2017年高考真题分类汇编

合集下载

高考英语试题2017年全国各省市高考试题汇编精校Word版真题含答案

高考英语试题2017年全国各省市高考试题汇编精校Word版真题含答案

2017年高考英语试题全国各省市汇总精校Word版目录本文档为自主命题省份试卷部分,全国各省市高考英语试卷使用情况如下。

全国Ⅰ卷省份:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建;全国Ⅱ卷省份:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆、海南、山东;全国Ⅲ卷省份云南、广西、贵州、四川;自主命题省份:北京、天津、江苏、浙江。

-2017年北京卷英语试题Word版高考真题试卷精校版···················-2017年北京卷英语试题Word版高考真题试卷答案·····················-2017年天津卷英语试题Word版高考真题试卷精校版···················-2017年天津卷英语试题Word版高考真题试卷答案·····················-2017年江苏卷英语试题Word版高考真题试卷精校版···················-2017年江苏卷英语试题Word版高考真题试卷答案·····················-2017年浙江卷英语试题Word版高考真题试卷精校版···················-2017年浙江卷英语试题Word版高考真题试卷答案····················绝密★启用前2017年普通高等学校全国招生统一考试(北京卷)英语本试卷共16页,共150分。

近五年(2017-2021)高考数学真题分类汇编07 数列

近五年(2017-2021)高考数学真题分类汇编07 数列
(2)已知数列{bn}满足: ,其中Sn为数列{bn}的前n项和.
①求数列{bn}的通项公式;
②设m为正整数,若存在“M-数列”{cn},对任意正整数k,当k≤m时,都有 成立,求m的最大值.
53.(2019·北京(文))设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.
A.1盏B.3盏
C.5盏D.9盏
二、填空题
22.(2020·海南)将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.
23.(2020·浙江)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列 就是二阶等差数列,数列 的前3项和是________.
A.2a4=a2+a6B.2b4=b2+b6C. D.
7.(2020·全国(文))设 是等比数列,且 , ,则 ()
A.12B.24C.30D.32
8.(2020·全国(文))记Sn为等比数列{an}的前n项和.若a5–a3=12,a6–a4=24,则 =()
A.2n–1B.2–21–nC.2–2n–1D.21–n–1
近五年(2017-2021)高考数学真题分类汇编
七、数列
一、单选题
1.(2021·全国(文))记 为等比数列 的前n项和.若 , ,则 ()
A.7B.8C.9D.10
2.(2021·浙江)已知 ,函数 .若 成等比数列,则平面上点 的轨迹是()
A.直线和圆B.直线和别解答,则按第一个解答计分.
43.(2021·全国(理))记 为数列 的前n项和, 为数列 的前n项积,已知 .
(1)证明:数列 是等差数列;

2017年全国高考英语试题分类汇编(共23份) (1)

2017年全国高考英语试题分类汇编(共23份) (1)

2017年全国高考英语试题分类汇编(共23份)目录2017全国高考汇编之定语从句 (2)2017全国高考汇编之动词+动词短语 (13)2017全国高考汇编之动词时态与语态 (30)2017全国高考汇编之非谓语动词 (47)2017全国高考汇编改错 (68)2017全国高考汇编之交际用语 (82)2017全国高考汇编之介词+连词 (96)2017全国高考汇编之名词性从句 (112)2017全国高考汇编之完型填空 (187)2017全国高考汇编之形容词+副词 (330)2017全国高考汇编之虚拟语气+情态动词 (341)2017全国高考汇编阅读之广告应用类 (355)2017全国高考汇编阅读之广告应用类 (375)2017全国高考汇编阅读之科普知识类 (409)2017全国高考汇编阅读之人物传记类 (456)2017全国高考汇编阅读之社会生活类 (471)2017全国高考汇编阅读之文化教育类 (552)2017全国高考汇编阅读新题型 (658)2017全国高考汇编阅读之新闻报告类 (712)2017全国高考汇编之代词+名词+冠词 (740)2017全国高考汇编之状语从句 (761)2017全国高考汇编之定语从句The exact year Angela and her family spent together in China was 2008.A. WhenB. whereC. whyD. which【考点】考察定语从句【答案】D【举一反三】Between the two parts of the concert is an interval, _______ the audience can buy ice-cream.A. whenB. whereC. thatD. which【答案】A二I borrow the book Sherlock Holmes from the library last week, ______ my classmates recommended to me..A.whoB. whichC. whenD. Where【考点】考察定语从句【答案】B【举一反三】The Science Museum, we visited during a recent trip to Britain, is one of London’s tourist attractions.A.whichB.whatC.thatD.where 〖答案〗A〖考点〗考查非限制性定语从句三(2017福建卷)31. Students should involve themselves in community activities they can gain experience for growth.A. whoB. whenC. whichD. where【考点】考察定语从句【答案】D【举一反三】Those successful deaf dancers think that dancing is an activity sight matters more than hearing.A.whenB.whoseC.whichD.where〖答案〗D四(2017湖南卷)31.I am looking forward to the day my daughter can read this book and know my feelings for her.A. asB. whyC. whenD. where【考点】考察定语从句【答案】C【举一反三】Between the two parts of the concert is an interval, _______ the audience can buy ice-cream.A. whenB. whereC. thatD. which【考点】考查定语从句。

