三角形全等的应用3 证多条线段之间的和差倍分及不等关系(含详细解答)

合集下载

证题技巧之三——证明线段或角的和差倍分(推荐文档)

证题技巧之三——证明线段或角的和差倍分(推荐文档)

证题技巧之三一一证明线段或角的和差倍分一、证明线段或角的倍分1、方法:①长(或大)折半 ②短(或小)加倍2、判断:两种方法有时对同一个题都能使用,但存在易繁的问题,因此,究竟是折半还是加倍要以有利于利用已知条件为准。

3、添线:①为折半或加倍而添;②为折半或加倍后创造条件或利于利用已知条件而添。

4、传递:在加倍或折半后,还不易或不能证明结论,则要找与被证二量有等量关系的量来传递,或者添加这个量来传递。

此时,添 线从两方面考虑:①造等量②为证等量与被证二量相等而添。

参考例4、例5、例6。

例1 AD 是^ ABC 的中线,ABEF 和ACGH 是分别以AB 和AC 为边向形外作的正方形。

求证:FH=2AD/ BAC+ / ACN=180证明:延长AD 至N 使AD=DN则ABNC 是平行四边形CN=AB=FA AC=AH又/ FAH+ / BAC=180 •••△ FAHY NCA ••• FH=AN例 2、△ ABC 中,/ B=2 / C ,AD 是高,M 是BC 边上的中点。

$•••1求证:DM=2 AB/ 2=Z B •••/ 2=2Z 1•••/ 1 = / DNM 又 AN=DN=ND • DM=2 A B1贝J BFAC••• BF=AE•••△ AEC 心 BFD •DF 二CE 二 CD=2CE作业:1、在△ABC 中,D 为BC 的中点,E 为AD 的中点,BE 的延长 1线交AC 于F ,求证:AF=2 FC2、AB 和AC 分别切© O 于B 和C, BD 是直径。

求证/ BAC 二Z CBD3、圆内接△ ABC 的AB=AC ,过C 作切线交AB 的延长线于D , DE 垂直于AC 的延长线于E 。

求证:BD=2CE例4从平行四边形的钝角顶点 A 向BC 边作垂线,垂足为E ,证明:取AB 的中点N ,连接MN 、DN贝J MN // AC / 1 = / C••• DM=DN例 3 △ ABC 中,AB=AC , E 是AB 的中点,D 在AB 的延长线上,且 DB=AC 。

三角形的全等关系

三角形的全等关系

三角形的全等关系三角形是初中数学中的一个基本概念,而全等关系是研究三角形的一个重要性质。

在数学中,全等关系指的是两个图形的所有对应的部分完全相等。

对于三角形而言,全等关系的研究能够帮助我们发现和证明一些三角形之间的性质。

本文将介绍三角形的全等关系,并探讨全等关系在证明三角形性质中的应用。

一、三角形的全等关系定义及判定方法三角形的全等关系定义如下:若两个三角形的三边和三角形内对应的三个角分别相等,则这两个三角形全等。

在判定两个三角形是否全等时,我们可以依据以下几种方法:1. SSS(边-边-边)准则:若两个三角形的三条边分别相等,则这两个三角形全等。

2. SAS(边-角-边)准则:若两个三角形的两边和夹角分别相等,则这两个三角形全等。

3. ASA(角-边-角)准则:若两个三角形的两角和对应边分别相等,则这两个三角形全等。

4. AAS(角-角-边)准则:若两个三角形的两角和某个对应边分别相等,则这两个三角形全等。

5. RHS(斜边-直角边-斜边)准则:若两个直角三角形的斜边和直角边分别相等,则这两个三角形全等。

二、全等关系在三角形证明中的应用全等关系在证明三角形性质中起到了重要的作用。

通过全等关系的应用,我们能够推导出许多有关三角形的结论。

1. 全等三角形的性质相等:若两个三角形全等,则它们的对应边相等,对应角相等,对应高、中线、角平分线等线段也分别相等。

2. 利用全等三角形证明三角形性质:在证明过程中,我们可以先找到一个全等的三角形,然后利用全等三角形的性质推导出所要证明的结论。

3. 利用全等三角形证明图形性质:全等三角形的性质不仅适用于三角形,还可以应用于其他图形的证明中。

比如,在证明一个四边形是矩形时,我们可以利用全等的直角三角形分别在四个角上构造出来。

三、实例演示接下来,我们通过实例演示全等关系的应用。

例1:已知△ABC与△DEF,已知AB=DE,AC=DF,∠A=∠D。

证明△ABC≌△DEF。

三角形全等的判定+性质+辅助线技巧

三角形全等的判定+性质+辅助线技巧

三角形全等的判定+性质+辅助线技巧都在这里了,请收好!在初中三角形问题集中体现在“全等”和“相似”2大问题上,非常考验大家的解题能力、思维能力、耐性与定力。

有时证不出来,急不可耐、恨它恨的牙痒痒。

王老师这次整理了全等三角形判定、性质,最重要的是后面附上了所有证明全等三角形,包括添加各种辅助线的方法,认真看完这篇文章,保证关于三角形全等所有的题型你都会做!一、三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。

