三角形“三线”练习题

合集下载

三角形的三线分类练习

三角形的三线分类练习

三角形三线精选习题一、高线1、如图:(1)在△ABC中,BC边上的高是______.(2)在△AEC中,AE边上的高是_________ .(3)在△FEC中,EC边上的高是_________ .(4)若AB=CD=2cm,AE=3cm,则S= _________ cm2,CE= _________ cm.△AEC1题图2、(1)观察图形,指出图中出现了哪些高线?(2)图中存在哪些相等角?2题图注意基本图形:双垂直图形.3、如图,△ACB中,∠ACB=90°,∠1=∠B.(1)试说明CD是△ABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长.3题图12、如图在△ABC中,CD是高,点E、F、G分别在BC、AB、AC上,且EF⊥AB,∠1=∠2,试判断DG与BC的位置关系?并说明理由.二、中线4、如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?注意常考题型:周长差问题.5、如图所示,AD是△ABC的中线,AB=6cm,AC=5cm,求△ABD和△ADC的周长的差.11、在△ABC中,AD是BC边上的中线,若△ABD和△ADC的周长之差为4(AB>AC),AB与AC的和为14,求AB 和AC的长.13、如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?注意常考知识点:中线等分面积.三、角平分线14、已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.15、如图△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.12、(2011•湖州)如图:CD平分∠ACB,DE∥AC且∠1=30°,则∠2= 度.23.、如图,BE 、CD 相交于点A ,CF 为∠BCD 的平分线,EF 为∠BED 的平分线。

等腰三角形三线合一

等腰三角形三线合一

1、如图,已知AC平分/ BAD,CE 丄AB于E , CF丄AD于F,且BC="CD."(1 )求证:△ BCE DCF(2 )若AB=17 , AD=9,求AE 的长.2、如图,已知AB=AC, / A=36 ,AB的中垂线MN 交AC于点D,交AB于点M,求证: (1 ) BD 平分/ ABC ;△ BCD为等腰三角形.(2)3、已知:如图/ BAC的角平分线与BC 的垂直平分线DG交于点D,DE 丄AB ,DF 丄AC,垂足分别为E, F.⑴试说明: BE=CF;⑵若AF=3 ,BC=4,求△ ABC的周长.4、如图, △ ABC 中,AC = BC , / ACB 90 ,点D为BC的中点,点E与点C关于直线AD对称,CE与AD、AB分别交于点G,连接BE、BF、GD求证:(1) △ BEF 为等腰直角三角形 ;(2) / ADC =_+£ tfl. (1 )求证:△ ABC BA EDC ;(2 )如图(2 ),若/ ACB = 60°,连接BE 交AC 于F , G 为边CE 上一点,满足CG / BDG. 5、如图,在等腰 Rt △ ABC 中,/ C = 90 ° D 是斜边上 AB 上任一点,AE 丄CD 于E , BF 丄CD 交CD 的延长线于F ,CH 丄AB 于H 点,交AE 于G . (1 )试说明A H = BH (2 )求证: BD = CG .(3 )探索 AE 与EF 、BF 之间的数量关系6、(本题 14分)如图(1),在 △ ABC 和^ EDC 中,D 为^ ABC 边AC 上一点, CA 平分/BCE , BC =CD , AC = CE.?■=CF,连接DG交BE于H.①求/ DHF的度数;②若EB平分/ DEC,试说明:BE平分/ ABC.1、(1 )证明见解析(2 )12、(1 )证明见解析(2 )证明见解析3、(1)证明详见解析;(2)10 .(1 )证明见解析;(2 )证明见解析.(1 )见解析;(2 )见解析;(3 )AE=EF + BF,理由见解析(1 )略 (2 )①/ DHF="60 ° ②'略【解析】1、试题分析:(1)根据角平分线的性质可以得出CF="CE,"在证明RCCFD^RLCEB 就可以得出DF=BE ;⑵先证明-CJF ^CAE,就可以得出AF=AE,设DF=BE=x,就可以得出8+x=10-x,求出方程的解即可.试题解析:(1 )••• AC 平分/ BAD,CE丄AB于E,CF丄AD 于F••• CE=CF,在Rt △ BCE 和Rt △ DCF 中,•/ CE=CFBC=CD,••• Rt △ BCE 也Rt △ DCF ( HL ).(2 )由(1 )得,Rt △ BCE 也Rt △ DCF ••• DF=EB,设DF=EB=X由Rt △ AFC 也Rt △ AEC ( HL ) 可知AF=AE 即: AD+DF=AB-BE•/ AB=17 , AD=9 , DF=EB=x参考答案•• 9+x=17-x 解得,x=4••• AE=AB-BE=17-4=1点睛:本题考查了角平分线性质,全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等. 直角三角形全等的判定定理是SAS , ASA , AAS , SSS ,2、试题分析:(1 )由等腰三角形,即可求得/AB的中垂线MN交AC于点D,交AB于M,求得△ ABD 是ABD的度数,然后根据等边对等角,求得/ DBC的度数,从而得证;(2 )根据(1 )的结论和外角的性质,可得/ BDC= / C,再根据等角对等边得证试题解析:(1 )••• MN 为AB的中垂线,••• AD=BD贝y/ A= / ABD=36•/ AB=AC , / A=36 •••/ ABC= / C=72 •••/ DBC=36因此,BD平分/ ABC ;(2 )由①和/ 2="36° " / C="72° "•// BDC=180 -36 ° -72 =72°•••/ C= / ABD+ / DBC= / BDC ,3、试题分析:(1 )连接DB、DC,根据角平分线性质和垂直平分线的性质得:DE=DF , DB=DC,证明Rt △ BED 也Rt △ CFD (HL ),得出结论;(2 )先证明△ AED AFD,得AF=AE=3 ,再将△ ABC的周长进行等量代换,即△ ABC 的周长=AB+AC+BC=AE+EB+AF - CF+BC,代入求值即可.试题解析:连接DB、DC ,(1 )••• AD 平分/ BAC , DE 丄AB , DF 丄AC ,••• DE=DF , •/ DG垂直平分BC ,••• DB=DC , 在Rt △ BED 和Rt △ CFD 中,DE=DF , BD=CD ,••• Rt △ BED 也Rt △ CFD ( HL ),••• BE=CF ;(2 )•••/ DAE= / DAF , / AED= / AFD=90 , AD=AD ,••• AF=AE=3由(1 )得:BE=CF ,•••△ ABC 的周长=AB+AC+BC=AE+EB+AF - CF+BC=AE+AF+BC=3+3+4=10考点:全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.4、试题分析:(1 )连接DE ,根据对称轴和线段垂直平分线的性质,求出CF=EF , CD=DE ,推出CD=ED=BD ,根据直角三角形的判定推出 △ BEF 是直角三角形,求出 / AFC= / BEC= / ACD=90 , / CAF= / ECB ,根据全等三角形的判定定理得出△ ACF CBE ,根据全等三角形的性质得证;(2 )作/ ACB 的平分线交 AD 于M ,根据 ASA 推出△ ACM ◎△ CBG 得出/ ADC= / M , CD=BM ,根据 SAS 推出△ DCM ◎△ DBG ,求出/ M= / BDG ,即可得 出答案. 试题解析:(1 )连接DE ,•••点E 、C 关于AD 对称,••• AD 为CE 的垂直平分线,••• CD=DE ,••• D 为 CB 中点,••• CD=DE=DB ,DCE= / CED , / DEB= / DBE ,DCE+ / CED+ / DEB+ / DBE=180 CEB=90ECB= / CAF , 在^ ACF 和^ CBE 中,二 CAF = cBCE{ JC 寻 CB•/ £AFC M iCES•••△ ACF ◎△ CBE (AAS ••• CF=BE ,右••• CF=EF , •••△ EFB 为等腰直角三角形.(2 )作/ ACB 的平分线交AD 于M ,在^ ACM 和^ CBG 中,zCL-LV = ^BCGAC^CS•••△ ACM ◎△ CBG (ASA ),••• CM=BG ,在^ DCM 和^ DBG 中,•/•/ ECB+ / ACF=90 / CAF+ / ACF=90),••• EF=EB ,ilC s GB{dfCDwzG 如“贅CD M SD•••△ DCM ◎△ DBG (SAS ),•••/ ADC= / GDB.5、试题分析:(1 )根据等腰三角形的三线合一证明;(2 )证明△ ACG ◎△ CBD ,根据全等三角形的性质证明;(3 )证明△ ACE ◎△ CBF 即可.试题解析:(1 )••• AC=BC , CH 丄AB ••• AH = BH(2 )••• ABC 为等腰直角三角形,且CH 丄AB=45° + / ACE = 90° , / BCF +/ ACE = 90°=/ BCF{ JOCS ^4CG — Z.CSD(ASA )••• BD = CG(3 ) AE=EF + BF理由如下:在^ ACE 和^ CBF AC — CB••• AE=CF , CE=BF ,••• AE=CF=CE+EF=BF+EF6、( 1 )••• CA 平分/ BCE , :丄 ACB = / ACE . 在^ ABC 和^ EDC 中•/ BC = CD , / ACB =/ ACE , AC = CE••△ ABC ◎△ EDC (SAS )在^ ACG A C A G —ZL B'CZ)禾口△ CBD •// CAG 中,(2 )①在△ BCF和^DCG中•/ BC = DC, / BCD =/ DCE,CF=CG,•••△ BCF◎△ DCG (SAS ),:丄 CBF= / CDG.•••/ CBF+ / BCF= / CDG+/DHF•••/ BCF= / DHF =60° .②••• EB 平分/ DEC ,DEH = / BEC .•/DHF =60° ,HDE =60°- / DEH .•/BCE =60° +60° =120° ,CBE =180° -120 / BEC=60°- / BEC.HDE = / CBE. / A= / DEG.△ ABC ◎△ EDC , △ BCF◎△ DCG (已证).// BFC= / DGC ,•/ ABF = / BFC- / A, / HDE = / DGC - / DEG , • / ABF = / HDE ,• / ABF = / CBE,BE 平分/ ABC .。