2017年全国高考英语真题分类汇编---时态语态及动词词义辨析解析

2017年全国高考英语真题分类汇编---时态语态及动词词义辨析解析

2017年全国高考英语真题分类汇编---动词时态语态和词义辨析1. (北京卷24.)—______ that company to see how they think of our product yesterday? —Yes. They are happy with it.A. Did you callB. Have you calledC. Will you callD. Were you calling答案:A, 分析:yesterday表示过去的时间,要用一般过去时,句意:“---你给那个公司打电话来弄清他们对我们产品的看法了吗?---是的,他们对我们的产品很满意”。

所以选A。

2. (北京卷29). In the 1950s in the USA, most families had just one phone at home, and wireless phones _______ yet.A. haven’t inventedB. haven’t been inventedC. hadn’t inventedD. hadn’t been invented答案:D, 分析:in the 1950s是过去的时间,而到那时还没有无线电话,说明是“过去的过去”,句意:“在美国20世纪50年代,多数家庭家里只有一部电话,并且无线电话还没被发明出来。

”所以用过去完成时,选D。

3.(北京卷33). People______better access to health care than they used to, and they’re living longer as a result.A. will haveB. haveC. hadD. had had答案:B, 分析:than they used to,说明是现在和过去对比,且后半句and后are living longer用的是现在进行时,所以是现在时系列,句意:“人们有了比过去更好的医疗,人们活得更长久了。

2017年全国高考化学试题 元素周期律 专题汇编 含答案与解析

2017年全国高考化学试题 元素周期律 专题汇编 含答案与解析

2017年全国高考化学试题元素周期律专题汇编Ⅰ—原子结构1.(2017•北京-8)2016年IUPAC命名117号元素为T S,T S的原子核外最外层电子数是7,下列说法不正确的是A.T S是第七周期第ⅦA族元素B.T S的同位素原子具有相同的电子数C.T S在同族元素中非金属性最弱D.中子数为176的T S核素符号是117176Ts【答案】D【解析】A.根据原子核外电子排布规则,该原子结构示意图为,据此判断该元素位于第七周期、第VIIA族,故A正确。

B.同位素具有相同质子数、不同中子数,而原子的质子数=核外电子总数,则T S的同位素原子具有相同的电子数,故B正确;C.同一主族元素中,随着原子序数越大,元素的非金属性逐渐减弱,则T S在同族元素中非金属性最弱,故C正确;D.该元素的质量数=质子数+中子数=176+117=293,该原子正确的表示方法为:117293Ts,故D错误;【考点】原子结构与元素的性质;元素周期律与元素周期表【专题】元素周期律与元素周期表专题【点评】本题考查原子结构与元素性质,题目难度不大,明确原子结构与元素周期律的关系为解答关键,注意掌握原子构成及表示方法,试题培养学生的分析能力及灵活应用能力。

2.(2017•新课标Ⅱ-9)a、b、c、d为原子序数依次增大的短周期主族元素,a原子核外电子总数与b原子次外层的电子数相同;c所在周期数与族数相同;d与a同族,下列叙述正确的是A.原子半径:d>c>b>aB.4种元素中b的金属性最强C.c的氧化物的水化物是强碱D.d单质的氧化性比a单质的氧化性强【答案】B【解析】由以上分析可知a为O元素、b可能为Na或Mg、c为Al、d为S元素.A.同周期元素从左到右原子半径逐渐减小,应为b>c>d,a为O,原子半径最小,故A错误;B.同周期元素从左到右元素的金属性逐渐降低,则金属性b>c,a、d为非金属,金属性较弱,则4种元素中b的金属性最强,故B正确;C.c为Al,对应的氧化物的水化物为氢氧化铝,为弱碱,故C错误;D.一般来说,元素的非金属性越强,对应的单质的氧化性越强,应为a的单质的氧化性强,故D错误。

2017年全国各地高考题打包(题目)

2017年全国各地高考题打包(题目)

2017年普通高等学校招生全国统一考试(全国I卷)英语(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷由四个部分组成。

其中,第一、二部分和第三部分的第一节为选择题。

第三部分的第二节和第四部分为非选择题。

2.答卷前,考生务必将自己的、号填写在答题卡上。

3.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £ 19. 15.B. £ 9. 18.C. £ 9. 15.答案是C。