2.有两边及其夹角对应相等的两个三角形全等(SAS)。

3.有两角及其夹边对应相等的两个三角形全等(ASA)。

4.有两角及一角的对边对应相等的两个三角形全等(AAS)。

5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。

二、全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。

②全等三角形的周长、面积相等。

③全等三角形的对应边上的高对应相等。

④全等三角形的对应角的角平分线相等。

⑤全等三角形的对应边上的中线相等。

三、找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形全等的证明中包含两个要素:边和角。

缺个角的条件:在初中三角形问题集中体现在“全等”和“相似”2大问题上,非常考验大家的解题能力、思维能力、耐性与定力。

有时证不出来,急不可耐、恨它恨的牙痒痒。

王老师这次整理了全等三角形判定、性质,最重要的是后面附上了所有证明全等三角形,包括添加各种辅助线的方法,认真看完这篇文章,保证关于三角形全等所有的题型你都会做!一、三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。

2.有两边及其夹角对应相等的两个三角形全等(SAS)。

三角形全等的应用

三角形全等的应用

经典例题透析类型一:三角形全等的应用1. 如图:BE、CF相交于点D,DE⊥AC,DF⊥AB,垂足分别为E、F,且DE=DF。

求证:AB=AC。

思路点拨:挖掘并合理运用隐含条件:(1)隐含相等的线段:公共边、线段的和(或差);(2)隐含相等的角:公共角、对顶角、角的和或差。

解析:∵DE⊥AC,DF⊥AB∴∠DFB=∠DEC=90°(垂直的定义)在△BDF和△CDE中∴△BDF≌△CDE(ASA)∴BD=CD(全等三角形对应边相等)又DE=DF∴BE=CF在△ABE和△ACF中∴△ABE≌△ACF(AAS)∴AB=AC(全等三角形对应边相等)总结升华:复杂题目都是由简单题目组合而成,所以要特别注意简单典型题目的解题思想以及图形特点。

举一反三:【变式1】如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。

求证:(1)AM=AN;(2)AM⊥AN。

解析:∵BE⊥AC,CF⊥AB∴∠AEB=∠AFC=90°(垂直的定义)∴∠1+∠BAC=∠2+∠BAC=90°(直角三角形的两个锐角互余)∴∠1=∠2在△ABM和△NCA中∴△ABM≌△NCA(SAS)∴AM=AN,∠3=∠N(全等三角形对应边、对应角相等)在Rt△AFN中:∠4+ ∠N=90 °(直角三角形两个锐角互余)∴∠3+ ∠4=90 °∴AM⊥AN(垂直的定义)【变式2】如图:∠BAC=90°,CE⊥BE,AB=AC ,∠ABE=∠CBE,求证:BD=2EC。

解析:延长BA、CE相交于点F∵CE⊥BE∴∠BEF=∠BEC=90°(垂直的定义)在△BEC和△BEF中∴△BEC≌△BEF(ASA)∴CE=EF(全等三角形对应边相等)即FC=2CE∵CA⊥BA∴∠BAC=∠FAC=90°(垂直的定义)在Rt△ABD和Rt△BEF中∠ABD+∠ADB=∠ABD+∠F=90°(直角三角形两个锐角互余)∴∠ADB=∠F在△ABD和△ACF中∴△ABD≌△ACF(AAS)∴BD=FC(全等三角形对应边相等)∴BD=2EC类型二:构造全等三角形2.如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明。