(2021年整理)三角形的三线练习题

(2021年整理)三角形的三线练习题

三角形的三线练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角形的三线练习题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角形的三线练习题的全部内容。

三角形的中线、角平分线和高一、填空.1.一个三角形有______条中线,______条角平分线,______条高.2.在一个三角形中,有两条高就是三角形的边,这个是_______三角形。

3.在一个三角形中,有两条高在三角形的外部,这个是_______三角形.4.三角形的角平分线、中线、高都是____(填“直线”、“射线”或“线段”)。

二、选择题.5.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.都不对6.下列语句正确的是( )A.三角形的角平分线、中线和高都在三角形内部B.直角三角形的高只有一条C.三角形的高至少有一条在三角形内部D.钝角三角形的三条高都在三角形外部7.三角形的三条角平分线的交点在三角形的()A.内部 B.外部 C.一条边上 D.都可能8.三角形的三条中线的交点在三角形的( )A.内部 B.外部 C.一条边上 D.都可能9.三角形的一条高是一条()A.直线 B.垂线 C.垂线段 D.射线三、作图题。

10.画出下面三角形的三条高.(标出每一条高的垂足)D C B A 图2C 图1B C D11.画出下面三角形的三条中线。

12.画出下面三角形的三条角平分线。

13.如右图所示:(1)∵AD 是△ABC 的角平分线∴______=______=21_______(2)∵∠BAD=∠DAC∴AD 是△ABC 的________线14.如图(2)所示:(1)∵EC 是△ABC 的角平分线∴______=______=21_______(2)∵AD 是△ABC 的中线∴______=______=21_______(3)∵∠ACE=∠ECB∴EC 是△ABC 的________线(4)∵BD=DC∴AD 是△ABC 的________线15.如图(1)所示:(1)∵AD 是△ABC 的高∴______ = ______ = 90°(2)∵∠ADB = 90°B∴AD是△ABC的_________。