1.What does the woman think of the movie?A. It’s amusingB.It’s excitingC.It’s disappointing2.How will Susan spend most of her time in France?A. Traveling aroundB. Studying at a schoolC. Looking after her aunt3.What are the speakers talking about?A. Going outB. Ordering drinksC. Preparing for a party4.Where are the speakers?A. In a classroomB.In a libraryC.In a bookstore5.What is the man going to do ?A . Go on the Internet B.Make a phone call C.Take a train trip第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

2017-2021年高考英语真题分类汇编之七选五

2017-2021年高考英语真题分类汇编之七选五

2017-2021年高考英语真题分类汇编之七选五一.信息匹配(共3小题)1.(2021•北京)Music has long been considered to be an enjoyable pastime for many people.(1)The mental health benefits from music can't be argued.Music could also be helping you with many other health problems behind the scenes.(2)However,for the same reason,music can be very beneficial if one is in pain.By distracting (分心)the mind from the pain,music,people say,can lower stress and anxiety levels.This,of course,can lead to less pain.Many people enjoy relaxing music in the evening prior to going to bed.(3)While the validity of the idea is still being assessed,the lowered stress can even be tied back to blood pressure.Similarly,according to researchers,listening to just 30 minutes of soft music every day may help with healthy blood sugar levels,through the lowering of stress and anxiety.When it comes to heart health,there is speculation(推测)that it's not the style of music,but rather the tempo that makes it so good for your heart health.In one European study,participants listened to music as the researchers monitored their heart rates and blood pressure.(4)On the other hand,when the music slowed,the participants' stress and anxiety levels became lower and the effects on heart rates appeared to follow suit.(5)But there is a whole range of other health issues that turning up the radio could be beneficial for,which is what makes music so valuable.A.This feeling can also result in many other health problems.B.Some experts say that music can be harmful if it is too loud.C.This idea is a little off﹣the﹣wall but still has scientific backing.D.They say it can play a big role in calming the brain enough to sleep.E.The implications of music on overall well﹣being are really impressive.F.It is also highly popular due to the individualized effects on stress and anxiety.G.Interestingly,the more cheerful the music was,the faster their heart rates were. 2.(2020•北京)Many people think that positive thinking is mostly about keeping one's head in the sand and ignoring daily problems,trying to look optimistic. In reality it has more to do with theway an individual talks to himself. Self﹣talk is a constant stream of thoughts of a person,who is often unaware and uncertain of some events,phenomena,people,or even the person himself.(1)Meanwhile,positive thinking can help to stop negative self﹣talks and start to form a positive view on an issue. People who regularly practise positive thinking tend to solve problems more effectively. They are less exposed to stress caused by external factors. They tend to believe in themselves and in what they do.(2)People who think positively demonstrate increased life spans (寿命),lower rates of depression and anxiety,better physical and psychological health,reduced risks of death from heart problems. Positive thinking also contributes to one's ability to deal with problems and hardships. (3)For example,researchers have found that in the case of a crisis accompanied by strong emotions,such as a natural disaster,positive thinking can provide a sort of buffer (缓冲作用)against depression and anxiety. Resilient (适应性强的)people who think positively tend to treat every problem as a challenge,a chance for improvement of any kind,or as an opportunity for personal growth. Pessimists,on the contrary,tend to perceive problems as a source of additional stress.(4)In conclusion,positive thinking is a powerful and effective tool for dealing with hard times and improving the quality of one's life. It doesn't have anything to do with ignorant optimism when an individual refuses to notice a problem. (5)Thinking in a positive,self﹣encouraging way brings about many benefits to one's physical and mental health.A.It doesn't cause any severe emotional discomfort,either.B.Negative self﹣talk damages self﹣confidence and decreases self﹣respect.C.It helps one to remain clear﹣headed and confident in difficult situations.D.Positive thinking has several beneficial effects on the body and the mind.E.As thinking changes,an individual's behaviour and habits change as well.F.They often offer a real alternative to the common and regular way of thinking.G.They often feel discouraged long before trying to solve the problem,even if small. 3.(2019•北京)Much of the work in today's world is accomplished (完成)in teams.Most people believe the best way to build a great team is to gather a group of the most talented individuals.(1)Companies spend millions hiring top business people.Is their moneywell spent?(2)They focused on football,basketball and baseball.The results are mixed.For football and basketball,adding talented players to a team proves a good method,but only up to the point where 70% of the players are top talent;above that level,the team's performance begins to decline.Interestingly,this trend isn't evident in baseball,where additional individual talent keeps improving the team's performance.To explain tins phenomenon,the researchers explored the degree to which a good performance by a team requires its members to coordinate (协调)their actions.(3)In baseball,the performance of individual players is less dependent on teammates.They conclude that when task interdependence is high,team performance will suffer when there is too much talent,while individual talent will have positive effects on team performance when task interdependence is lower.If a basketball star is,for example,trying to gain a high personal point total,he may take a shot himself when it would be better to pass the ball to a teammate,affecting the team's performance.Young children learning to play team sports are often told,"There is no I in TEAM." (4)Another possibility is that when there is a lot of talent on a team,some players may make less effort.Just as in a game of tug﹣of﹣war (拔河比赛),whenever a person is added,everyone else pulls the rope with less force.(5)An A﹣team may require a balance﹣not just A players,but a few generous B players as well.A.It's not a simple matter to determine the nature of talent.B.Sports team owners spend millions of dollars attracting top talent.C.The group interaction and its effect drew the researchers' attention.D.Stars apparently do not follow this basic principle of sportsmanship.E.Several recent studies examined the role of talent in the sports world.F.Building up a dream team is more complex than simply hiring the best talent.G.This task interdependence distinguishes baseball from football and basketball.2017-2021年北京高考英语真题分类汇编之七选五参考答案与试题解析一.信息匹配(共3小题)1.(2021•北京)Music has long been considered to be an enjoyable pastime for many people.(1)F The mental health benefits from music can't be argued.Music could also be helping you withmany other health problems behind the scenes.(2)B However,for the same reason,music can be very beneficial if one is in pain.By distracting (分心)the mind from the pain,music,people say,can lower stress and anxiety levels.This,of course,can lead to less pain.Many people enjoy relaxing music in the evening prior to going to bed.(3)D While the validity of the idea is still being assessed,the lowered stress can even be tied back to blood pressure.Similarly,according to researchers,listening to just 30 minutes of soft music every day may help with healthy blood sugar levels,through the lowering of stress and anxiety.When it comes to heart health,there is speculation(推测)that it's not the style of music,but rather the tempo that makes it so good for your heart health.In one European study,participants listened to music as the researchers monitored their heart rates and blood pressure.(4)G On the other hand,when the music slowed,the participants' stress and anxiety levels became lower and the effects on heart rates appeared to follow suit.(5)E But there is a whole range of other health issues that turning up the radio could be beneficial for,which is what makes music so valuable.A.This feeling can also result in many other health problems.B.Some experts say that music can be harmful if it is too loud.C.This idea is a little off﹣the﹣wall but still has scientific backing.D.They say it can play a big role in calming the brain enough to sleep.E.The implications of music on overall well﹣being are really impressive.F.It is also highly popular due to the individualized effects on stress and anxiety.G.Interestingly,the more cheerful the music was,the faster their heart rates were.【考点】选句填空.【分析】本文是一篇说明文,主要讲的是音乐对身体的好处。

