
8.向量(必修4):分值在10分左右,一般有一道小题的纯向量题,另外在函数、三角、解析几何与立体几何中均可能结合出题。
9.不等式(必修5);选择题多以基本不等式求最值为主,在解答题中中隐蔽出现,分值一般在10左右。
不等式涉及函数、数列、圆锥曲线等知识的考查。
10.数列(必修5):数列是高中数学的重要内容,题量一般是一个小题,一个大题或有或无(改成小题),有时还有一个与其它知识的综合题。
分值在15分左右,文科以应用等差、等比数列的概念、性质求通项公式、前n项和为主;理科以应用Sn或an之间的递推关系求通项、求和、证明有关性质为主。
11.选做题一道(选修)
以上内容试题的分值一般会发生个别变动,但大致是不变的。
二、高考复习解题思路该怎样形成
解题思路是很多高考学生面临的最大困惑,那么解题思路到底该怎样形成呢?解题思路是拿到题目后形成的一种解题感觉,有些人有,有些人缺乏,从根本上来说人的感觉有两种:第一种天生的比如手靠
近火,都知道怎么做。
第二种后天形成的,有些人有,有些人无,但可以学会,其根本原因在于缺乏方法。
一般而言解题思路有两种:一种是固定解题思路,比如某些特殊题型的特殊解题思路,二是根据题目形成,数学题目是由什么构造的,都知道文字,式子,图形,数字,那么解题感觉怎么形成不用我说,文字,式子,图形,运算处理框架,但这些内容目前很多同学在用,却自己不知道。