三角形的内、外角和三线综合练习题

三角形的内、外角和三线综合练习题

三角形的内、外角和三线综合练习题三角形的内、外角和三线综合练习题一.解答题(共30小题)1.(2010•玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.2.(2006•浙江)已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE的平分线相交于点P.求证:∠P=90°.3.(2000•内蒙古)如图,已知在三角形ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.4.(2013•响水县一模)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:_________.5.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.6.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(2)将图1中的三角板绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为_________秒(直接写出结果);(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.7.如图,AD、BC交于O点,且∠A=∠B,∠C=∠D.求证:AB∥CD.8.如图,已知点A,D,B在同一直线上,∠1=∠2,∠3=∠E.求证:DE∥BC.9.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.10.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.11.直线AB、CD被直线EF所截,EF分别交AB、CD于M,N,∠EMB=50°,MG平分∠BMF,MG交CD于G.(1)如图1,若AB∥CD,求∠1的度数.(2)如图2,若∠MNC=140°,求∠1的度数.12.如图,四边形ABCD中,∠B=∠D=90°,AE平分∠BAD,若AE∥CF,∠BCF=60°,请你求出∠DCF的度数.并说明你的理由.13.已知AB∥CD,直线l与AB、CD分别交于点E、F,点P是直线CD上的一个动点(点P不与F重合),点M 在EF上,且∠FMP=∠FPM,(1)如图1,当点P在射线FC上移动时,若∠AEF=60°,则∠FPM=_________;假设∠AEF=a,则∠FPM= _________;(2)如图2,当点P在射线FD上移动时,猜想∠FPM与∠AEF有怎样的数量关系?请你说明理由.14.如图(1)直线GC∥HD,EF交CG、HD于A、B,三条直线把EF右侧的平面分成①、②、③三个区域,(规定:直线上各点不属于任何区域).将一个透明的直角三角尺放置在该图中,使得30°角(即∠P)的两边分别经过点A、B,当点P落在某个区域时,连接PA、PB,得到∠PBD、∠PAC两个角.(1)如图(1),当点P落在第②区域时,求∠PAC+∠PBD的度数;(2)如图(2),当点P落在第③区域时,∠PAC﹣∠PBD=_________度(3)如图(3),当点P落在第①区域时,直接写出∠PAC、∠PBD之间的等量关系.15.如图,直线a∥b,直线AC分别交a、b于点B、点C,直线AD交a于点D.若∠1=20°,∠2=65°,求∠3的度数.16.(1)如图(1),AB∥CD,点P在AB、CD外部,若∠B=40°,∠D=15°,则∠BPD=_________.(2)如图(2),AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;(3)在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度数.17.(2012•樊城区模拟)下面是有关三角形内外角平分线的探究,阅读后按要求作答:探究1:如图(1),在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现:∠BOC=90°+∠A(不要求证明).探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的数量关系?请说明理由.探究3:如图(3)中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的数量关系?(只写结论,不需证明).结论:_________.18.(2011•宜兴市二模)操作示例如图1,△ABC中,AD为BC边上的中线,则S△ABD=S△ADC.实践探究(1)在图2中,E、F分别为矩形ABCD的边AD、BC的中点,则S阴和S矩形ABCD之间满足的关系式为_________(2)在图3中,E、F分别为平行四边形ABCD的边AD、BC的中点,则S阴和S平行四边形ABCD之间满足的关系式为_________;(3)在图4中,E、F分别为任意四边形ABCD的边AD、BC的中点,则S阴和S四边形ABCD之间满足的关系式为_________;解决问题:(4)在图5中,E、G、F、H分别为任意四边形ABCD的边AD、AB、BC、CD的中点,并且图中阴影部分的面积为20平方米,求图中四个小三角形的面积和,即S1+S2+S3+S4=_________.19.如图,在△BCD中,BE平分∠DBC交CD于F,延长BC至G,CE平分∠DCG,且EC、DB的延长线交于A 点,若∠A=33°,∠DFE=63°.(1)求证:∠DFE=∠A+∠D+∠E;(2)求∠E的度数;(3)若在上图中作∠CBE与∠GCE的平分线交于E1,作∠CBE1与∠GCE1的平分线交于E2,作∠CBE2与∠GCE2的平分线于E3,以此类推,∠CBE n与∠GCE n的平分线交于E n+l,请用含有n的式子表示∠E n+l的度数(直接写答案).20.已知:△ABC中,AD⊥BC,AE平分∠BAC,请根据题中所给的条件,解答下列问题:(1)如图1,若∠BAD=60°,∠EAD=15°,求∠ACB的度数.(2)通过以上的计算你发现∠EAD和∠ACB﹣∠B之间的关系应为:_________.(3)在图2的△ABC中,∠ACB>90°,那么(2)中的结论仍然成立吗?为什么?21.如图(甲),D是△ABC的边BC的延长线上一点.∠ABC、∠ACD的平分线相交于P1.(1)若∠ABC=80°,∠ACB=40°,则∠P1的度数为_________;(2)若∠A=α,则∠P1的度数为_________;(用含α的代数式表示)(3)如图(乙),∠A=α,∠ABC、∠ACD的平分线相交于P1,∠P1BC、∠P1CD的平分线相交于P2,∠P2BC、∠P2CD的平分线相交于P3依此类推,则∠Pn的度数为_________(用n与α的代数式表示)22.在△ABC中,∠C>∠B,AE是△ABC中∠BAC的平分线;(1)若AD是△ABC的BC边上的高,且∠B=30°,∠C=70°(如图1),求∠EAD的度数;(2)若F是AE上一点,且FG⊥BC,垂足为G(如图2),求证:;(3)若F是AE延长线上一点,且FG⊥BC,G为垂足(如图3),②中结论是否依然成立?请给出你的结论,并说明理由.23.已知,如图,在△ABC中,AD平分∠BAC,DE,DF分别是△ADC的高和角平分线(∠C>∠DAC),若∠B=80°,∠C=40°.(1)求∠DAE的度数;(2)试猜想∠EDF、∠C与∠DAC有何关系?并说明理由.24.如图,在△ABC中,已知∠ACB=67°,BE是AC上的高,CD是AB上的高,F是BE和CD的交点,∠DCB=45°,求∠ABE和∠BFC的度数.25.如图,已知△ABC中,∠B=40°,∠C=62°,AD是BC边上的高,AE是∠BAC的平分线.求:∠DAE的度数.(写出推导过程)26.已知△ABC中,∠BAC=90°,∠C=30°,点D为BC边上一点,连接AD,作DE⊥AB于点E,DF⊥AC于点F.(1)若AD为△ABC的角平分线(如图1),图中∠1、∠2有何数量关系?为什么?(2)若AD为△ABC的高(如图2),求图中∠1、∠2的度数.27.如图,(1)在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是_________.(2)在△ABC中,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,∠ABD2与∠ACD2的角平分线交于点D3,若∠BD3C的度数是n°,则∠A的度数是_________(用含n的代数式表示).28.已知△ABC.(1)若∠BAC=40°,画∠BAC和外角∠ACD的角平分线相交于O1点(如图①),求∠BO1C的度数;(2)在(1)的条件下,再画∠O1BC和∠O1CD的角平分线相交于O2点(如图②),求∠BO2C的度数;(3)若∠BAC=n°,按上述规律继续画下去,请直接写出∠BO2012C的度数.29.(1)如图1,在锐角△ABC中,BD、CE分别是AC、AB边上的高线,BD与CE相交于点P,若已知∠A=50°,∠BPC的度数为多少;(2)如图2,在钝角△ABC中,BD、CE分别是AC、AB边上的高线,BD与EC的延长线相交于点P,若已知∠A=50°,则∠BPC的度数为多少;(3)在△ABC中,若∠A=α,请你探索AB、AC边上的高线(或延长线)相交所成的∠BPC的度数.(可以用含α的代数式表示)30.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?三角形的内、外角和三线综合练习题参考答案与试题解析一.解答题(共30小题)1.(2010•玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.分析:(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据三角形的外角性质,把角转化到四边形中再求解.解答:解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)连接EG并延长,根据三角形的外角性质,∠AGB=∠A+∠B+∠E,又∵∠AGB=∠CGF,在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.2.