【精品】2017年高考语文真题分类汇编:考点5 选用、仿用、变换句式,扩展语句,压缩语段

【精品】2017年高考语文真题分类汇编:考点5 选用、仿用、变换句式,扩展语句,压缩语段

考点5 选用、仿用、变换句式,扩展语句,压缩语段[2017浙江卷]归谬法是指为反对错误观点,先假设这个观点是正确的,由此推论得出荒谬结论的论证方法。

仿照下面的示例,另写一句话。

要求:符合归谬逻辑,句式基本一致,语言简洁明了。

(3分)例句:如果作品水平越高,知音越少,那么谁也不懂的东西就是世界上的绝作了。

答:解析:本题考查语言表达简明、连贯、准确的能力。

题干要求非常明确,即用归谬法仿照示例写一句话反驳生活中的错误看法或观点。

解答时需先假设生活中人们常提到的某一错误观点,然后依据此观点推导出一个荒谬的结论即可。

句式上可采用“如果……那么……”的模式。

[2017天津卷]给下面短文拟写一个标题。

(12字以内)(3分)事实上,“一带一路”推动的不仅仅是经济上的合作,更是文明互通的基础建设,是连接世界上不同文明的“带”与“路”。

它以文明对话为引领,强调不同文明的相互尊重、平等对话与交流融合,其路径很清晰:基础设施建设先行,贸易发展紧随,伴着人民交往、文化交流,逐渐实现沿线国家民众相互理解、相互包容、和平共处、共同发展,最终达至民心相通,文化相融。

