实数与向量的乘积

合集下载

向量知识点与公式总结

向量知识点与公式总结

向量知识点与公式总结向量知识点与公式总结篇1考点一:向量的概念、向量的基本定理了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。

注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。

考点二:向量的运算向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会推断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积推断两个平面向量的垂直关系。

命题形式重要以选择、填空题型显现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。

考点三:定比分点掌握线段的定比分点和中点坐标公式,并能娴熟应用,求点分有向线段所成比时,可借助图形来帮忙理解。

重点考查定义和公式,重要以选择题或填空题型显现,难度一般。

由于向量应用的广泛性,常常也会与三角函数,解析几何一并考查,若显现在解答题中,难度以中档题为主,偶然也以难度略高的题目。

考点四:向量与三角函数的综合问题向量与三角函数的综合问题是高考常常显现的问题,考查了向量的知识,三角函数的知识,实现了高考中试题的掩盖面的要求。

命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。

考点五:平面向量与函数问题的.交汇平面向量与函数交汇的问题,重要是向量与二次函数结合的问题为主,要注意自变量的取值范围。

命题多以解答题为主,属中档题。

考点六:平面向量在平面几何中的应用向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,很多平面几何问题中较难解决的问题,都可以转化为大家熟识的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,给予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.命题多以解答题为主,属中等偏难的试题。

8.0.2实数与向量的乘积(附录2)

8.0.2实数与向量的乘积(附录2)

一、实数与向量的乘积(向量的数乘) 可以验证,向量数乘满足下面的运算律: 设 , R ①
( a) ()a
(a b) a b (分配律)
② ( )a a a(分配律)

例1.计算: (1) (3) 4a 12a (2) 3(a b) 2(a b) a 5b
例5. 对于任意两个非零向量a, b 已知 OA 4b ,求
解:AB OB OA b 证
A, B, C 三点共线.
C
B A
AC OC OA 3b AC 3AB AC ∥ AB
O
一般地, A, B, C三点共线
The Vector Multiplied by a Real Number
一、实数与向量的乘积(向量的数乘) 定义:实数 和向量 a 的乘积是一个向量 记作 a , 它的长度与方向规定如下: (1) | a | | || a |
0 时, a 与 a 同方向 (2) a(a 0) 的方向 0 时, a 与 a 反方向 0 时, 0a 0 ;
. .
1 a0 a a 1 b0 a a
例 3.在 ABC 中,G 是中线 AD, BE 的
交点,若 AB a , AC b ,试用 a , b 表 示 BC, AD, AG, CG
A
a
G B
D
b
E
C
例4.已知P 1P 3PP2 ,
1若 P1P2 P2 P, 则
.
2若 P2 P1 P1P, 则
.
二、向量平行的条件 平行向量基本定理
(1)非零向量 a , b ,若 a b ,则 a // b ;

向量的加减法实数与向量的乘积

向量的加减法实数与向量的乘积

高中学生学科素质训练高一数学同步测试(9)—向量的加减法、实数与向量的乘积一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.如图,已知四边形ABCD 是梯形,AB ∥CD ,E 、F 、G 、H 分别是AD 、BC 、AB 与CD 的中点,则EF 等于( )A .BC AD +B .DC AB +C .DH +D .GH +2.下列说法正确的是 ( ) A .方向相同或相反的向量是平行向量 B .零向量的长度为0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .B .4C .4D .4 4.已知向量与反向,下列等式中成立的是( ) A .||||||b a b a -=- B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.在 ABCD 中,设====,,,,则下列等式中不正确的是( ) A .=+ B .=-C .=-D .=-6.下列各量中是向量的是( ) A .质量 B .距离C .速度D .电流强度7.在矩形ABCD 中,O 是对角线的交点,若OC e DC e BC 则213,5=== ( )A .)35(2121e e + B .)35(2121e e - C .)53(2112e e - D .)35(2112e e - 8.若),,(,,,R ∈=+μλμλ不共线则( )A .==,B .o ==μ,C .o ==,λD .o o ==μλ, 9.化简)]24()82(21[31b a b a --+的结果是( )A .-2B .-2C .-D .-10.下列三种说法:①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底 ②一个平面内有无数对不共线向量可作为该平面的所有向量的基底 ③零向量不可作为基底中的向量。