(2006•浙江)已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE的平分线相交于点P.求证:∠P=90°.分析:由AB∥CD,可知∠BEF与∠DFE互补,由角平分线的性质可得∠PEF+∠PFE=90°,由三角形内角和定理可得∠P=90度.解答:证明:∵AB∥CD,∴∠BEF+∠DFE=180°.又∵∠BEF的平分线与∠DFE的平分线相交于点P,∴∠PEF=∠BEF,∠PFE=∠DEF,∴∠PEF+∠PFE=(∠BEF+∠DFE)=90°.∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.3.(2000•内蒙古)如图,已知在三角形ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.分析:根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.解答:解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.4.(2013•响水县一模)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:∠P=(∠A+∠B+∠E+∠F)﹣180°.分析:探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠ADC+∠BCD,然后同理探究二解答即可.解答:解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(180°﹣∠A),=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠BCD,=180°﹣(∠ADC+∠BCD),=180°﹣(360°﹣∠A﹣∠B),=(∠A+∠B);探究四:六边形ABCDEF的内角和为:(6﹣2)•180°=720°,∵DP、CP分别平分∠ADC和∠ACD,∴∠P=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(720°﹣∠A﹣∠B﹣∠E﹣∠F),=(∠A+∠B+∠E+∠F)﹣180°,即∠P=(∠A+∠B+∠E+∠F)﹣180°.5.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.分析:首先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.解答:解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=74°.6.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(2)将图1中的三角板绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为12或30秒(直接写出结果);(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.分析:(1)由角的平分线的定义和等角的余角相等求解;(2)由∠BOC=120°可得∠AOC=60°,则∠AON=30°或∠NOR=30°,即顺时针旋转300°或120°时ON平分∠AOC,据此求解;(3)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,然后作差即可.解答:解:(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当直线ON恰好平分锐角∠AOC,∴∠AOD=∠COD=30°,即顺时针旋转300°时NO延长线平分∠AOC,由题意得,10t=300°∴t=30,当NO平分∠AOC,∴∠NOR=30°,即顺时针旋转120°时NO平分∠AOC,∴10t=120°,∴t=12,∴t=12或30;(3)∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°,所以∠AOM与∠NOC之间的数量关系为:∠AOM﹣∠NOC=30°.7.如图,AD、BC交于O点,且∠A=∠B,∠C=∠D.求证:AB∥CD.分析:证两直线平行,需证得两直线的内错角相等.结合已知,可用△AOB和△COD的外角∠AOC为媒介,证得∠A=∠D或∠B=∠C,由此来证得AB∥CD.解答:证明:∵∠AOC=∠A+∠B,∠A=∠B,∴∠AOC=2∠B.∵∠AOC=∠C+∠D,∠C=∠D,∴∠AOC=2∠C.∴∠C=∠B.∴AB∥CD.8.如图,已知点A,D,B在同一直线上,∠1=∠2,∠3=∠E.求证:DE∥BC.分析:由∠1=∠2,∠AOE=∠COD可证得∠CDO=∠E;再由∠3=∠E得∠CDO=∠3,即得DE∥BC(内错角相等,两直线平行).解答:证明:∵∠1=∠2,∠AOE=∠COD(对顶角相等),∴在△AOE和△COD中,∠CDO=∠E(三角形内角和定理);∵∠3=∠E,∴∠CDO=∠3,∴DE∥BC(内错角相等,两直线平行).9.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.分析:根据DC⊥EC,得∠1+∠2=90°,再结合已知条件,得∠D+∠1+∠E+∠2=180°,利用三角形的内角和定理就可求得∠A+∠B的值,从而证明结论.解答:证明:∵DC⊥EC,∴∠1+∠2=90°,又∠D=∠1,∠E=∠2,∴∠D+∠1+∠E+∠2=180°.根据三角形的内角和定理,得∠A+∠B=180°,∴AD∥BE.10.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.分析:利用三角形的内角和定理得∠C+∠CED+∠CDE=180°,已知∠CAB=∠CED+∠CDE,所以∠C+∠CAB=180°,根据同旁内角互补,两直线平行可证AB∥CD.解答:证明:在△ECD中∵∠C+∠CED+∠CDE=180°(三角形内角和定理),又∵∠CAB=∠CED+∠CDE(已知),∴∠C+∠CAB=180°(等量代换),∴AB∥CD(同旁内角互补,两直线平行).11.直线AB、CD被直线EF所截,EF分别交AB、CD于M,N,∠EMB=50°,MG平分∠BMF,MG交CD于G.(1)如图1,若AB∥CD,求∠1的度数.(2)如图2,若∠MNC=140°,求∠1的度数.分析:(1)根据两角互补及角平分线的性质可求出∠BMG的度数,再根据平行线的性质即可求解;(2)先根据两角互补及角平分线的性质可求出∠NMG的度数,再由三角形内角与外角的性质及∠MNC=140°即可求出∠1的度数.解答:解:(1)∵∠BMF+∠EMB=180°,∴∠BMF=180°﹣∠EMB,∵∠EMB=50°,∴∠BMF=180°50°=130°,(2分)∵MG平分∠BMF,∴∠BMG=∠GMN=∠BMF=65°,(4分)∵AB∥CD,∴∠1=∠BMG=65°;(5分)(2)∵∠MNC=∠1+∠GMN,∴∠1=∠MNC﹣∠GMN,(7分)∵∠MNC=140°,∠GMN=65°,∴∠1=140°﹣65°=75°.(8分)12.如图,四边形ABCD中,∠B=∠D=90°,AE平分∠BAD,若AE∥CF,∠BCF=60°,请你求出∠DCF的度数.并说明你的理由.解答:解:∠DCF=60°,理由如下:∵∠B=90°∴∠1+∠BCF=90°∵∠BCF=60°∴∠1=30度.∵AE∥CF∴∠2=∠1=30度∵AE平分∠BAD∴∠3=∠2=30度又∵∠D=90°∴∠3+∠4=90°∴∠4=60°∵AE∥CF∴∠DCF=∠4=60°.13.已知AB∥CD,直线l与AB、CD分别交于点E、F,点P是直线CD上的一个动点(点P不与F重合),点M 在EF上,且∠FMP=∠FPM,(1)如图1,当点P在射线FC上移动时,若∠AEF=60°,则∠FPM=30°;假设∠AEF=a,则∠FPM=α;(2)如图2,当点P在射线FD上移动时,猜想∠FPM与∠AEF有怎样的数量关系?请你说明理由.分析:(1)根据两直线平行,同旁内角互补以及△PFM的内角和是180°填空;(2)根据两直线平行,内错角相等和三角形的内角和为180度,易得∠FPM=90°﹣∠AEF.解答:解:(1)∵AB∥CD,∴∠AEF+∠MFP=180°.∵∠MFP+∠FMP+∠FPM=180°,∴∠FMP+∠FPM=∠AEF;∵∠FMP=∠FPM,∴∠FPM=∠AEF;∴若∠AEF=60°,则∠FPM=30°;若∠AEF=a,则∠FPM=α;(2)∠FPM=90°﹣∠AEF.理由:∵AB∥CD,∴∠AEF=∠MFP(两直线平行,内错角相等).∵∠MFP+∠FMP+∠FPM=180°,∴∠FMP+∠FPM=180°﹣∠MFP=180°﹣∠AEF;∵∠FMP=∠FPM,∴∠FPM=90°﹣∠AEF.14.如图(1)直线GC∥HD,EF交CG、HD于A、B,三条直线把EF右侧的平面分成①、②、③三个区域,(规定:直线上各点不属于任何区域).将一个透明的直角三角尺放置在该图中,使得30°角(即∠P)的两边分别经过点A、B,当点P落在某个区域时,连接PA、PB,得到∠PBD、∠PAC两个角.(1)如图(1),当点P落在第②区域时,求∠PAC+∠PBD的度数;(2)如图(2),当点P落在第③区域时,∠PAC﹣∠PBD=30度(3)如图(3),当点P落在第①区域时,直接写出∠PAC、∠PBD之间的等量关系.分析:解答:(1)过点P作PQ∥GC,则由平行线的性质求出∠PAC+∠PBD=∠P,从而得出答案.(2)由GC∥HD,得∠EAC=∠EBD,再由外角的性质得出∠PAE=∠P+∠ABP,从而得出∠PAC=∠PBD+∠P;(3)由GC∥HD,得∠1=∠PBD,再由外角的性质得出∠1=∠P+∠CAP,从而得出∠PBD=∠PAC+∠P.解:(1)过点P作PQ∥GC,∴∠PAC=∠APQ,∠BPQ=∠PBD,∴∠PAC+∠PBD=∠APQ+∠QPB,即∠PAC+∠PBD=∠P,∵∠P=30°,∴∠PAC+∠PBD=30°.