初中数学竞赛专题培训(10):三角形的全等及其应用

初中数学竞赛专题培训(10):三角形的全等及其应用

初中数学竞赛专题培训第十讲三角形的全等及其应用在中学教材中,关于三角形全等有以下判定公理:(1)边角边公理有两边和它们的夹角对应相等的两个三角形全等(简写成“SAS”).(2)角边角公理有两角和它们的夹边对应相等的两个三角形全等(简写成“ASA”).推论有两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS”).(3)边边边公理有三边对应相等的两个三角形全等(简写成“SSS”).关于直角三角形有:(4)斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL”).利用全等三角形,我们可以得到有关角平分线、线段的垂直平分线、等腰三角形的许多重要性质,在本讲中将直接利用这些性质.借助于全等三角形的知识,我们可以研究很多关于角和线段相等及不等问题、关于直线平行与垂直问题.例1 如图2-1所示.∠1=∠2,∠ABC=∠DCB.求证:AB=DC.分析用全等三角形证明线段(或角)相等,最常用的方法是探究所求证的线段(或角)分别在一对可证的全等三角形之中.本题的AB,DC分别属于两对三角形△ABE和△CDE及△ABC和△DBC.经分析可证明△ABE≌△CDE.证由已知,∠1=∠2,∠ABC=∠DCB,而∠EBC=∠ABC-∠1,∠ECB=∠DCB-∠2,所以∠EBC=∠ECB.在△ABC及△BCD中,∠ABC=∠BCD,∠EBC=∠ECB,BC=BC,所以△ABC≌△DCB(ASA),所以 AB=CD.说明线段AB,CD也属于两个(事实上)全等的△ABE和△DCE,因此也可直接证明这两个三角形全等.例2 如图2-2所示.△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证:GD=GE.分析从图形看,GE,GD分别属于两个显然不全等的三角形:△GEC和△GBD.此时就要利用这两个三角形中已有的等量条件,结合已知添加辅助线,构造全等三角形.方法不止一种,下面证法是其中之一.证过E作EF∥AB且交BC延长线于F.在△GBD及△GEF中,∠BGD=∠EGF(对顶角),①∠B=∠F(两直线平行内错角相等).②又∠B=∠ACB=∠ECF=∠F,所以,△ECF是等腰三角形,从而EC=EF.又因为EC=BD,所以BD=EF.③由①,②,③△GBD≌△GEF(AAS),所以 GD=GE.说明适当添加辅助线、构造全等三角形的方法可以不止一种,本题至少还有以下两种方法:(1)过D作DF∥AC,交BC于F.可用同样方法证明△GFD≌△GCE(图2-3).(2)过D作DF⊥BC于F;过E作EH⊥BC于BC延长线于H,可证明△GFD≌△GEH(图2-4).做完一道题后,再想一想还有没有其他证明方法,比较一下哪种证法更好,这对于发展思考、锻炼能力是大有好处的.例3 如图2-5所示.在等边三角形ABC中,AE=CD,AD,BE交于P 点,BQ⊥AD于Q.求证:BP=2PQ.分析首先看到BP,PQ在Rt△BPQ之中,只要证明∠BPQ=60°(或∠PBQ=30°).然而,∠BPQ是△ABP的一个外角,所以∠BPQ=∠PAB+∠PBA.但∠A=∠PAB+∠PAC=60°,若能证明∠PBA=∠PAC,问题即能解决,这两个角分别在△ABE与△CAD中,可以证明这两个三角形全等.证在△ABE与△CAD中,∠EAB=∠DCA=60°,AB=CA,AE=CD,所以△ABE≌△CAD(SAS),所以∠ABE=∠CAD.由于∠BPQ是△ABP的外角,所以∠BPQ=∠PAB+PBA=∠PAB+∠CAD=60°.在Rt△BQP中,∠BPQ=60°,∠PBQ=30°,所以BP=2PQ(在Rt△BPQ中30°角的对边等于斜边的一半).说明发现或构造全等三角形是利用全等三角形证明题目的关键,为此,我们常从发现两个三角形中对应元素相等入手,逐步发现或经推理“凑齐”三角形全等的条件.如本题在分析到欲证∠ABP=∠CAD后,进而把注意力集中到△ABE与△CAD中,这里,可适当利用几何直观感觉,启发我们寻找有希望全等的三角形,例如虽然△ABP与△APE都含欲证的角,但只需观察即可知,这两个三角形无望全等.例4 如图2-6所示.∠A=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E.求证:∠AMB=∠DMC.分析1从图形观察∠AME与∠DMC所在的两个三角形△AME与△DMC显然不全等,但是这两个三角形中有其他相等元素:AM=MC.若能利用已知条件在现有的三角形中构造出新的对应相等的元素,形成全等三角形,这是理想不过的事.由于∠C=45°,∠A=90°,若作∠A的平分线AG,则在△AGM中,∠GAM=45°=∠C.结合求证中的∠AMB=∠DMC(这当然不能作为已知,但在分析中可以“当作已知”来考虑,以便寻找思路),我们可以断言△AGM“应该”与△CDM全等!为此,只要在这两个三角形中求得一组边相等即可.图形及条件启发我们可考虑去证明△AGB≌△CDA.