实数与向量的乘法

实数与向量的乘法
实数与向量的乘积
一、引入: 三个非零向量 相加的和,可记作 a 3a 。3a表示与 方向相同的向量,它 a 的模是a的模的3倍。
二、实数与向量的乘积 1.定 义 : 一 般 地 , 实 数 λ 与 非 零 量a的 乘 积 向 是 一 个 向 量 , 记 作λ .λ 的 模 和 方 向 : a a 规定如下:
D
A
( 2) 用 、 表 示 。 CA CB
B
C
E
例3:如图,在ΔAB C中,已知M,N 分别为AB,AC的中 点,用向量 1 方法证明:MN//B C且MN= BC 2
A
M B N C
例4:如图,已知 =kOA1,OB OB1 OA =k
∽ OC=kOCБайду номын сангаас,求证:ΔABC ΔA1B1C 1
C1 C B B1
F B A G E
D
C
2.已知正六边形AB CDEF,且 =a, AE BC=b,试用a , 表示EF ,CD , DE , b AB ,AC , . CE
A F E
D
B
C
3.已 知 四 边 形 ABC 梯 形 , AD//B D为 C , E, F分 别 是 AB, CD的 中 点 , 求 证 1 EF//BC且 EF=( AD BC) 2
充分非必要 (2)0 b 0是a//b的____条件。 a
练习: ( 1) 如 图 , AD, E, CF分 别 是 Δ AB B C 的 中 线 , G是 Δ ABC 重 心 , 且 =m 的 AD BC=a,用 向 量m , 示 : a表 (1) AB (2) CA (3) BE (4) CF
(1) a λa λ
(2)当λ>0时,λ a的方向相同; a与