(2)∵GC∥HD,∴∠EAC=∠EBD,∵∠PAE=∠P+∠ABP,∴∠PAC=∠PBD+∠P,∴∠PAC﹣∠PBD=30°;(3)∵GC∥HD,∴∠1=∠PBD,∵∠1=∠P+∠CAP,∴∠PBD=∠PAC+∠P,即∠PBD﹣∠PAC=∠P.∴∠P=30°.15.如图,直线a∥b,直线AC分别交a、b于点B、点C,直线AD交a于点D.若∠1=20°,∠2=65°,求∠3的度数.分析:根据两直线a∥b推知,内错角∠2=∠4;然后由三角形的外角性质及等量代换求得∠3的度数即可.解答:解:∵a∥b,∴∠2=∠4(两直线平行,内错角相等),又∵∠4=∠1+∠3(外角定理),∠1=20°,∠2=65°,∴∠3=∠2﹣∠1=45°,即∠3=45°.16.(1)如图(1),AB∥CD,点P在AB、CD外部,若∠B=40°,∠D=15°,则∠BPD=25°.(2)如图(2),AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;(3)在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度数.分析:(1)由AB∥CD,∠B=40°,根据两直线平行,内错角相等,即可求得∠BOD的度数,又由三角形外角的性质,可求得∠BPD的度数;(2)首先过点P作PE∥AB,由AB∥CD,可得AB∥PE∥CD,然后由两直线平行,内错角相等,即可证得∠BPD=∠1+∠2=∠B+∠D;(3)首先延长BP交CD于点E,利用三角形外角的性质,即可求得∠B+∠D的度数.解答:解:(1)∵AB∥CD,∠B=40°,∴∠BOD=∠B=40°,∴∠P=∠BOD﹣∠D=40°﹣15°=25°.故答案为:25°;(2)∠BPD=∠B+∠D.证明:过点P作PE∥AB,∵AB∥CD,∴AB∥PE∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D.(3)延长BP交CD于点E,∵∠1=∠BMD+∠B,∠BPD=∠1+∠D,∴∠BPD=∠BMD+∠B+∠D,∵∠BPD=90°,∠BMD=40°,∴∠B+∠D=∠BPD﹣∠BMD=90°﹣40°=50°.17.(2012•樊城区模拟)下面是有关三角形内外角平分线的探究,阅读后按要求作答:探究1:如图(1),在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现:∠BOC=90°+∠A(不要求证明).探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的数量关系?请说明理由.探究3:如图(3)中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的数量关系?(只写结论,不需证明).结论:∠BOC=90°﹣∠A.分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠O的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.解答:解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.18.(2011•宜兴市二模)操作示例如图1,△ABC中,AD为BC边上的中线,则S△ABD=S△ADC.实践探究(1)在图2中,E、F分别为矩形ABCD的边AD、BC的中点,则S阴和S矩形ABCD之间满足的关系式为;(2)在图3中,E、F分别为平行四边形ABCD的边AD、BC的中点,则S阴和S平行四边形ABCD之间满足的关系式为;(3)在图4中,E、F分别为任意四边形ABCD的边AD、BC的中点,则S阴和S四边形ABCD之间满足的关系式为;;解决问题:(4)在图5中,E、G、F、H分别为任意四边形ABCD的边AD、AB、BC、CD的中点,并且图中阴影部分的面积为20平方米,求图中四个小三角形的面积和,即S1+S2+S3+S4=20.分析:(1)利用E、F分别为矩形ABCD的边AD、BC的中点,分别求得S阴和S矩形ABCD即可.(2)利用E、F分别为平行四边形ABCD的边AD、BC的中点,分别求则S阴和S平行四边形ABCD即可.(3)利用E、F分别为任意四边形ABCD的边AD、BC的中点,分别求得则S阴和S四边形ABCD即可.(4)先设空白处面积分别为:x、y、m、n由上得,,分别求得S1、S2、S3、S4.然后S1+S2+S3+S4=S阴即可.解答:解:(1)由E、F分别为矩形ABCD的边AD、BC的中点,得S阴=BF•CD=BC•CD,S矩形ABCD=BC•CD,所以;(2)同理可得;;(3)同理可得;;(4)设空白处面积分别为:x、y、m、n(见右图),由上得,,∴S1+x+S2+S3+y+S4=.S1+m+S4+S2+n+S3=,∴(S1+x+S2+S3+y+S4)+(S1+m+S4+S2+n+S3)=S四边形ABCD.∴(S1+x+S2+S3+y+S4)+(S1+m+S4+S2+n+S3)=S1+x+S2+n+S3+y+S4+m+S阴∴S1+S2+S3+S4=S阴=20.故答案分别为:(1);(2);(3);(4)20.19.如图,在△BCD中,BE平分∠DBC交CD于F,延长BC至G,CE平分∠DCG,且EC、DB的延长线交于A 点,若∠A=33°,∠DFE=63°.(1)求证:∠DFE=∠A+∠D+∠E;(2)求∠E的度数;(3)若在上图中作∠CBE与∠GCE的平分线交于E1,作∠CBE1与∠GCE1的平分线交于E2,作∠CBE2与∠GCE2的平分线于E3,以此类推,∠CBEn与∠GCEn的平分线交于En+l,请用含有n的式子表示∠En+l的度数(直接写答案).分析:(1)根据三角形的一个外角等于和它不相邻的两个内角的和,得出∠DCE=∠A+∠D,∠DFE=∠DCE+∠E,将第一式代入第二式即可得证;(2)根据角平分线及三角形外角的性质得出∠ECG=∠DCG=(∠D+∠DBC),∠ECG=∠E+∠EBC=∠E+∠DBC,则∠D=2∠E,再利用上题结论∠DFE=∠A+∠D+∠E,将已知条件代入,即可求出∠E的度数;(3)先根据角平分线及三角形外角的性质得出∠E1=∠E,同理得出∠E2=∠E1,则∠E2=∠E=∠E,由此得出规律∠E n+l=∠E.解答:(1)证明:∵∠DCE=∠A+∠D,∠DFE=∠DCE+∠E,∴∠DFE=∠A+∠D+∠E;(2)解:∵∠DCG=∠D+∠DBC,CE平分∠DCG,∴∠ECG=∠DCG=(∠D+∠DBC),∵BE平分∠DBC,∴∠EBC=∠DBC,∵∠ECG=∠E+∠EBC=∠E+∠DBC,∴∠E+∠DBC=(∠D+∠DBC),∴∠E=∠D,∴∠D=2∠E.∵∠DFE=63°,∠A=33°,∠DFE=∠A+∠D+∠E,∴∠D+∠E=∠DEF﹣∠A=63°﹣33°=30°,∴2∠E+∠E=30°,∴∠E=10°;(3)∵∠ECG=∠E+∠EBC,CE1平分∠ECG,∴∠E1CG=∠ECG=(∠E+∠EBC).∵BE1平分∠EBC,∴∠E1BC=∠EBC.∵∠E1CG=∠E1+∠E1BC=∠E1+∠EBC,∴∠E1+∠EBC=(∠E+∠EBC),∴∠E1=∠E.同理:∠E2=∠E1,∴∠E2=∠E=∠E,∴∠E n+l=∠E.20.已知:△ABC中,AD⊥BC,AE平分∠BAC,请根据题中所给的条件,解答下列问题:(1)如图1,若∠BAD=60°,∠EAD=15°,求∠ACB的度数.(2)通过以上的计算你发现∠EAD和∠ACB﹣∠B之间的关系应为:∠ACB﹣∠B=2∠EAD.(3)在图2的△ABC中,∠ACB>90°,那么(2)中的结论仍然成立吗?为什么?分析:(1)先求出∠BAE=∠BAD﹣∠EAD=45°,再根据角平分线的定义,得出∠BAC=90°,则根据三角形内角和定理得出∠ACB=90°﹣∠B,故求出∠B的度数即可.而在直角△ABD中,∠B=90°﹣∠BAD=30°;(2)由(1)的计算发现∠EAD和∠ACB﹣∠B之间的关系应为:∠ACB﹣∠B=2∠EAD;(3)先根据三角形内角和定理及垂直的定义,得出∠ACB﹣∠B=∠BAD﹣∠CAD,再由角平分线的定义得出结论∠ACB﹣∠B=2∠EAD.解答:解:(1)∵∠BAD=60°,∠EAD=15°,∴∠BAE=∠BAD﹣∠EAD=45°,∵AE平分∠BAC,∴∠BAC=2∠BAE=90°.∵AD⊥BC,∠BAD=60°,∴∠B=30°,∴∠ACB=90°﹣30°=60°;(2)∵(1)中∠EAD=15°,∠ACB﹣∠B=60°﹣30°=30°,发现∠ACB﹣∠B=2∠EAD,∴推测∠ACB﹣∠B=2∠EAD;(3)在图2的△ABC中,∠ACB>90°,那么(2)中的结论仍然成立.理由如下:∵在△ABC中,AD⊥BC,AE平分∠BAC,∴∠ADC=∠ADB=90°,∠BAE=∠CAE,∴∠ACB﹣∠B=90°﹣∠CAD﹣(90°﹣∠BAD)=∠BAD﹣∠CAD,又∵∠BAD=∠BAE+∠EAD,∠CAD=∠CAE﹣∠EAD,∴∠ACB﹣∠B=2∠EAD.21.如图(甲),D是△ABC的边BC的延长线上一点.∠ABC、∠ACD的平分线相交于P1.(1)若∠ABC=80°,∠ACB=40°,则∠P1的度数为30°;(2)若∠A=α,则∠P1的度数为α;(用含α的代数式表示)(3)如图(乙),∠A=α,∠ABC、∠ACD的平分线相交于P1,∠P1BC、∠P1CD的平分线相交于P2,∠P2BC、∠P2CD的平分线相交于P3依此类推,则∠Pn的度数为()nα(用n与α的代数式表示)分析:由∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,而P1B、P1C分别平分∠ABC和∠ACD,得到∠ACD=2∠P1CD,∠ABC=2∠P1BC,于是有∠A=2∠P1,同理可得∠P1=2∠P2,即∠A=22∠P2,因此找出规律.解答:解:∵P1B、P1C分别平分∠ABC和∠ACD,∴∠ACD=2∠P1CD,∠ABC=2∠P1BC,而∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,∴∠A=2∠P1,∴∠P1=∠A,(1)∵∠ABC=80°,∠ACB=40°,∴∠A=60°,∴∠P1=30°;(2)∵∠A=α,∴∠P1的度数为α;(3)同理可得∠P1=2∠P2,即∠A=22∠P2,∴∠A=2n∠P n,∴∠Pn=()nα.