证法1作∠BAC的平分线AG,交BM于G.在△AGB与△CDA中,因为AB=CA,∠BAG=∠ACD=45°,∠ABG=90°-∠AMB,①∠MAD=90°-∠EAB.②由于,在Rt△MAB中,AE⊥BM,所以∠AMB=∠EAB.由①,②,∠ABG=∠MAD,所以△AGB≌△ADC(ASA),于是 AG=CD.在△AMG与△CMD中,还有AM=MC,∠GAM=∠DCM=45°,所以△AMG≌△CMD,从而∠AMB=∠DMC.分析2如图2-7所示.注意到在Rt△ABM中,由AE⊥BM得到∠MAE=∠MBA,若延长AE,过C作CF⊥AC交AE延长线于F,可构成Rt △ABM≌Rt△ACF,从而有∠AMB=∠F.设法证明∠DMC=∠F,则问题获解.证法2引辅助线如分析2所述.在Rt△ABM与Rt△CAF中,∠ABM=∠CAF,AB=AC,及∠BAM=∠ACF=90°,所以Rt△ABM≌Rt△CAF(ASA),所以∠AMB=∠F,AM=CF.①在△MCD与△FCD中,FC=AM=MC(因为M是AC中点).由于∠ACF=90°,∠ACB=45°,所以∠FCD=∠MCD=45°,CD=CD,所以△FCD≌△MCD(SAS),所以∠F=∠DMC.②由①,②∠AMB=∠DMC.说明这两个证法的思路较为复杂.添加辅助线的结果造出两对全等三角形,第一对全等三角形产生一些对应相等的元素,为第二对全等三角形做了铺垫;第一对全等三角形将欲证的一个角“转移”到第二对全等三角形中,从而最后使问题获解.对一些较复杂的问题采用迂回的办法,因势利导地创造全等三角形,产生更多的相等条件,使欲证的角(或边)转移位置,走出“死角”,最终使问题获解.例5如图2-8所示.正方形ABCD中,在边CD上任取一点Q,连AQ,过D作DP⊥AQ,交AQ于R,交BC于P,正方形对角线交点为O,连OP,OQ.求证:OP⊥OQ.分析欲证OP⊥OQ,即证明∠COP+∠COQ=90°.然而,∠COQ+∠QOD=90°,因此只需证明∠COP=∠DOQ即可.这归结为证明△COP ≌△DOQ,又归结为证明CP=DQ,最后,再归结为证明△ADQ≌△DCP的问题.证在正方形ABCD中,因为AQ⊥DP,所以,在Rt△ADQ与Rt△RDQ 中有∠RDQ=∠QAD.所以,在Rt△ADQ与Rt△DCP中有AD=DC,∠ADQ=∠DCP=90°,∠QAD=∠PDC,所以△ADQ≌△DCP(ASA),DQ=CP.又在△DOQ与△COP中,DO=CO,∠ODQ=∠OCP=45°,所以△DOQ≌△COP(SAS),∠DOQ=∠COP.从而∠POQ=∠COP+∠COQ=∠DOQ+∠COQ=∠COD=90°,即OP⊥OQ.说明 (1)利用特殊图形的特殊性质,常可发现有用的条件,如正方形对角线互相垂直,对角线与边成45°角,及OA=OB=OC=OD等均在推证全等三角形中被用到.(2)两个三角形的全等与对应元素相等,这两者互为因果,这是利用全等三角形证明问题的基本技巧.例6如图2-9所示.已知正方形ABCD中,M为CD的中点,E为MC上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.分析证明一条线段等于两条线段和的基本方法有两种:(1)通过添辅助线“构造”一条线段使其为求证中的两条线段之和(BC+CE),再证所构造的线段与求证中那一条线段相等.(2)通过添辅助线先在求证中长线段(AE)上截取与线段中的某一段(如BC)相等的线段,再证明截剩的部分与线段中的另一段(CE)相等.我们用(1)法来证明.证延长AB到F,使BF=CE,则由正方形性质知AF=AB+BF=BC+CE.下面我们利用全等三角形来证明AE=AF.为此,连接EF交边BC 于G.由于对顶角∠BGF=∠CGE,所以Rt△BGF≌Rt△CGE(AAS),从而于是Rt△ABG≌Rt△ADM(SAS),所以过G引GH⊥AE于H.因为AG是∠EAF的平分线,所以GB=GH,从而Rt△GBF≌Rt△GHE(HL),所以∠F=∠HEG,则 AF=AE(底角相等的三角形是等腰三角形),即 AE=BC+CE.说明我们也可以按分析(2)的方法来证明结论,为此可先作∠BAE 的平分线AG交边BC于G,再作GH⊥AE于H,通过证明△ABG≌△AHG知AB=AH=BC.下面设法证明HE=CE即可,请同学们自证.练习十1.如图2-10所示.AD,EF,BC相交于O点,且AO=OD,BO=OC,EO=OF.求证:△AEB≌△DFC.2.如图2-11所示.正三角形ABC中,P,Q,R分别为AB,AC,BC的中点,M为BC上任意一点(不同于R),且△PMS为正三角形.求证:RM=QS.3.如图2-12所示.P为正方形ABCD对角线BD上任一点,PF⊥DC,PE⊥BC.求证:AP⊥EF.4.如图2-13所示.△ABC的高AD与BE相交于H,且BH=AC.求证:∠BCH=∠ABC.5.如图2-14所示.在正方形ABCD中,P,Q分别为BC,CD边上的点,∠PAQ=45°.求证:PQ=PB+DQ.6.如图2-15所示.过△ABC的顶点A分别作两底角∠B和∠C的角平分线的垂线,AD⊥BD于D,AE⊥CE于E.求证:ED∥BC.。