答:解析:本题考查压缩语段的能力。

先从所给语段中找出一级信息“一带一路”;再找出二级信息“推动的……更是文明互通”,最后在规定的字数内将标题拟写出即可。

答案:例:“一带一路”推动文明互通[2017山东卷]阅读下面的文字,逐段概括中国古代木构房屋的特点。

每个特点不超过10个字。

(4分)①中国古代木构房屋需防潮防雨,故有高出地面的台基和出檐较大的屋顶。

②这种房屋内部可以全部打通,也可按需要用木材进行装修分隔,分隔方式可实可虚,实的如屏门、板壁等,虚的如落地罩、太师壁等。

③工匠们设计房屋的各种构件(如梁、柱)时,在保有其功能的基础上,往往顺应其形状、位置进行艺术加工,使之更加漂亮美观。

如把直梁加工成月梁,以给人举重若轻之感。

④为防止木材腐烂,工匠们给木构房屋涂上油漆,油漆在木材表面形成坚韧的保护膜,能起到很好的防护作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考真题分类汇编(理数):专题3 三角与向量一、单选题(共8题;共16分)1、(2017•山东)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A、a=2bB、b=2aC、A=2BD、B=2A2、(2017·天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<x.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A、ω= ,φ=B、ω= ,φ=﹣C、ω= ,φ=﹣D、ω= ,φ=3、(2017•北京卷)设,为非零向量,则“存在负数λ,使得=λ ”是•<0”的()A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分也不必要条件4、(2017•新课标Ⅰ卷)已知曲线C1:y=cosx,C2:y=sin(2x+ ),则下面结论正确的是()A、把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B、把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C、把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D、把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C25、(2017•新课标Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD 相切的圆上.若=λ +μ ,则λ+μ的最大值为()A、3B、2C、D、26、(2017•新课标Ⅲ)设函数f(x)=cos(x+ ),则下列结论错误的是()A、f(x)的一个周期为﹣2πB、y=f(x)的图象关于直线x= 对称C、f(x+π)的一个零点为x=D、f(x)在(,π)单调递减7、(2017•浙江)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC 与BD交于点O,记I1= •,I2= •,I3= •,则()A、I1<I2<I3B、I1<I3<I2C、I3<I1<I2D、I2<I1<I38、(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+ )的最小值是()A、﹣2B、﹣C、﹣D、﹣1二、填空题(共9题;共10分)9、(2017·浙江)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=________.10、(2017•江苏)若tan(α﹣)= .则tanα=________.11、(2017•山东)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是________.12、(2017·天津)在△ABC中,∠A=60°,AB=3,AC=2.若=2 ,=λ﹣(λ∈R),且=﹣4,则λ的值为________.13、(2017•浙江)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是________,com∠BDC=________.14、(2017•北京卷)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα= ,则cos(α﹣β)=________.15、(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m +n (m,n∈R),则m+n=________.16、(2017•新课标Ⅰ卷)已知向量,的夹角为60°,| |=2,| |=1,则| +2 |=________.17、(2017•新课标Ⅱ)函数f(x)=sin2x+ cosx﹣(x∈[0,])的最大值是________.三、解答题(共10题;共57分)18、(2017•山东)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(12分)(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.19、(2017·天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB= .(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+ )的值.20、(2017•浙江)已知函数f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.21、(2017•浙江)已知向量、满足| |=1,| |=2,则| + |+| ﹣|的最小值是________,最大值是________.22、(2017•北京卷)在△ABC中,∠A=60°,c= a.(13分)(1)求sinC的值;(2)若a=7,求△ABC的面积.23、(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(Ⅰ)若∥,求x的值;(Ⅱ)记f(x)= ,求f(x)的最大值和最小值以及对应的x的值.24、(2017•新课标Ⅰ卷)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(12分)(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.26、(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(Ⅰ)求cosB;(Ⅱ)若a+c=6,△ABC面积为2,求b.27、(2017•新课标Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+ cosA=0,a=2 ,b=2.