教案平面向量的数乘运算

教案平面向量的数乘运算

平面向量的数乘运算教学目标:1. 理解平面向量的数乘运算概念。

2. 掌握平面向量的数乘运算规则。

3. 能够运用数乘运算解决实际问题。

教学内容:一、平面向量的数乘运算概念1. 引入实数与向量的乘积,即数乘运算。

2. 讲解数乘运算的定义及性质。

二、平面向量的数乘运算规则1. 讲解数乘运算的分配律。

2. 讲解数乘运算的结合律。

3. 讲解数乘运算的单位向量。

三、数乘运算在坐标系中的应用1. 讲解二维坐标系中向量的数乘运算。

2. 讲解三维坐标系中向量的数乘运算。

四、数乘运算与向量长度的关系1. 讲解数乘运算与向量长度的关系。

2. 讲解数乘运算在求向量长度中的应用。

五、数乘运算在向量运算中的应用1. 讲解数乘运算在向量加法中的应用。

2. 讲解数乘运算在向量减法中的应用。

教学方法:1. 采用讲授法,讲解数乘运算的概念、规则及应用。

2. 利用多媒体演示,直观展示数乘运算在坐标系中的应用。

3. 引导学生通过练习,巩固数乘运算的知识。

教学评估:1. 课堂练习:布置有关数乘运算的题目,检查学生掌握情况。

2. 课后作业:布置有关数乘运算的综合题目,要求学生在规定时间内完成。

3. 单元测试:进行有关数乘运算的测试,了解学生对知识的掌握程度。

教学资源:1. 教学PPT:展示数乘运算的概念、规则及应用。

2. 练习题库:提供丰富的数乘运算题目,供学生练习。

3. 坐标系软件:辅助展示数乘运算在坐标系中的应用。

教学建议:1. 在讲解数乘运算概念时,注意与实数的乘法进行对比,帮助学生理解。

2. 在讲解数乘运算规则时,举例说明,让学生更好地掌握。

3. 在数乘运算的应用部分,注重引导学生思考,提高解决问题的能力。

4. 针对不同程度的学生,合理安排课堂练习和课后作业,提高教学效果。

5. 及时进行教学评估,针对学生的薄弱环节进行有针对性的讲解和辅导。

平面向量的数乘运算教学内容:六、数乘运算与向量坐标的关系2. 举例说明数乘运算在坐标系中的应用。

7.2 数乘向量课件-2023届广东省高职高考数学第一轮复习第七章平面向量

7.2 数乘向量课件-2023届广东省高职高考数学第一轮复习第七章平面向量
-y)b=(4y-7)a+2xb,求实数 x、y 的值. 【分析】 依题意,以向量 a、b 为单位向量建立坐标系(或一定角度,
不一定是直解) 【解】 因为 3xa+(10-y)b=(4y-7)a+2xb
所以(3x,10-y)=(4y-7,2x),联立方程组31x0=-4yy=-27x,解得yx==43. 故 x=3,y=4.
二、填 空 题
9.向量 a∥b 且|a|=3|b|,则向量 a、b 的关系式是__a_=__3_b_或__a_=__-__3_b___. 【解析】 由两向量平行知 a=3b 或 a=-3b.
10.若向量 a=e1+e2,b=e1-e2,则 2a+3b=__5_e_1_-__e_2 __. 【解析】 2a+3b=2(e1+e2)+3(e1-e2)=5e1-e2.
11.在四边形 ABCD 中,A→D=12B→C,则四边形 ABCD 是___梯___形. 【解析】 由A→D=12B→C得A→D∥B→C,A→D=12B→C.
12.如果 a=-2b(b≠0),则 a 与 b 的位置关系是_平__行__且__反__向___. 【解析】 由向量平行的概念可知 a 与 b 平行,又 λ=-2<0,∴a 与 b 反向.
6.(1)(-2)×12 a=__-__a__;(2)2(a+b)-3(a-b)=__-__a_+__5_b__. 【解析】 (1)(-2)×12a=(-2)×12a=(-1)a=-a;
(2)2(a+b)-3(a-b)=2a+2b-(3a-3b)=2a+2b-3a+3b=-a+5b.
一、选 择 题
5.已知向量 e1、e2 不共线,实数 x、y 满足(3x-4y)e1+(2x-3y)e2=6e1
+3e2,则 x-y=( A )

沪教版数学九年级上册24.6《实数与向量相乘》(第1课时)教学设计

沪教版数学九年级上册24.6《实数与向量相乘》(第1课时)教学设计

沪教版数学九年级上册24.6《实数与向量相乘》(第1课时)教学设计一. 教材分析沪教版数学九年级上册24.6《实数与向量相乘》是本册教材中的一个重要内容,主要让学生了解实数与向量相乘的定义和性质。

本节课的内容对于学生来说是比较抽象的,需要通过具体实例和实际操作来理解和掌握。

教材中通过丰富的例题和练习题,帮助学生逐步掌握实数与向量相乘的方法和应用。

二. 学情分析九年级的学生已经具备了一定的实数和向量的基础知识,对于实数与向量的乘法有一定的了解。

但是,对于实数与向量相乘的定义和性质,以及其在实际问题中的应用,还需要进一步的引导和培养。

因此,在教学过程中,需要注重学生的实际操作和思考,通过具体的实例和问题,引导学生理解和掌握实数与向量相乘的概念和方法。

三. 教学目标1.了解实数与向量相乘的定义和性质。

2.能够运用实数与向量相乘的方法解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.实数与向量相乘的定义和性质。

2.实数与向量相乘的方法和应用。

五. 教学方法1.实例教学法:通过具体的实例,引导学生理解和掌握实数与向量相乘的概念和方法。

2.问题驱动法:通过提出实际问题,引导学生运用实数与向量相乘的方法解决问题。

3.小组合作法:通过小组合作讨论,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.教材和教学参考书。

2.教学PPT或者黑板。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)通过一个实际问题,如一个人在平面上向右移动3个单位,向上移动2个单位,引导学生思考如何用数学语言来描述这个人的移动。

2.呈现(15分钟)介绍实数与向量相乘的定义和性质,通过具体的实例来解释和展示实数与向量相乘的方法。

3.操练(15分钟)让学生分组进行实际操作,利用实数与向量相乘的方法解决实际问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成教材中的练习题,检验学生对实数与向量相乘的理解和掌握程度。