故答案为:30°,α,()nα.22.在△ABC中,∠C>∠B,AE是△ABC中∠BAC的平分线;(1)若AD是△ABC的BC边上的高,且∠B=30°,∠C=70°(如图1),求∠EAD的度数;(2)若F是AE上一点,且FG⊥BC,垂足为G(如图2),求证:;(3)若F是AE延长线上一点,且FG⊥BC,G为垂足(如图3),②中结论是否依然成立?请给出你的结论,并说明理由.分析:(1)根据三角形内角和定理得∠A=180°﹣30°﹣70°=80°,再根据角平分线定义得∠EAC=×80°=40°,由AD是△ABC的BC边上的高,得∠ADC=90°,计算出∠DAC=90°﹣70°=20°,则∠EAD=∠EAC﹣∠DAC=40°﹣20°=20°;(2)根据三角形内角和定理得∠A=180°﹣∠B﹣∠C,再根据角平分线定义得∠EAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),而∠DAC=90°﹣∠C,可计算得∠EAD=∠EAC﹣∠DAC=90°﹣(∠B+∠C)﹣90°﹣∠C=(∠C﹣∠B),然后利用平行线的性质得到结论;(3)与(2)证明方法一样.解答:(1)解:∵∠B=30°,∠C=70°,∴∠A=180°﹣30°﹣70°=80°,∵AE是△ABC中∠BAC的平分线,∴∠EAC=×80°=40°,∵AD是△ABC的BC边上的高,∴∠ADC=90°,∴∠DAC=90°﹣70°=20°,∴∠EAD=∠EAC﹣∠DAC=40°﹣20°=20°;(2)证明:过A点作高AD,如图,∠A=180°﹣∠B﹣∠C,∵AE是△ABC中∠BAC的平分线,∴∠EAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),而∠DAC=90°﹣∠C,∴∠EAD=∠EAC﹣∠DAC=90°﹣(∠B+∠C)﹣90°﹣∠C=(∠C﹣∠B),∵FG⊥BC,∴∠EFG=∠EAD,∴∠EFG=(∠C﹣∠B);(3)②中结论依然成立.理由如下:过A点作高AD,如图,在(2)中得到∠EAD=(∠C﹣∠B),∵FG⊥BC,∴∠EFG=∠EAD,∴∠EFG=(∠C﹣∠B).23.已知,如图,在△ABC中,AD平分∠BAC,DE,DF分别是△ADC的高和角平分线(∠C>∠DAC),若∠B=80°,∠C=40°.(1)求∠DAE的度数;(2)试猜想∠EDF、∠C与∠DAC有何关系?并说明理由.分析:(1)先根据三角形内角和定理求出∠BAC的度数,再根据三角形的角平分线的定义即可求出∠DAE 的度数;(2)先根据三角形内角和定理及角平分线的定义求出∠CDF=(180°﹣∠DAC﹣∠C),再由直角三角形两锐角互余得出∠CDE=90°﹣∠C,则根据∠EDF=∠CDF﹣∠CDE即可得出∠EDF=(∠C﹣∠DAC).解答:解:(1)∵在△ABC中,∠B=80°,∠C=40°,∴∠BAC=180°﹣80°﹣40°=60°,∵AD平分∠BAC,∴∠DAE=∠BAC=30°;(2)∠EDF=(∠C﹣∠DAC).理由如下:在△DAC中,∵∠ADC+∠DAC+∠C=180°,∴∠ADC=180°﹣∠DAC﹣∠C,∵DF平分∠ADC,∴∠CDF=∠ADC=(180°﹣∠DAC﹣∠C),∵DE是△ADC的高,∴∠CDE=90°﹣∠C,∴∠EDF=∠CDF﹣∠CDE=(180°﹣∠DAC﹣∠C)﹣(90°﹣∠C)=(∠C﹣∠DAC).故∠EDF=(∠C﹣∠DAC).24.如图,在△ABC中,已知∠ACB=67°,BE是AC上的高,CD是AB上的高,F是BE和CD的交点,∠DCB=45°,求∠ABE和∠BFC的度数.分析:根据三角形高的定义得到∠CDB=90°,∠BEC=90°,先利用三角形内角和定理得∠DBC=180°﹣90°﹣45°=45°,∠EBC=180°﹣∠ECB﹣∠BEC=180°﹣67°﹣90°=23°,则∠ABE=∠ABC﹣∠EBC=45°﹣23°=22°,然后利用三角形外角性质可计算∠BFC=22°+90°=112°.解答:解:∵CD是AB上的高,∴∠CDB=90°,∵∠CDB+∠DBC+∠DCB=180°,∴∠DBC=180°﹣90°﹣45°=45°,∵BE是AC上的高,∴∠BEC=90°,∴∠EBC=180°﹣∠ECB﹣∠BEC=180°﹣67°﹣90°=23°,∴∠ABE=∠ABC﹣∠EBC=45°﹣23°=22°;∵∠BFC=∠FDB+∠DBF,∴∠BFC=22°+90°=112°.25.如图,已知△ABC中,∠B=40°,∠C=62°,AD是BC边上的高,AE是∠BAC的平分线.求:∠DAE的度数.(写出推导过程)分析:根据三角形的内角和定理,可求得∠BAC的度数,由AE是∠BAC的平分线,可得∠EAC的度数;在直角△ADC中,可求出∠DAC的度数,所以∠DAE=∠EAC﹣∠DAC,即可得出.解答:解:∵△ABC中,∠B=40°,∠C=62°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣62°=78°,∵AE是∠BAC的平分线,∴∠EAC=∠BAC=39°,∵AD是BC边上的高,∴在直角△ADC中,∠DAC=90°﹣∠C=90°﹣62°=28°,∴∠DAE=∠EAC﹣∠DAC=39°﹣28°=11°.26.已知△ABC中,∠BAC=90°,∠C=30°,点D为BC边上一点,连接AD,作DE⊥AB于点E,DF⊥AC于点F.(1)若AD为△ABC的角平分线(如图1),图中∠1、∠2有何数量关系?为什么?(2)若AD为△ABC的高(如图2),求图中∠1、∠2的度数.分析:(1)根据已知得出∠1=∠DAC,∠2=∠DAB,以及AD平分∠BAC,即可得出∠1=∠2;(2)首先得出DE∥AC,再利用∠1=∠ADB﹣∠BDE=30°,进而求出∠FDC=180°﹣∠DFC﹣∠C=60°,即可求出∠2=∠ADC﹣∠FDC的度数.解答:解:(1)∠1=∠2,理由如下:∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=∠BAC=90°,∴DE∥AC,DF∥AB,∴∠1=∠DAC,∠2=∠DAB,∵AD平分∠BAC,∴∠DAC=∠DAB,∴∠1=∠2;(2)∵DE⊥AB,DF⊥AC,AD⊥BC,∴∠ADB=∠ADC=∠DEB=∠DFC=∠BAC=90°,∴DE∥AC,∴∠BDE=∠C=30°,∴∠1=∠ADB﹣∠BDE=30°,∵∠FDC=180°﹣∠DFC﹣∠C=60°,∴∠2=∠ADC﹣∠FDC=60°.27.如图,(1)在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是56°.(2)在△ABC中,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,∠ABD2与∠ACD2的角平分线交于点D3,若∠BD3C的度数是n°,则∠A的度数是(用含n的代数式表示).分析:(1)根据角平分线的性质可得到:∠ABD1=∠CBD1=∠ABC,∠ACD1=∠BCD1=∠ACB,再根据三角形的内角和定理可得:∠BD1C的度数,再根据∠ABD1与∠ACD1的角平分线交于点D2,可得∠D2BC=∠ABC,∠D2CB=∠ACB,进而求出∠BD2C=180°﹣(∠ABC+∠ACB),以此类推可得到:∠BD5C=180°﹣(∠ABC+∠ACB),再次利用三角形内角和代入∠ABC+∠ACB=180°﹣∠A,即可求出答案.(2)根据(1)中所求即可得出答案.解答:解:(1)∵∠A=52°,∴∠ABC+∠ACB=180°﹣52°=128°,又∠ABC与∠ACB的角平分线交于D1,∴∠ABD1=∠CBD1=∠ABC,∠ACD1=∠BCD1=∠ACB,∴∠CBD1+∠BCD1=(∠ABC+∠ACB)=×128°=64°,∴∠BD1C=180°﹣(∠ABC+∠ACB)=180°﹣64°=116°,同理∠BD2C=180°﹣(∠ABC+∠ACB)=180°﹣96°=84°,依此类推,∠BD5C=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.故答案为:56°;(2)由(1)可得:∠BD3C=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=n°.解得:∠A=.故答案为:.28.已知△ABC.(1)若∠BAC=40°,画∠BAC和外角∠ACD的角平分线相交于O1点(如图①),求∠BO1C的度数;(2)在(1)的条件下,再画∠O1BC和∠O1CD的角平分线相交于O2点(如图②),求∠BO2C的度数;(3)若∠BAC=n°,按上述规律继续画下去,请直接写出∠BO2012C的度数.分析:由∠O1CD=∠O1+∠O1BC,∠ACD=∠ABC+∠A,而O1B、O1C分别平分∠ABC和∠ACD,得到∠ACD=2∠O1CD,∠ABC=2∠O1BC,于是有∠A=2∠O1,同理可得∠O1=2∠O2,即∠A=22∠O2,因此找出规律.解答:解:∵O1B、O1C分别平分∠ABC和∠ACD,∴∠ACD=2∠O1CD,∠ABC=2∠O1BC,而∠O1CD=∠O1+∠O1BC,∠ACD=∠ABC+∠A,∴∠A=2∠01=40°,∴∠O1=20°,同理可得∠O1=2∠O2,即∠A=22∠02=40°,∴∠O2=10°,∴∠A=2n∠A n,∴∠A n=n°×()n.则∠BO2012C=0.29.(1)如图1,在锐角△ABC中,BD、CE分别是AC、AB边上的高线,BD与CE相交于点P,若已知∠A=50°,∠BPC的度数为多少;(2)如图2,在钝角△ABC中,BD、CE分别是AC、AB边上的高线,BD与EC的延长线相交于点P,若已知∠A=50°,则∠BPC的度数为多少;(3)在△ABC中,若∠A=α,请你探索AB、AC边上的高线(或延长线)相交所成的∠BPC的度数.(可以用含α的代数式表示)分析:(1)根据直角三角形两锐角互余求出∠ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据直角三角形两锐角互余可得∠A+∠ACE=90°,∠BPC+∠PCD=90°,再根据∠ACE和∠PCD是对顶角解答即可;。

