向量公式汇总

合集下载

向量的基本运算公式大全

向量的基本运算公式大全

向量的基本运算公式大全下面是向量的基本运算公式大全:1.向量加法:o a + b = b + a(交换律)o(a + b) + c = a + (b + c)(结合律)2.向量减法:o a - b = a + (-b)3.向量数量乘法:o ka = ak(交换律,其中k是标量)o(kl)a = k(la)(结合律)4.零向量:o a + 0 = ao a + (-a) = 05.向量点乘(内积):o a·b = b·a(交换律)o(ka)·b = k(a·b) = a·(kb)(分配律)o a·(b + c) = a·b + a·c(分配律)6.向量叉乘(外积):o a×b = -(b×a)(反对称性)o a×(b + c) = a×b + a×c(分配律)o(ka)×b = k(a×b) = a×(kb)(分配律)7.向量混合积:o a·(b×c) = b·(c×a) = c·(a×b)8.长度(模):o||a|| = √(a·a)9.单位向量:o一个向量除以其长度得到单位向量: a/||a||10.平行和垂直:o两个向量平行:a与b平行,当且仅当存在标量k,使得a = kb或b = ka。

o两个向量垂直:a与b垂直,当且仅当a·b = 0。

这些是向量的基本运算公式,它们形成了向量运算的基础,可以用于解决向量计算和几何问题。

需要注意的是,这些公式适用于向量的二维、三维或更高维度空间。

具体运用时,根据具体的向量运算要求和问题,选择合适的公式和运算规则。

(完整版)向量公式汇总

(完整版)向量公式汇总

向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。

②如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积定义:已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。