全等三角形的应用含练习答案

全等三角形的应用含练习答案

全等三角形知识点一:角平分线三角形的角平分线定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点间的线 段叫做三角形的角平分线 如下图,在 △ ABC 中,∠ABD =∠DBC , BD 是 △ ABC 的一条角平 分线.一个三角形有3条内角平分线,有6条外角平分线,在三角形内部到三边距离相等的点有1个,•而在三角形的外部到三条边所在直线距离相等的点共有3个. 角平分线的性质:在角平分线上的点到角的两边的距离相等(1)在所画的角平分线上任找一点,过这点分别向角的两边作垂线段. (2)你能得出什么猜想 判断:1、OP 为∠AOB 的角平分线,则PE=PF. ( )2、、OP 是∠AOB 角平分线,在OP 上任取一点M 到OA 的距离等于3cm,则M 到OB 的距离为3cm.( )3、如图,△ABC 的角平分线BM 、CN 相交于点P.求证:点P 到三边AB 、BC 、CA 的距离相等.4、如图,△ABC 的∠B 的平分线BD 与∠C 的外角平分线CE 相交于点P. 求证:点P 到三边AB 、BC 、CA 所在直线的距离相等.如图,直线a 、b 、c 表示互相交叉的公路,现建一个货物中转站,要求它到公路的距离相等,则可供选择的地址有NPABC MCB ADEP多少处?如图:在△ABC 中,∠C=90° AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF. 求证:CF=EBF EDCBA练一练:如图4,已知点P 到BE 、BD 、AC 的距离恰好相等,则点P 的位置:①在∠B 的平分线上;②在∠DAC 的平分线上;③在∠ECA 的平分线上;④恰是∠B ,∠DAC ,∠ECA 三条角平分线的交点,上述结论中,正确结论的个数有( )A .1个B .2个C .3个D .4个如图所示,在△ABC 中,∠C=90°,AC=BC ,AD 是∠BAC 的平分线,DE⊥AB ,•垂足为E ,若AB=10cm ,求△ DBE 的周长.已知:如图所示,在△ABC 中,∠C=90°,∠BAC=2∠B ,点E 是BC 上一点,ED ⊥AB 于D ,并且ED=EC ,证:AE=BE .如图,BD 平分∠ABC ,∠A+∠C=180°,求证:AD=CD .知识点二:全等三角形的综合运用1、证明线段相等的方法:(1)中点定义;(2)等式的性质;(3)全等三角形的对应边相等;(4)借助中间线段(即要证a=b,只需证a=c,c=b即可)。

有答案-直角三角形全等判定(基础)知识讲解

有答案-直角三角形全等判定(基础)知识讲解

有答案-直角三角形全等判定(基础)知识讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行.【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD ,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,AD BC BD DB⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( )(2)有两边和其中一边上的高对应相等的两个三角形全等.( )(3)有两边和第三边上的高对应相等的两个三角形全等.( )【答案】(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案与解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 与Rt △BCD 中,DC CD AC BD=⎧⎨⎩=∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形在Rt △ABD 和Rt △BAC 中AB BA BD AC =⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案与解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 与△CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两等腰直角三角形全等2.如图,AB =AC ,AD ⊥ BC 于D ,E 、F 为AD 上的点,则图中共有( )对全等三角形.A .3B .4C .5D .63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt △ABC 与Rt △'''A B C 中, ∠C = ∠'C = 90, A = ∠'B , AB =''A B , 那么下列结论中正确的是( ) A. AC = ''A C = ''B C C. AC = ''B C D. ∠A = ∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形( )A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.8. 已知,如图,∠A =∠D =90°,BE =CF ,AC =DE ,则△ABC ≌_______.9. 如图,BA ∥DC ,∠A =90°,AB =CE ,BC =ED ,则AC =_________.10. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,EC ⊥AC ,AC =EC ,若DE =2,AB =4,则DB =______.11.有两个长度相同的滑梯,即BC =EF ,左边滑梯的高度AC 与右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B点与O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上与AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢请你说出理由.13.【解析】解:在Rt △AOB 与Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等) ∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得:∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 与Rt △EDF 中B EDF BC DF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠ 2.证明:∵AE ⊥EC ,AF ⊥BF ,∴△AEC 、△AFB 为直角三角形在Rt △AEC 与Rt △AFB 中AB AC AE AF⎧⎨⎩==∴Rt △AEC ≌Rt △AFB (HL )∴∠EAC =∠FAB∴∠EAC -∠BAC =∠FAB -∠BAC ,即∠1=∠2.【答案与解析】一、选择题1. 【答案】C ; 【解析】等腰直角三角形确定了两个锐角是45°,可由AAS 定理证明全等.2. 【答案】D ;【解析】△ABD ≌△ACD ;△ABF ≌△ACF ;△ABE ≌△ACE ;△EBF ≌△ECF ;△EBD ≌△ECD ;△FBD ≌△FCD.3. 【答案】D ;4. 【答案】C ;【解析】注意看清对应顶点,A 对应'B ,B 对应'A .5. 【答案】C ;【解析】等底等高的两个三角形面积相等.6. 【答案】C ;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL ;8. 【答案】△DFE9. 【答案】CD ;【解析】通过HL 证Rt △ABC ≌Rt △CDE.10.【答案】6;【解析】DB =DC +CB =AB +ED =4+2=6;11.【答案】90°;【解析】通过HL 证Rt △ABC ≌Rt △DEF ,∠BCA =∠DFE.12.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形.。