七年级数学三角形的三线及面积(平行转移面积)(北师版)(专题)(含答案)

七年级数学三角形的三线及面积(平行转移面积)(北师版)(专题)(含答案)

三角形的三线及面积(平行转移面积)(北师版)(专题)一、单选题(共10道,每道10分)1.如图,已知直线m∥n,A,B为直线n上的两点,C,P为直线m上的两点,那么图中与△ABC面积相等的三角形是( )A.△ACPB.△COPC.△ABPD.△CPB答案:C解题思路:因为m∥n,平行线间的距离处处相等,△ABC与△ABP是同底等高的两个三角形,面积相等,所以与△ABC面积相等的三角形是△ABP.故选C.试题难度:三颗星知识点:平行线转移面积2.如图,直线m∥n,A,B为直线n上两点,C,D为直线m上两点,BC与AD交于点O,则图中面积相等的三角形有( )A.4对B.3对C.2对D.1对答案:B解题思路:因为m∥n,平行线间的距离处处相等,所以△ABC与△ABD是同底等高的两个三角形,面积相等;△ACD与△BCD也是同底等高的两个三角形,面积也相等;这两个三角形的面积减去公共的△OCD的面积,可得△AOC与△BOD的面积也相等;因此,图中面积相等的三角形有3对.故选B.试题难度:三颗星知识点:平行线转移面积3.如图,在正方形ABCD中,BC=3,∠ABE是正方形ABCD的外角,P是∠ABE的平分线BF 上任意一点,则下列说法错误的是( )A.BF∥ACB.C. D.答案:D解题思路:由∠ABE是正方形ABCD的外角,BF平分∠ABE,可得∠EBF=45°,因为AC是正方形ABCD的对角线,所以∠ACE=45°,则∠EBF=∠ACE,所以BF∥AC,A选项正确;因为BF∥AC,所以△ABC与△APC是同底等高的两个三角形,因此,B选项正确;因为,所以,C选项正确;由于和的面积大小关系不能确定,D选项错误.故选D.试题难度:三颗星知识点:平行线转移面积4.如图,正方形ABCD与正方形CEFG并排放在一起,B,C,E在一条直线上,若BC=3,CE=6,则△AEG的面积为( )A.18B.9C.15D.21答案:A解题思路:观察图形,发现用公式法和割补法求面积都不太好求,因此考虑转化法,此处考虑利用平行转移面积,因此构造平行线.如图,连接AC,易证AC∥EG,则△AEG与△CEG是同底等高的两个三角形,因此.故选A.试题难度:三颗星知识点:平行线转移面积5.四边形ABCD与AEFG均为正方形,G,A,B在一条直线上,连接BF交AD于点H,若△DFH 的面积为8cm2,则△ABH的面积为( )A.4cm2B.6cm2C.8cm2D.10cm2答案:C解题思路:如图,连接AF和BD,易证AF∥BD,则△FBD与△ABD是同底等高的两个三角形,所以,因此,即,因为8cm2,所以8cm2.故选C.试题难度:三颗星知识点:平行线转移面积6.如图,已知正方形ABCD和正方形BEFG的边长分别为3和5,则△ACF的面积为( )A. B.8C. D.答案:A解题思路:如图,连接BF,易证AC∥BF,则△ACB与△ACF是同底等高的两个三角形,因此.故选A.试题难度:三颗星知识点:平行线转移面积7.如图,△ABC和△DCE都是等边三角形,若△ABC的面积为4,则△ABE的面积为( )A.6B.8C.2D.4答案:D解题思路:由△ABC和△DCE都是等边三角形,可得∠BAC=∠DCE=60°,所以AB∥CE,则△ABE与△ABC是同底等高的两个三角形,因此.故选D.试题难度:三颗星知识点:平行线转移面积8.如图,是一个3×3的正方形网格,网格中每个小正方形的边长均为1,点A,B,C在小正方形的顶点上,可知△ABC的面积为1,请在小方格的顶点上确定一点P(点P不与点C重合),使得△ABP的面积与△ABC的面积相等,则满足条件的点P的个数为( )A.3个B.4个C.6个D.8个答案:A解题思路:要使△ABP的面积与△ABC的面积相等,可以把AB当作共同的底,则需要两个三角形的高相等,因此可以通过构造平行线找到满足题意的点P.如图,过点C作AB的平行线,满足题意的点有2个,记为,;在AB上方找一个满足题意的点P,过点P作AB的平行线,发现只有这1个满足题意的点,记为;则满足题意的点共有3个.故选A.试题难度:三颗星知识点:平行线转移面积9.如图,是一个5×5的正方形网格,网格中每个小正方形的边长均为1,点A和点B在小正方形的顶点上,请在小方格的顶点上确定一点C,使得△ABC的面积为2个平方单位,则满足条件的点C的个数有( )A.3个B.4个C.5个D.6个答案:C解题思路:如图,在AB下方找一个满足题意的点C,过点C作AB的平行线,发现满足题意的点有2个,记为,;在AB上方找一个满足题意的点C,过点C作AB的平行线,发现满足题意的点有3个,记为,,;则满足题意的点共有5个.故选C.试题难度:三颗星知识点:平行线转移面积10.如图,是一个5×5的正方形网格,网格中每个小正方形的面积是1平方厘米,点A和点B在小正方形的顶点上,请在小方格的顶点上确定一点C,使得△ABC的面积为2平方厘米,则满足条件的点C的个数有( )A.6个B.5个C.4个D.3个答案:B解题思路:如图,在AB上方找一个满足题意的点C,过点C作AB的平行线,发现满足题意的点有2个,记为,;在AB下方找一个满足题意的点C,过点C作AB的平行线,发现满足题意的点有3个,记为,,;则满足题意的点共有5个.故选B.试题难度:三颗星知识点:平行线转移面积。

七年级数学三角形的三线(中线、角平分线、高线)(北师版)(基础)(含答案)

七年级数学三角形的三线(中线、角平分线、高线)(北师版)(基础)(含答案)

三角形的三线(中线、角平分线、高线)(北师版)(基础)一、单选题(共10道,每道10分)1.如图所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BE=ECD.DE是△ABC的中线答案:D解题思路:在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线.D选项中,DE不是连接△ABC的顶点与它对边中点的线段,因此D选项错误.故选D.试题难度:三颗星知识点:三角形的中线2.如图,△ABC的两条中线AM,BN相交于点O,已知△ABO的面积为4,△BOM的面积为2,则四边形MCNO的面积为( )A.4B.3C.4.5D.3.5答案:A解题思路:如图,∵△ABO和△BOM的面积分别为4和2∴S△ABM =6∵AM,BN是△ABC的两条中线∴S△ABM=S△BCN=S△ABC∴S△BCN=6∴S四边形MCNO=S△BCN-S△BOM =4故选A.试题难度:三颗星知识点:等分点转移面积3.已知:如图,△ABC中,AB=AC,BD平分∠ABC,∠BDC=75°,则∠A的度数为( )A.25°B.30°C.40°D.20°答案:C解题思路:如图,题中有角平分线,因此可以考虑设元,设∠ABD=α,则∠C=∠ABC=2α.在△BCD中,由三角形内角和定理可知α+2α+75°=180°,解得α=35°,因此∠C=∠ABC=70°,所以∠A=180°-70°-70°=40°.故选C.试题难度:三颗星知识点:三角形内角和定理4.如图,在△ABC中,BD平分∠ABC,CD平分∠ACB,设∠DCB=α,∠DBC=β,若∠A=40°,则下列说法错误的是( )A. B.C. D.答案:D解题思路:如图,在△BCD中,∠DCB=α,∠DBC=β,则∠D=180°-α-β,因此A选项正确;因为BD平分∠ABC,CD平分∠ACB,则∠ABC=2β,∠ACB=2α,则∠A=180°-2α-2β,因此B选项正确;由∠D=180°-α-β可得α+β=180°-∠D,由∠A=180°-2α-2β,可得α+β=90°-∠A,因此180°-∠D=90°-∠A,整理得∠D=90°+∠A,因此C选项正确;把∠A=40°代入∠D=90°+∠A,得∠D=110°,因此D选项错误.故选D.试题难度:三颗星知识点:三角形内角和定理5.如图,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=40°,∠AEC=35°,则∠ABC 的度数为( )A.30°B.35°C.37.5°D.40°答案:A解题思路:如图,由AD与CE交于点M,得∠ADC+α=∠AEC+β,变形得2∠ADC+2α=2∠AEC+2β,由AD与BC交于点G,得∠ADC+2α=∠ABC+2β,将上述两式消去α和β,可得∠ABC=2∠AEC-∠ADC因为∠ADC=40°,∠AEC=35°,则∠ABC=30°.故选A.试题难度:三颗星知识点:三角形内角和定理6.下列说法正确的是( )A.三角形的三条角平分线有可能在三角形内,也可能在三角形外B.三角形三条高都在三角形内C.三角形的三条高交于一点D.三角形三条中线相交于一点答案:D解题思路:三角形的三条角平分线都在三角形的内部,A选项错误;锐角三角形的三条高都在三角形的内部,直角三角形两条高在直角边上,钝角三角形有两条高在三角形的外部,B选项错误;三角形的三条高所在的直线交于一点,C选项错误;D选项正确,故选D.试题难度:三颗星知识点:三角形的中线7.如图,在△ABC中,AD⊥BC交BC的延长线于D,BE⊥AC交AC的延长线于E,过点C作CF⊥BC交AB于F,下列说法错误的是( )A.FC是△ABC中BC边上的高B.FC是△BCF中BC边上的高C.BE是△ABC中AC边上的高D.BE是△ABE中AE边上的高答案:A解题思路:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线.在△ABC中,过点A向它的对边BC所在直线作垂线,得到高为AD,A选项错误;在△BCF中,过点F向它的对边BC所在直线作垂线,得到高为CF,B选项正确;在△ABC中,过点B向它的对边AC所在直线作垂线,得到高为BE,C选项正确;在△ABE中,过点B向它的对边AE所在直线作垂线,得到高为BE,D选项正确.故选A.试题难度:三颗星知识点:三角形的高8.如图,AB⊥BD于B,AC⊥CD于C,AC与BD交于点E,若AE=5,DE=3,CD=,则AB=( )A.6B.C.3D.答案:C解题思路:如图,因为AB⊥BD,AC⊥CD,所以AB是△ADE的边DE上的高,CD是△ADE的边AE上的高,,把AE=5,DE=3,CD=代入,得到AB=3.故选C.试题难度:三颗星知识点:等积公式9.如图,在△ABC中,AB=20cm,AC=12cm,点D在BC边上,过点D作DE⊥AB于E,DF⊥AC 于F,若DE=5cm,△ABC的面积为122cm2,则DF的长为( )A.9cmB.10cmC.11cmD.12cm答案:D解题思路:如图,连接AD,则△ABC被分成△ABD和△ACD两部分,cm故选D.试题难度:三颗星知识点:等积公式10.如图,∠BAC=90°,AD⊥BC于D,若AB=6,BC=10,则AC:AD=( )A.5:4B.4:5C.5:3D.3:5答案:C解题思路:如图,在△ABC中,∠BAC=90°,所以AB可以看作是AC边上的高,因为AD⊥BC,所以AD可以看作是BC边上的高,所以,把AB=6,BC=10代入,得到AC:AD=5:3.故选C.试题难度:三颗星知识点:等积公式。