若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

向量的基本运算公式大全

向量的基本运算公式大全

向量的基本运算公式大全一、向量的定义与基本概念向量是具有大小和方向的量,可以用一个有序数对或有序三元组表示。

例如,二维平面上的向量(a,b)表示从原点出发,沿着横坐标轴正方向移动a 个单位,再沿着纵坐标轴正方向移动b个单位。

向量可分为有序实数对和有序复数对两种类型。

二、向量的加法与减法运算1.向量加法:两个向量相加,结果是一个新的向量,其大小等于两个向量的大小的和,方向与两个向量的方向相同。

例如,向量A(a1,b1)与向量B (a2,b2)相加,结果为向量C(a1+a2,b1+b2)。

2.向量减法:两个向量相减,结果是一个新的向量,其大小等于两个向量的大小的差,方向与减数的方向相反。

例如,向量A(a1,b1)与向量B(a2,b2)相减,结果为向量C(a1-a2,b1-b2)。

三、向量的数乘运算1.向量与实数的乘积:将一个实数k与一个向量A相乘,结果是一个新的向量,其大小为原向量A大小的k倍,方向与原向量A的方向相同。

例如,向量A(a,b)与实数k相乘,结果为向量(ka,kb)。

2.向量与复数的乘积:将一个复数k与一个向量A相乘,结果是一个新的向量,其大小为原向量A大小的|k|倍,方向与原向量A的方向相同。

例如,向量A(a,b)与复数k相乘,结果为向量(ka,kb)。

四、向量的标量积与向量积1.标量积:两个向量A(a,b)和B(c,d)的标量积为一个实数,计算公式为:A·B = a*c + b*d。

标量积满足交换律和结合律,可用于表示向量之间的相似程度。

2.向量积:两个向量A(a,b)和B(c,d)的向量积为一个新的向量,计算公式为:AB = (ad - bc,bc - ab)。

向量积满足右手法则,可用于表示两个向量之间的垂直关系。

五、向量的模与单位向量1.向量的模:向量A(a,b)的模为其横纵坐标平方和的平方根,计算公式为:|A| = √(a + b)。

2.单位向量:一个向量的模为1时,该向量称为单位向量。

向量公式大全

向量公式大全

向量公式大全向量公式大全1. 向量加法AB+BC=AC a+b=(x+x' ,y+y') a+0=0+a=a 运算律:交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c)2. 向量减法AB-AC二CB即“共同起点,指向被减”如果a、b 是互为相反的向量,那么a=-b ,b=-a,a+b=0.0 的反向量为0 a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3. 数乘向量实数入和向量a的乘积是一个向量,记作入a,且I入a I = I入I ? I a I当入〉0时,入a与a同方向当入v0时,入a与a反方向当入=0时,入a=0,方向任意当a=0时,对于任意实数入,都有入a=0『ps.按定义知,如果入a=0,那么入=0或a=0』实数入向量a的系数,乘数向量入a的几何意义就是将表示向量a的有向线段伸长或压缩当I入1> 1时,表示向量a的有向线段在原方向(入〉0)或反方向(入v 0)上伸长为原来的I入I倍当I入Iv 1时,表示向量a的有向线段在原方向(入〉0)或反方向(入v 0)上缩短为原来的I入I倍数乘运算律:结合律:(入a)?b二入(a ?b)=(a ?入b)向量对于数的分配律(第一分配律):(入+卩)a=入a+卩a.数对于向量的分配律(第二分配律):入(a+b)=入a+入b.数乘向量的消去律:① 如果实数入工0且入a二入b,那么a=b② 如果a z 0且入a=卩a,那么入=卩4. 向量的数量积定义:已知两个非零向量a,b作OA二a,OB=b则/ AOB称作a和b 的夹角,记作〈a,b〉并规定0W〈a,b > <n两个向量的数量积(内积、点积)是一个数量,记作a?b 若a、b 不共线,则a?b=|a| ?|b| ?cos〈a,b〉若a、b 共线,则a?b=+-I aII b I向量的数量积的坐标表示:a?b=x?x'+y ?y'向量数量积运算律a?b=b?a( 交换律)(入a) ?b=入(a ?b)(关于数乘法的结合律)(a+b) ?c=a?c+b?c( 分配律)向量的数量积的性质a?a=|a|2a丄b 〈 => a?b=0|a ?b| < |a| ?|b|向量的数量积与实数运算的主要不同点『重要』1、(a?b)?c 丰 a?(b ?c)例如:(a ?b)2 丰 a2?b22、由a ?b=a?c (a 工0),推不出b=c3、|a?b| 丰 |a| ?|b|4、由|a|=|b| ,推不出a=b 或a=-b5、向量向量积定义:两个向量a和b的向量积是一个向量,记作a x b.若a、b 不共线,则a x b 的模是:l a x b I =|a| ?|b| ?sin 〈a, b> .a x b 的方向是:垂直于a和b,且a、b和a x b按这个次序构成右手系.若a、 b 共线,则a x b=0.性质I a x b I是以a和b为边的平行四边形面积a x a=0a//b 〈=> a x b=0运算律a x b=-b x a(入a)x b二入(a x b)=a x (入b)(a+b)x c=a x c+b x c.『ps.向量没有除法“向量AB/向量CD是没有意义的』6. 向量的三角形不等式II a I - I b ll<l a+b l<l a I + I b I①当且仅当a、b 反向时,左边取等号②当且仅当a、b 同向时,右边取等号I I a I - I b II<I a-b I<I a I + I b I①当且仅当a、b 同向时,左边取等号②当且仅当a、b 反向时,右边取等号三点共线定理若0C=\ OA +卩OB ,且入+ □ =1 ,贝S A、B、C三点共线三角形重心判断式在厶ABC中,若GA +GB +GC=OU GABC的重心向量共线的重要条件若b z0,则a//b的重要条件是存在唯一实数入,使a二入b, xy'-x'y=0『零向量0 平行于任何向量』向量垂直的充要条件a丄b的充要条件是a ?b=0 xx'+yy'=07. 定比分点定比分点公式P1P二入?PP2设P1、P2是直线上的两点,P是直线上不同于P1、P2的任意一点则存在一个实数入,使P1P=X? PP2,入叫做点P分有向线段P1P2 所成的比若P1(x1,y1), P2(x2,y2), P(x,y),则有0P=(0P1 哉0P2)(1 + 入)(定比分点向量公式)x=(x1+ 入x2)/(1+ 入)y=(y1+入y2)/(1+入)(定比分点坐标公式)。

向量公式汇总

向量公式汇总

向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律结合律:(λa)?b=λ(a?b)=(a?λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。

②如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积定义:已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。

若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。

向量公式大全

向量公式大全

向量公式设a=(x,y),b=(x',y')。

1、向量的加法向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算xx:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0." 0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y) b=(x',y')则a-b=(x-x',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

"注:按定义知,如果λa=0,那么λ=0或a=0。

"实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算xx结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。

②如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积定义:已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。

若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

向量公式大全

向量公式大全

向量公式之蔡仲巾千创作设a=(x,y),b=(x',y')。

1、向量的加法向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将暗示向量a的有向线段伸长或压缩。

当∣λ∣>1时,暗示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,暗示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。

② 如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积定义:已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。

若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

数学向量公式总结

数学向量公式总结

数学向量公式总结数学向量公式是高中数学中不可或缺的一个部分,它在数学的许多领域都有着广泛的应用,如几何、物理、工程等。

向量是有大小和方向的量,可以表示为一个有向线段,并且可以进行运算。

以下是一些常用的数学向量公式:1. 向量的模长公式:向量v的模长表示为|v|,其计算公式为:|v| = √(v1 + v2 + v3 + ... + vn)其中,v1、v2、v3、...、vn为向量v的各个分量。