八年级数学上册 13.3 全等三角形的判定 证明三角形全等的常见思路素材 (新版)冀教版

八年级数学上册 13.3 全等三角形的判定 证明三角形全等的常见思路素材 (新版)冀教版

证明三角形全等的常见思路全等三角形是初中几何的重要内容之一,全等三角形的学习是几何入门最关键的一步,这部分内容学习的好坏直接影响着今后的学习.而一些初学的同学,虽然学习了几种判定三角形全等的公理和推论,但往往仍不知如何根据已知条件证明两个三角形全等.在辅导时可以抓住以下几种证明三角形全等的常见思路,进行分析.一、已知一边与其一邻角对应相等1.证已知角的另一边对应相等,再用SAS证全等.例1已知:如图1,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE.(原九义教材《几何》二册30页1题)证明∵BE=CF(已知),∴BE+ EF=CF+EF,即 BF=CE.在△ABF和△DCE中,∴ △ABF≌△DCE(SAS).∴ AF=DE(全等三角形对应边相等).2.证已知边的另一邻角对应相等,再用ASA证全等.例2已知:如图2,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB.求证:AE=CE.(原九义教材《几何》二册44页5题)证明∵ FC∥AB(已知),∴∠ADE=∠CFE(两直线平行,内错角相等).在△ADE和△CFE中,∴ △ADE≌△CFE(ASA).∴ AE=CE(全等三角形对应边相等)3.证已知边的对角对应相等,再用AAS证全等.例3(同例2).证明∵ FC∥AB(已知),∴ ∠A=∠ECF(两直线平行,内错角相等).在△ADE和△CFE中,∴ △ADE≌△CFE(AAS).∴ AE=CE(全等三角形对应边相等).二、已知两边对应相等1.证两已知边的夹角对应相等,再用SAS证等.例4已知:如图3,AD=AE,点D、E在BC上,BD=CE,∠1=∠2.求证:△ABD≌△ACE.(原九义材《几何》二册32页8题);证明∵∠1=∠2(已知),∠ADB=180°-∠1,∠AEC=180°-∠2(邻补角定义),∴∠ADB = ∠AEC,在△ABD和△ACE中,∴ △ABD≌△ACE(SAS).2.证第三边对应相等,再用SSS证全等.例5已知:如图4,点A、C、B、D在同一直线上,AC=BD,AM=CN, BM=DN.求证:AM∥CN,BM∥DN.(原九义教材《几何》二册45页10题)证明∵ AC=BD(已知)∴AC+BC=BD+BC,即 AB=CD.在△ABM和△CDN中,∴ △ABM≌△CDN(SSS)∴ ∠A=∠NCD,∠ABM=∠D(全等三角应角相等),∴ AM∥CN,BM∥DN(同位角相等,两直行).三、已知两角对应相等1.证两已知角的夹边对应相等,再用ASA证全等.例6已知:如图5,点B、F、C、E在同一条直线上,FB=CE,∠B=∠E,∠ACB=∠DFE.求证: AB=DE, AC=DF.(原九义教材《几何》二册44页4题,有改动)证明∵ FB=CE(已知)∴ FB+FC=CE+FC,即 BC=EF,∴ △ABC≌△D EF(ASA).∴ AB=DE,AC=DF(全等三角形对应边相等)2.证一已知角的对边对应相等,再用AAS证全等.例7已知:如图6,AB、CD交于点O,E、F为AB上两点,OA=OB,OE=OF,∠A=∠B,∠ACE=∠BDF. 求证:△ACE≌△BDF.证明∵OA=OB,OE=OF已知),∴OA-OE=OB-OF,即 AE=BF,在△ACE和△BDF中,∴ △ACE≌△BDF(AAS).四、已知一边与其对角对应相等,则可证另一角对应相等,再利用AAS证全等例8已知:如图7,在△ABC中,B、D、E、C在一条直线上,AD=AE,∠B=∠C.证:△ABD≌△ACE.证明∵AD=AE(已知)∴∠1=∠2(等边对等角),∵ ∠ADB=∠180°-∠1,∠AEC=180°-∠2(邻补角定义),∴ ∠ADB=∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(AAS).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、利用全等三角形证线段之间的和差倍分问题证一条线段等于其它两条线段的和或差,常将其转化成证明线段的相等问题,常用的方法如下:(1)利用图形中已有的线段和差关系进行证明。

(2)延长一条线段,作出两条线段的和,然后证明这条线段等于第三条线段。

(3)在第三条线段上截取一段等于第一条线段,然后证余下的线段等于第二条线段。

后两种方法,就是通常所说的截长补短。

例1.已知:如图在△ABC中,∠ABC的平分线与∠ACB相邻外角∠ACG的平分线相交于D,DE∥BC交AB于E,交AC于F,求证:EF=BE-CF分析:要证EF=BE-CF,而图中EF=ED-FD,若证出BE=ED,CF=FD,则此题可证出。

(证明略)例2.已知:如图,四边形ABCD中,AC平分∠BAD,CE⊥AB 于E,且∠B+∠D=180°,求证:AE=AD+BE分析:要证AE=AD+BE,则可转化为证AE-BE=AD,则需找到一条线段使它等于AE-BE,再证其与AD相等,在EA上截取EF=BE,连结CF,问题转化为证AF=AD,即要证出△AFC≌△ADC证明:在EA上截取EF=BE,连结CF∵CE⊥AB于E(已知)∴CF=CB(在线段垂直平分线上的点,到线段两个端点的距离相等)∴∠1=∠B(等边对等角)∵∠1+∠2=180°(平角定义)∠B+∠D=180°(已知)∴∠2=∠D(等角的补角相等)(再往下证明略)3.如图,△ABC是等边三角形,∠BDC=120°,且BD=CD,∠MDN=60°,AB=12cm. (1)证明MN=BM+NC.(2)求△AMN的周长。