等腰三角形三线合一典型题型

等腰三角形三线合一典型题型

等腰三角形三线合一专题训练例1:如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

求证:BC=AB+DC。

变1:如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD边中点。

求证:CE⊥BE。

变2:如图,四边形ABCD中,AD∥BC,E是CD上一点,且AE、BE分别平分∠BAD、∠ABC.(1)求证:AE⊥BE;(2)求证:E是CD的中点;(3)求证:AD+BC=AB.CEA D变3:△ABC 是等腰直角三角形 ,∠BAC=90°,AB=AC.⑴若D 为BC 的中点,过D 作DM ⊥DN 分别交AB 、AC 于M 、N ,求证:(1)DM =DN 。

⑵若DM ⊥DN 分别和BA 、AC 延长线交于M 、N 。

问DM 和DN 有何数量关系。

(1) 已知:如图,AB=AC ,E 为AB 上一点,F 是AC 延长线上一点,且BE=CF ,EF 交BC 于点D . 求证:DE=DF .DBCF AEM N D C BA M ND CB A(2)已知:如图,AB=AC ,E 为AB 上一点,F 是AC 延长线上一点,且,EF 交BC 于点D ,且D 为EF 的中点. 求证:BE=CF .DBCF AE利用面积法证明线段之间的和差关系1、如图,在△ABC 中,AB=AC ,P 为底边BC 上的一点,PD ⊥AB 于D ,PE ⊥AC 于E ,•CF ⊥AB 于F ,那么PD+PE 与CF 相等吗?变1:若P点在直线BC上运动,其他条件不变,则PD 、PE与CF的关系又怎样,请你作图,证明。

FF1、已知等腰三角形的两边长分别为4、9,则它的周长为()A 17B 22C 17或22D 13根据等腰三角形的性质寻求规律例1.在△ABC中,AB=AC,∠1=12∠ABC,∠2=12∠ACB,BD与CE相交于点O,如图,∠BOC的大小与∠A的大小有什么关系?若∠1=13∠ABC,∠2=13∠ACB,则∠BOC与∠A大小关系如何?若∠1=1n∠ABC,∠2=1n∠ACB,则∠BOC与∠A大小关系如何?会用等腰三角形的判定和性质计算与证明例2.如图,等腰三角形ABC中,AB=AC,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.利用等腰三角形的性质证线段相等例3.如图,P 是等边三角形ABC 的一点,连结PA 、PB 、PC ,•以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(2)若PA :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由.例1、等腰三角形底边长为5cm ,腰上的中线把三角形周长分为差是3cm 的两部分,则腰长为( ) A 、2cm B 、8cm C 、2cm 或8cm D 、不能确定例2、已知AD 为△ABC 的高,AB=AC ,△ABC 周长为20cm ,△ADC 的周长为14cm ,求AD 的长。

等腰三角形三线合一的练习题

等腰三角形三线合一的练习题

等腰三角形的三线合一的预习作业
分别作出以下三个三角形BC 边上的高,中线,角平分线。

在△ABC 中,AB=AC,请作出AC 边上的高、中线、角平分线。

课堂练习
1.等腰三角形的两底角相等(简写为“
”) 几何语言:∵
∴ 注意:前提条件是在同一个角三形中。

2.等腰三角形底边上的高、中线及顶角的平分线互相重合。

(简称为“
”) (1)∵
A B C B C A
A B C
A B C

(2)∵

(3)∵

一.解答题(共4小题)
1.如图,在△ABC中,AB=AC,D是BC边上的中
点,∠B=30°.求∠ADC和∠BAD的度数.
2.如图,在△ABC中,AB=AC,AD是BC上边的中线,BE⊥AC于点E,求证:∠CBE=∠BAD.
3.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1.2 三角形的高、中线与角平分线
考点1:三角形的高
1.如图7.1.2-1,在△ABC 中,BC 边上的高是__AD______;在△AFC 中,CF 边上的高是___AF_____;在△ABE 中,AB 边上的高是_BE________.
图7.1.2-1 图7.1.2-2 图7.1.2-3
2.如图7.1.2-2,△ABC 的三条高AD 、BE 、CF 相交于点H ,则△ABH 的三条高是__FH …AE …BD_____,这三条高交于_C_______.BD 是△__ABD______、△_ABH_______、△_BHD_______的高.
3.如图7.1.2-3,在△ABC 中EF ∥AC ,BD ⊥AC 于D ,交EF 于G ,则下面说话中错误的是( C )
A.BD 是△ABC 的高
B.CD 是△BCD 的高
C.EG 是△ABD 的高
D.BG 是△BEF 的高
4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( B )
A.锐角三角形
B.直角三角形 C .钝角三角形 D .不能确定
5.三角形的三条高的交点一定在( C )
A.三角形内部
B.三角形的外部
C.三角形的内部或外部
D.以上答案都不对
6.如图
7.1.2-4所示,△ABC 中,边BC 上的高画得对吗?为什么?
图7.1.2-4 考点2:三角形的中线与角平分线
7如图7.1.2-5所示:(1)AD ⊥BC ,垂足为D ,则AD 是____的高,∠_ADB___=∠_ADC___=90°.
(2)AE 平分∠BAC ,交BC 于E 点,则AE 叫做△ABC 的 角平分线_______,∠_BAE_______=∠___CAE_____=2
1∠_BAC_______. (3)若AF =FC ,则△ABC 的中线是_BF_______,S △ABF =____S_bfc___.
(4)若BG =GH =HF ,则AG 是_______的中线,AH 是________的中线.
图7.1.2-5 图7.1.2-6
8.如图7.1.2-6,DE ∥BC ,CD 是∠ACB 的平分线,∠ACB =60°,那么∠EDC =_30_____度.
9..如图7.1.2-8,若上∠1=∠2、∠3=∠4,下列结论中错误的是( D )
图7. 1.2-8
A.AD 是△ABC 的角平分线
B.CE 是△ACD 的角平分线
C.∠3=21∠ACB
D.CE 是△ABC 的角平分线
10.如图图7.1.2-9所示,在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,求S △ABE .
图7.1.2-9
11.在△ABC 中,AB=2BC,AD 、CE 分别是BC 、AB 边上的高,试判断AD 和CE 的大小关系,并说明理由。

12.如图7-1-7所示,已知在△ABC 中,AB=AC =8,P 是BC 上任意一点,PD ⊥AB 于点D ,PE ⊥AC 于点E.若△ABC 的面积为14,问:PD+PE 的值是否确定?若能确定,是多少?若不能确定,请说明理由.
附加题
1、如图7-11所示,在△ABC 中,∠1=∠2,点G 为AD 的中点,延长BG 交AC 于点E ,F 为AB 上一点,且CF ⊥AD 于点H ,下列判断中正确的是( B )
(1)AD 是△ABE 的角平分线;
(2)BE 是△ABD 边AD 上的中线;
(3)CH 是△ACD 边AD 上的高
A.0个
B.1个
C.2个
D.3个 图7-11
2、.(陕西)如图7-20,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 交于一点P ,若∠A=50°,则∠BPC 的度数是( B )
D C B E
A
A.150°
B.130°
C.120°
D.100°
3、(广西)图7-21是某广告公司为某种商品设计的商标图案,若图中每个小长方形的面积都是1,则阴影部分的面积是( B )
A.6
B.6.5
C.7
D.7.5
4、AD,AE分别是等边三角形ABC的高和中线,则AD 与AE 的大小关系为____.
5、如图7-12,BM是△ABC的中线,若AB=5 cm,BC=13cm,那么△BCM的周长与△ABM 的周长差是多少?
6、如图7-13,△ABC的边BC上的高为AF,AC边上的高为BG,中线为AD,已知AF=6,BC=10,BG=5.
(1)求△ABC的面积;
(2)求AC的长;
(3)说明△ABC和△ACD的面积的关系.
图7-13
7、如图7-22,若AD是△ABC的角平分线,DE∥AB
(1)若DF∥AC,EF交AD于点O.试问:DO是否为△EDF的角平分线?并说明理由;
(2)若DO是△EDF的角平分线,试探索DF与AC的位置关系,并说明理由.
图7-22。

相关文档
最新文档