(Ⅰ)求c;(Ⅱ)设D为BC边上一点,且AD⊥AC,求△ABD的面积.答案解析部分一、单选题1、【答案】A【考点】两角和与差的正弦函数,正弦定理,三角形中的几何计算【解析】【解答】解:在ABC中,角A,B,C的对边分别为a,b,c,满足sinB(1+2cosC)=2sinAcosC+cosAsinC=sinAcosC+sin(A+C)=sinAcosC+sinB,可得:2sinBcosC=sinAcosC,因为△ABC为锐角三角形,所以2sinB=sinA,由正弦定理可得:2b=a.故选:A.【分析】利用两角和与差的三角函数化简等式右侧,然后化简通过正弦定理推出结果即可.2、【答案】A【考点】三角函数的周期性及其求法,由y=Asin(ωx+φ)的部分图象确定其解析式【解析】【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()= ,得sin(φ+ )=1.∴φ+ = ,k∈Z.取k=0,得φ= <π.∴,φ= .故选:A.【分析】由题意求得,再由周期公式求得ω,最后由若f()=2求得φ值.3、【答案】A【考点】必要条件、充分条件与充要条件的判断,向量数乘的运算及其几何意义,平面向量数量积的性质及其运算律【解析】【解答】解:,为非零向量,存在负数λ,使得=λ ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ 不成立.∴,为非零向量,则“存在负数λ,使得=λ ”是•<0”的充分不必要条件.故选:A.【分析】,为非零向量,存在负数λ,使得=λ ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ 不成立.即可判断出结论.4、【答案】D【考点】函数y=Asin(ωx+φ)的图象变换【解析】【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向右平移个单位长度,得到函数y=cos2(x﹣)=cos(2x﹣)=sin(2x+ )的图象,即曲线C2,故选:D.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.5、【答案】A【考点】向量在几何中的应用【解析】【解答】解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,则A(0,0),B(1,0),D(0,2),C(1,2),∵动点P在以点C为圆心且与BD相切的圆上,设圆的半径为r,∵BC=2,CD=1,∴BD= =∴BC•CD= BD•r,∴r= ,∴圆的方程为(x﹣1)2+(y﹣2)2= ,设点P的坐标为(cosθ+1,sinθ+2),∵=λ +μ ,∴(cosθ+1,sinθ﹣2)=λ(1,0)+μ(0,2)=(λ,2μ),∴cosθ+1=λ,sinθ+2=2μ,∴λ+μ= cosθ+ sinθ+2=sin(θ+φ)+2,其中tanφ=2,∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,故λ+μ的最大值为3,故选:A【分析】如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,先求出圆的标准方程,再设点P的坐标为(cosθ+1,sinθ+2),根据=λ +μ ,求出λ,μ,根据三角函数的性质即可求出最值.6、【答案】D【考点】三角函数的周期性及其求法,余弦函数的图象,余弦函数的单调性,余弦函数的对称性【解析】【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x= 时,cos(x+ )=cos(+ )=cos =cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x= 对称,故B正确,C当x= 时,f(+π)=cos(+π+ )=cos =0,则f(x+π)的一个零点为x= ,故C 正确,D.当<x<π时,<x+ <,此时余弦函数不是单调函数,故D错误,故选:D【分析】根据三角函数的图象和性质分别进行判断即可.7、【答案】C【考点】平面向量数量积的运算【解析】【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2 ,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.【分析】根据向量数量积的定义结合图象边角关系进行判断即可.8、【答案】B【考点】平面向量数量积的运算【解析】【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+ )=2x2﹣2 y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y= 时,取得最小值2×(﹣)=﹣,故选:B【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.二、填空题9、【答案】【考点】模拟方法估计概率【解析】【解答】解:如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6× ×1×1×sin60°= .故答案为:.【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.10、【答案】【考点】两角和与差的正切函数【解析】【解答】解:∵tan(α﹣)= = =∴6tanα﹣6=tanα+1,解得tanα= ,故答案为:.【分析】直接根据两角差的正切公式计算即可11、【答案】【考点】平面向量数量积的运算【解析】【解答】解:,是互相垂直的单位向量,∴| |=| |=1,且•=0;又﹣与+λ 的夹角为60°,∴(﹣)•(+λ )=| ﹣|×| +λ |×cos60°,即+(﹣1)•﹣λ = × × ,化简得﹣λ= × × ,即﹣λ= ,解得λ= .故答案为:.