(3)若点M、N分别是AB、CA延长线上的点,,请说明BM、MN、NC之间的关系。

分析:(1)证明MN=BM+NC.是典型的三条线段之间的关系的题型,这种题型一般是采用“截长补短法”来证明。

“截长法”是在最长的线段MN上找一点F,将MN截为两部分(如图4),比如截为MN=MF+NF,且使MF=BM(或NF=NC).再求证剩余的线段NF=NC,从而得到MN=BM+NC。

证两条线段相等通常是通过两三角形全等来实现,本题是通过证明△BDM≌△FDM和△FDN≌△CDN来实现(如图4);而本题给出的已知条件不能证明△BDM≌△FDM和△FDN≌△CDN,所以不适用于用截长法来证明。

“补短法”是将两条短线段中的任意一条NC(或BM)延长,比如延长NC到E,使CE=BM.(或延长MB到H,使BH=NC),再证明MN=NE(或证明MN=MH),从而得到MN=BM +NC。

证两条线段相等通常是通过两三角形全等来实现,本题是通过证明△DBM≌△DCE和△MDN≌△EDN来实现。

(如图3);或者如图0通过证明△DBH≌△DCN和△MDH≌△MDN来实现。

本题已知适用于“补短法”。

在实际做题时要根据具体的已知条件来选择截长还是补短法。

无论是“截长法”还是“补短法”其目的是将三条线段和的关系MN=BM +NC.转化为求两条线段的相等关系,而证两条线段相等是最基本的题型。

证明两条线段相等的方法通常有证两三角形全等,则对应边相等;或证明两条线段是等腰三角形的两腰相等,或等边三角形的任意两边相等;或两条线段是角平分线到角的两边的距离相等等。

(2)求△AMN 的周长。

我们来看图1,求△AMN 的周长,粗看三条边AM,AN,MN 和长短都不知道,无法求周长AM +MN +AN 。

而已知AB=12cm.解题的关键是如何找到要求的量AM,AN,MN 和已知量AB 之间的等量关系。

在第(1)小题中我们已经证明了MN=BM +NC 。

而从图中可以看出AM +MB=AB,AN +NC=AC=AB.所以AM +MN +AN=AM +MB +NC +AN=AB +AC=2AB=24cm.这小题是求三条线段的和的题型,通常解题的技巧是通过等量代换的方法找到要求的量与已知量之间的等量关系,从而使问题得到解答。

(3)若点M 、N 分别是AB 、CA 延长线上的点,,请说明BM 、MN 、NC 之间的关系。

分析:(1)首先确定题型,本题属于确定三条线段之间关系的题型。

(2)确定三条线段之间关系分为两类:一种是相等关系,即MN=BM+NC ;另一种是不等关系,即MN <BM +NC ;(为什么是MN 最长呢?通过观察得到的)。

(3)根据已知条件分析属于哪一种,我们先假设相等,将NC 延长至D ,使CD=BM,由已知AB=AC,所以有AB +BM=AC +CD,即AM=AD,所以∠AMD=∠ADM,所以∠NMD >∠ADM,所以MN ≠AD,MN ≠BM +NC 。

所以三条线段只能是不等关系。

(4)要证三条线段是不等关系,就要把三条线段想办法放在同一个三角形中去。

所以必须要选定一个三角形,这个三角形怎么选呢?我们要看这三条线段最集中在哪个三角形中,就选定哪个三角形。

比如本题,三条线段中MN ,BM 都在△NMA 中,且第三条线段NC 的一部分NA 也在△NMA 中,所以就选定△NMA 。

然后我们观察到在△NMA 中,只有线段AB 没有着落,且三条线段中只能NC 中的一部分AC 没有着落,对比这两条线段,可以猜想它们相等,即AB=AC 。

可以利用等量代换的方法将AC 代换到AB ,(要证AB=AC,最常用的方法就是证两个三角形全等其对应边相等,或等腰或等边三角形两腰相等等方法实现。

)就实现了将三条线段放在同一个三角形中了。

然后再利用三角形三边不等关系得证。

证明:BM、MN、NC之间的关系是MN<BM+NC;在△NMA中,有MN<AM+NA,因为AB=AC,所以AM=BM+AB=BM+AC,所以MN<BM+AC+NA,而NC=NA+AC,所以MN<BM+NC证明三条线段之间的不等关系1.如图,已知△ABC是等腰三角形,且AB=AC,若点M、N分别是AB、CA延长线上的点,,请说明BM、MN、NC之间的关系。