2. 向量的单位向量公式:向量v的单位向量表示为v,其计算公式为:v = v / |v|其中,|v|为向量v的模长。

3. 向量的点积公式:向量v和向量w的点积表示为v·w,其计算公式为:v·w = v1w1 + v2w2 + v3w3 + ... + vnwn其中,v1、v2、v3、...、vn为向量v的各个分量,w1、w2、w3、...、wn为向量w的各个分量。

4. 向量的叉积公式:向量v和向量w的叉积表示为v×w,其计算公式为:v×w = (v2w3 - v3w2)i + (v3w1 - v1w3)j + (v1w2 - v2w1)k 其中,i、j、k为x、y、z轴的单位向量。

5. 平面向量的共线关系公式:若向量a、b、c共线,则有:a = kb + lc其中,k、l为实数。

6. 向量的投影公式:向量v在向量u上的投影表示为proj_u v,其计算公式为:proj_u v = (v·u) / |u|其中,|u|为向量u的模长。

除了上述公式,还有许多与向量相关的公式,例如向量的夹角、向量的平移、旋转等。

掌握这些公式对于解决数学问题、理解物理现象等都有着很大的帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量公式汇总
平面向量
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。

2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”
a=(x,y) b=(x',y') 则a-b=(x-x',y-y').
3、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律
结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。

②如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积
定义:已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。

若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a•b=x•x'+y•y'。

向量的数量积的运算律
a•b=b•a(交换律);
(λa)•b=λ(a•b)(关于数乘法的结合律);
(a+b)•c=a•c+b•c(分配律);
向量的数量积的性质
a•a=|a|的平方。

a⊥b 〈=〉a•b=0。

|a•b|≤|a|•|b|。

向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。

2、向量的数量积不满足消去律,即:由a•b=a•c (a≠0),推不出b=c。

3、|a•b|≠|a|•|b|
4、由|a|=|b| ,推不出a=b或a=-b。

5、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。

若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。

若a、b共线,则a×b=0。

向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的。

向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
①当且仅当a、b反向时,左边取等号;
②当且仅当a、b同向时,右边取等号。

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

① 当且仅当a 、b 同向时,左边取等号;
② 当且仅当a 、b 反向时,右边取等号。

6.定比分点
定比分点公式(向量P1P=λ•向量PP2)
设P1、P2是直线上的两点,P 是l 上不同于P1、P2的任意一点。

则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P 分有向线段P1P2所成的比。

若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+λOP2)(1+λ);(定比分点向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。

(定比分点坐标公式)
我们把上面的式子叫做有向线段P1P2的定比分点公式
三点共线定理
若OC=λOA +μOB ,且λ+μ=1 ,则A 、B 、C 三点共线
三角形重心判断式
在△ABC 中,若GA +GB +GC=O,则G 为△ABC 的重心
[编辑本段]向量共线的重要条件
若b≠0,则a//b 的重要条件是存在唯一实数λ,使a=λb 。

a//b 的重要条件是 xy'-x'y=0。

零向量0平行于任何向量。

[编辑本段]向量垂直的充要条件
a ⊥
b 的充要条件是 a•b=0。

a ⊥
b 的充要条件是 xx'+yy'=0。

零向量0垂直于任何向量.
空间向量 令=(a 1,a 2,a 3),),,(321b b b =,则
),,(332211b a b a b a ±±±=+
))(,,(321R a a a a ∈=λλλλλ
332211b a b a b a b a ++=⋅
共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. a ∥)(,,332211R b a b a b a b ∈===⇔λλλλ3
32211b a b a b a ==⇔ 如果三个向量....,,不共面...:那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使z y x ++=.
推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 OC z OB y OA x OP ++=(这里隐含x+y+z≠1).
向量垂直 0332211=++⇔⊥b a b a b a b a 。

空间两个向量的夹角公式
232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅⋅>=<ρρρρρρ
(a =123(,,)a a a ,b =123(,,)b b b )。

空间两点的距离公式:
212212212)()()(z z y y x x d -+-+-=.
利用法向量求点到面的距离:
如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α.
.异面直线间的距离
||||
CD n d n ⋅=u u u r u u r r (12,l l 是两异面直线,其公垂向量为n r ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).
B 到平面α的距离 ||||
AB n d n ⋅=u u u r u u r r (n r 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 直线AB 与平面所成角
sin ||||
AB m arc AB m β⋅=u u u r u r u u u r u r (m u r 为平面α的法向量). 利用法向量求二面角的平面角:
cos ||||m n arc m n θ⋅=u r r u r r 或cos ||||
m n arc m n π⋅-u r r u r r (m u r ,n r 为平面α,β的法向量)。

相关文档
最新文档