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.12、【答案】【考点】向量的加法及其几何意义,向量的减法及其几何意义,向量数乘的运算及其几何意义,数量积的坐标表达式,平面向量数量积的运算【解析】【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,=2 ,∴= += += + (﹣)= + ,又=λ ﹣(λ∈R),∴=(+ )•(λ ﹣)=(λ﹣)•﹣+ λ=(λ﹣)×3×2×cos60°﹣×32+ λ×22=﹣4,∴λ=1,解得λ= .故答案为:.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.13、【答案】;【考点】二倍角的余弦,三角形中的几何计算【解析】【解答】解:如图,取BC得中点E,∵AB=AC=4,BC=2,∴BE= BC=1,AE⊥BC,∴AE= = ,∴S△ABC= BC•AE= ×2× = ,∵BD=2,∴S△BDC= S△ABC= ,∵BC=BD=2,∴∠BDC=∠BCD,∴∠ABE=2∠BDC在Rt△ABE中,∵cos∠ABE= = ,∴cos∠ABE=2cos2∠BDC﹣1= ,∴cos∠BDC= ,故答案为:,【分析】如图,取BC得中点E,根据勾股定理求出AE,再求出S△ABC,再根据S△BDC= S△ABC 即可求出,根据等腰三角形的性质和二倍角公式即可求出14、【答案】﹣【考点】同角三角函数基本关系的运用,运用诱导公式化简求值,两角和与差的余弦函数【解析】【解答】解:方法一:∵角α与角β均以Ox为始边,它们的终边关于y轴对称,∴sinα=sinβ= ,cosα=﹣cosβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣cos2α+sin2α=2sin2α﹣1= ﹣1=﹣方法二:∵sinα= ,当α在第一象限时,cosα= ,∵α,β角的终边关于y轴对称,∴β在第二象限时,sinβ=sinα= ,cosβ=﹣cosα=﹣,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣× + × =﹣:∵sinα= ,当α在第二象限时,cosα=﹣,∵α,β角的终边关于y轴对称,∴β在第一象限时,sinβ=sinα= ,cosβ=﹣cosα= ,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣× + × =﹣综上所述cos(α﹣β)=﹣,故答案为:﹣【分析】方法一:根据教的对称得到sinα=sinβ= ,cosα=﹣cosβ,以及两角差的余弦公式即可求出方法二:分α在第一象限,或第二象限,根据同角的三角函数的关系以及两角差的余弦公式即可求出15、【答案】3【考点】平面向量的基本定理及其意义,同角三角函数间的基本关系,两角和与差的余弦函数,两角和与差的正弦函数【解析】【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα= ,sinα= .∴C .cos(α+45°)= (cosα﹣sinα)= .sin(α+45°)= (sinα+cosα)= .∴B .∵=m +n (m,n∈R),∴=m﹣n,=0+ n,解得n= ,m= .则m+n=3.故答案为:3.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα= ,sinα= .C .可得cos(α+45°)= .sin(α+45°)= .B .利用=m +n (m,n∈R),即可得出.16、【答案】【考点】平面向量数量积的坐标表示、模、夹角【解析】【解答】解:∵向量,的夹角为60°,且| |=2,| |=1,∴= +4 •+4=22+4×2×1×cos60°+4×12=12,∴| +2 |=2 .故答案为:2 .【分析】根据平面向量的数量积求出模长即可.17、【答案】1【考点】二次函数在闭区间上的最值,同角三角函数间的基本关系,三角函数的最值【解析】【解答】解:f(x)=sin2x+ cosx﹣=1﹣cos2x+ cosx﹣,令cosx=t且t∈[0,1],则f(t)=﹣t2+ + =﹣(t﹣)2+1,当t= 时,f(t)max=1,即f(x)的最大值为1,故答案为:1【分析】同角的三角函数的关系以及二次函数的性质即可求出.三、解答题18、【答案】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωxcos ﹣cosωxsin ﹣sin(﹣ωx)= sinωx﹣cosωx= sin(ωx﹣),又f()= sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)= sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y= sin(x ﹣)的图象;再将得到的图象向左平移个单位,得到y= sin(x+ ﹣)的图象,∴函数y=g(x)= sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣× =﹣.【考点】运用诱导公式化简求值,两角和与差的正弦函数,正弦函数的定义域和值域,函数y=Asin (ωx+φ)的图象变换【解析】【分析】(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据f()=0求出ω的值;(Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x∈[﹣,]时g(x)的最小值.19、【答案】解:(Ⅰ)在△ABC中,∵a>b,故由sinB= ,可得cosB= .由已知及余弦定理,有=13,∴b= .由正弦定理,得sinA= .∴b= ,sinA= ;(Ⅱ)由(Ⅰ)及a<c,得cosA= ,∴sin2A=2sinAcosA= ,cos2A=1﹣2sin2A=﹣.故sin(2A+ )= = .【考点】同角三角函数间的基本关系,两角和与差的正弦函数,正弦定理,余弦定理,三角形中的几何计算【解析】【分析】(Ⅰ)由已知结合同角三角函数基本关系式求得cosB,再由余弦定理求得b,利用正弦定理求得sinA;(Ⅱ)由同角三角函数基本关系式求得cosA,再由倍角公式求得sin2A,cos2A,展开两角和的正弦得答案.20、【答案】解:∵函数f(x)=sin2x﹣cos2x﹣2 sinx cosx=﹣sin2x﹣cos2x=2sin(2x+ )(Ⅰ)f()=2sin(2×+ )=2sin =2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+ ∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ],k∈Z.