分析:(1)首先确定题型,本题属于确定三条线段之间关系的题型。

(2)确定三条线段之间关系分为两类:一种是相等关系,即MN=BM+NC;另一种是不等关系,即MN<BM+NC;(为什么是MN最长呢?通过观察得到的)。

(3)根据已知条件分析属于哪一种,我们先假设相等,将NC延长至D,使CD=BM,由已知AB=AC,所以有AB+BM=AC+CD,即AM=AD,所以∠AMD=∠ADM,所以∠NMD>∠ADM,所以MN≠AD,MN≠BM+NC。

所以三条线段只能是不等关系。

(4)要证三条线段是不等关系,就要把三条线段想办法放在同一个三角形中去。

所以必须要选定一个三角形,这个三角形怎么选呢?我们要看这三条线段最集中在哪个三角形中,就选定哪个三角形。

比如本题,三条线段中MN,BM都在△NMA中,且第三条线段NC的一部分NA也在△NMA中,所以就选定△NMA。

然后我们观察到在△NMA中,只有线段AB没有着落,且三条线段中只能NC中的一部分AC没有着落,对比这两条线段,可以猜想它们相等,即AB=AC。

可以利用等量代换的方法将AC代换到AB,(要证AB=AC,最常用的方法就是证两个三角形全等其对应边相等,或等腰或等边三角形两腰相等等方法实现。

)就实现了将三条线段放在同一个三角形中了。

然后再利用三角形三边不等关系得证。

证明:BM 、MN 、NC 之间的关系是MN <BM +NC ;在△NMA 中,有MN <AM +NA,因为AB=AC,所以AM=BM +AB=BM +AC,所以MN <BM +AC +NA,而NC=NA +AC,所以MN <BM +NC3.如图3,点P 是△ABC 的外角∠DAC 平分线上一点,你能比较PB +PC 与AB +AC 的大小关系吗?说明你的理由。

(卷子)解:延长BA 到点F ,使AF=AC,连接PF∵点P 是△ABC 的外角∠DAC 平分线上一点,∴AP 平分∠DAC ∴∠PAF=∠PAC在△PAF 与△PAC 中⎪⎩⎪⎨⎧=∠=∠=PA PA PAC PAF AC AF ∴ △PAF ≌△PAC ∴PF=PC∴PB +PC=PB +PF∵AF=AC ∴BF=AB +AF=AB +AC在△BPF 中∵BF <PB +PF ∴AB +AC <PB +PC总结:判断几条(三条或四条)线段之间的大小关系,通常是将这几条线段通过等量关系放在同一个三角形中,运用三角形三边关系判断它们之间的大小关系。

这种等量关系通常是通过证明三角形全等来实现的。

这个过程了是转化思想的运用。

3-1.如图3-1,在△ABC 中,AB >AC,∠1=∠2,P 为AD 上任意一点,求证:AB -AC >PB -PC.(教材全解43页)3-2.如图3-2,AD是△ABC的外角∠FAC的平分线,D是这平分线上的一个动点,你能想出AB+AC与BD+DC的大小关系吗?并证明你的猜想。

(点拔27页)分析:本题是涉及多条线段大小关系的题型,多条线段大小关系通常有两种,相等和不等。

线段相等关系一般通过证全等三角形来实现边(线段)等量关系的转换。

证明对应线段相等从而相等。

不等关系也是通过证全等三角形来实现边(线段)等量关系的转换。

,将几条线段转换到某一个三角形中利用三角形三边不等关系得证。

我们还注意到是其中两条线段相加如AB+AC与另外两条线段相加如BD+DC的关系,通常要把两条线段放到一条直线上去,即把两条线段合成一条线段,这样就把四条线段之间的关系转化为了三条线段之间的关系。

例如把AC转换到AB的延长线或反向延长线上去,得到新的一条线段BF=AB+AC.然后再来找BF与BD+DC的关系。

或者也可以把BD+DC放到同一条直线上去,得到新的一条线段等于BD+DC,这要视具体情况而定。

本题是需要把AC转换到AB的延长线或反向延长线上去,得到新的一条线段BF=AB+AC.本题中有角平分线,有角平分线的题型,通常是利用角平分线构造全等三角形。

而角一部分线最常用的方法是利用已经有的两个相等角和角平分线这条公共边为构造全等三角形,如图3-2-1,可构造一个与△ACD全等的三角形。

通常在角的另一边上截与AC等长的线段于F,连接DF。

则可证△ACD和△AFD为全等三角形.从而可得AC=AF,DC=DF.通过观察图形可以看出通过AC=AF,DC=DF.的等量关系把AC转换到AF,把DC转换到DF,从图中可看出AB,AF,DF,BD四条线段在同一三角形中,从而实现了把几条线段转换到同一三角形中的目的,可以利用三角形三边的不等关系得证:AB+AC<BD+DC已知,如图,在△ABC,延长AC边上的中线BE至M,使EM=BE,延长AB边上的中线CD至N,使DN=CD,求证:(1)N,A,M三点在同一直线上。

(2)AN=AM.(卷子)4.如图5,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF,交AB 于点E,连结EG 、EF.(1)求证:BG=CF;(2)请你判断BE +CF 与EF 的大小关系,并说明理由。

相关文档
最新文档