【考点】复合函数的单调性,三角函数的恒等变换及化简求值,三角函数的化简求值,三角函数的周期性及其求法,正弦函数的单调性【解析】【分析】利用二倍角公式及辅助角公式化简函数的解析式,(Ⅰ)代入可得:f()的值.(Ⅱ)根据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间21、【答案】4;【考点】函数的最值及其几何意义,向量的模,余弦定理,三角函数的最值【解析】【解答】解:记∠AOB=α,则0≤α≤π,如图,由余弦定理可得:| + |= ,| ﹣|= ,令x= ,y= ,则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,令z=x+y,则y=﹣x+z,则直线y=﹣x+z过M、N时z最小为z min=1+3=3+1=4,当直线y=﹣x+z与圆弧MN相切时z最大,由平面几何知识易知z max即为原点到切线的距离的倍,也就是圆弧MN所在圆的半径的倍,所以z max= × = .综上所述,| + |+| ﹣|的最小值是4,最大值是.故答案为:4、.【分析】通过记∠AOB=α(0≤α≤π),利用余弦定理可可知| + |= 、| ﹣|= ,进而换元,转化为线性规划问题,计算即得结论.22、【答案】(1)解:∠A=60°,c= a,由正弦定理可得sinC= sinA= × = ,(2)解:a=7,则c=3,∴C<A,由(1)可得cosC= ,∴sinB=sin(A+C)=sinAcosC+cosAsinC= × + × = ,∴S△ABC= acsinB= ×7×3× =6 .【考点】同角三角函数间的基本关系,两角和与差的正弦函数,正弦定理,三角形中的几何计算【解析】【分析】(1.)根据正弦定理即可求出答案,(2.)根据同角的三角函数的关系求出cosC,再根据两角和正弦公式求出sinB,根据面积公式计算即可.23、【答案】解:(Ⅰ)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴= ,,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(Ⅱ)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1= ,sin∠EGM=sin∠EE1G1= ,cos ,根据正弦定理得:= ,∴sin ,cos ,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG= ,∴EN= = =20cm.∴玻璃棒l没入水中部分的长度为20cm.【考点】正弦定理,棱柱、棱锥、棱台的体积,直线与平面垂直的判定,直线与平面垂直的性质【解析】【分析】(Ⅰ)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(Ⅱ)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM= ,由此能求出玻璃棒l没入水中部分的长度.24、【答案】解:(Ⅰ)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx+3sinx=0,∴tanx= ,∵x∈[0,π],∴x= ,(Ⅱ)f(x)= =3cosx﹣sinx=2 (cosx﹣sinx)=2 cos(x+ ),∵x∈[0,π],∴x+ ∈[ ,],∴﹣1≤cos(x+ )≤,当x=0时,f(x)有最大值,最大值3,当x= 时,f(x)有最小值,最大值﹣2【考点】平面向量共线(平行)的坐标表示,平面向量数量积的运算,同角三角函数间的基本关系,三角函数中的恒等变换应用,三角函数的最值【解析】【分析】(Ⅰ)根据向量的平行即可得到tanx= ,问题得以解决,(Ⅱ)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出25、【答案】(1)解:由三角形的面积公式可得S△ABC= acsinB= ,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC= ;(2)解:∵6cosBcosC=1,∴cosBcosC= ,∴cosBcosC﹣sinBsinC= ﹣=﹣,∴cos(B+C)=﹣,∴cosA= ,∵0<A<π,∴A= ,∵= = =2R= =2 ,∴sinBsinC= •= = = ,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+ .【考点】两角和与差的余弦函数,正弦定理,余弦定理,三角形中的几何计算【解析】【分析】(1.)根据三角形面积公式和正弦定理可得答案,(2.)根据两角余弦公式可得cosA= ,即可求出A= ,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.26、【答案】解:(Ⅰ)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB= ;(Ⅱ)由(1)可知sinB= ,∵S△ABC= ac•sinB=2,∴ac= ,∴b2=a2+c2﹣2accosB=a2+c2﹣2× ×=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.【考点】同角三角函数间的基本关系,运用诱导公式化简求值,二倍角的正弦,余弦定理,三角形中的几何计算【解析】【分析】(Ⅰ)利用三角形的内角和定理可知A+C=π﹣B,再利用诱导公式化简sin(A+C),利用降幂公式化简8sin2,结合sin2B+cos2B=1,求出cosB,(Ⅱ)由(1)可知sinB= ,利用勾面积公式求出ac,再利用余弦定理即可求出b.27、【答案】解:(Ⅰ)∵sinA+ cosA=0,∴tanA= ,∵0<A<π,∴A= ,由余弦定理可得a2=b2+c2﹣2bccosA,即28=4+c2﹣2×2c×(﹣),即c2+2c﹣24=0,解得c=﹣6(舍去)或c=4,(Ⅱ)∵c2=b2+a2﹣2abcosC,∴16=28+4﹣2×2 ×2×cosC,∴cosC= ,∴sinC= ,∴tanC=在Rt△ACD中,tanC= ,∴AD= ,∴S△ACD= AC•AD= ×2× = ,∵S△ABC= AB•AC•sin∠BAD= ×4×2× =2 ,∴S△ABD=S△ABC﹣S△ADC=2 ﹣=【考点】同角三角函数基本关系的运用,余弦定理的应用,三角形中的几何计算【解析】【分析】(Ⅰ)先根据同角的三角函数的关系求出A,再根据余弦定理即可求出,(Ⅱ)先根据夹角求出cosC,求出AD的长,再求出△ABC和△ADC的面积,即可求出△ABD的面积.。

相关文档
最新文档