向量数乘运算及其几何意义

向量数乘运算及其几何意义

2.2.3向量数乘运算及其几何意义学习目标1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.知识点一 向量数乘的定义实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下: (1)|λa |=|λ||a |.(2)λa (a ≠0)的方向⎩⎪⎨⎪⎧当λ>0时,与a 方向相同;当λ<0时,与a 方向相反.特别地,当λ=0或a =0时,0a =0或λ0=0. 知识点二 向量数乘的运算律 1.λ(μa )=(λμ)a . 2.(λ+μ)a =λa +μa . 3.λ(a +b )=λa +λb . 知识点三 向量共线定理 1.向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 2.向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b . 思考 共线向量定理中为什么规定a ≠0?答案 若将条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa .1.若向量b 与a 共线,则存在唯一的实数λ使b =λa .( × ) 提示 当b =0,a =0时,实数λ不唯一. 2.若b =λa ,则a 与b 共线.( √ ) 提示 由向量共线定理可知其正确. 3.若λa =0,则a =0.( × ) 提示 若λa =0,则a =0或λ=0.题型一 向量的线性运算例1 (1)3(6a +b )-9⎝⎛⎭⎫a +13b =________. 考点 向量的线性运算及应用 题点 向量的线性运算答案 9a解析 3(6a +b )-9⎝⎛⎭⎫a +13b =18a +3b -9a -3b =9a . (2)若3(x +a )+2(x -2a )-4(x -a +b )=0,则x =______. 考点 向量的线性运算及应用 题点 向量的线性运算 答案 4b -3a解析 由已知得3x +3a +2x -4a -4x +4a -4b =0, 所以x +3a -4b =0,所以x =4b -3a . 反思感悟 向量线性运算的基本方法(1)类比法:向量的数乘运算类似于代数多项式的运算,例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”、“公因式”是指向量,实数看作是向量的系数.(2)方程法:向量也可以通过列方程来解,把所求向量当作未知数,利用解方程的方法求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算. 跟踪训练1 计算:(a +b )-3(a -b )-8a . 考点 向量的线性运算及应用 题点 向量的线性运算解 (a +b )-3(a -b )-8a =(a -3a )+(b +3b )-8a =-2a +4b -8a =-10a +4b .题型二 向量共线的判定及应用命题角度1 判定向量共线或三点共线 例2 已知非零向量e 1,e 2不共线.(1)若a =12e 1-13e 2,b =3e 1-2e 2,判断向量a ,b 是否共线.考点 向量共线定理及其应用 题点 利用向量共线定理判定向量共线 解 ∵b =6a ,∴a 与b 共线.(2)若AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A ,B ,D 三点共线.考点 向量共线定理及其应用 题点 利用向量共线定理判定三点共线证明 ∵AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →, ∴AB →,BD →共线,且有公共点B , ∴A ,B ,D 三点共线.反思感悟 (1)向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线.(2)利用向量共线定理证明三点共线,一般先任取两点构造向量,从而将问题转化为证明两向量共线,需注意的是,在证明三点共线时,不但要利用b =λa (a ≠0),还要说明向量a ,b 有公共点.跟踪训练2 已知非零向量e 1,e 2不共线,如果AB →=e 1+2e 2,BC →=-5e 1+6e 2,CD →=7e 1-2e 2,则共线的三个点是________. 考点 向量共线定理及其应用 题点 利用向量共线定理判定三点共线 答案 A ,B ,D解析 ∵AB →=e 1+2e 2,BD →=BC →+CD → =-5e 1+6e 2+7e 1-2e 2=2(e 1+2e 2)=2AB →, ∴AB →,BD →共线,且有公共点B , ∴A ,B ,D 三点共线.命题角度2 利用向量共线求参数值例3 已知非零向量e 1,e 2不共线,欲使k e 1+e 2和e 1+k e 2共线,试确定k 的值. 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 解 ∵k e 1+e 2与e 1+k e 2共线, ∴存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.反思感悟 利用向量共线定理,即b 与a (a ≠0)共线⇔b =λa ,既可以证明点共线或线共线问题,也可以根据共线求参数的值.跟踪训练3 设两个不共线的向量e 1,e 2,若a =2e 1-3e 2,b =2e 1+3e 2,c =2e 1-9e 2,问是否存在实数λ,μ,使d =λa +μb 与c 共线? 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 解 d =λ(2e 1-3e 2)+μ(2e 1+3e 2) =(2λ+2μ)e 1+(3μ-3λ)e 2,要使d 与c 共线,则存在实数k ,使得d =k c , 即(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 1-9k e 2. 因为e 1与e 2不共线,所以⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ.故存在实数λ和μ,使得d 与c 共线,此时λ=-2μ. 题型三 用已知向量表示其他向量例4 在△ABC 中,若点D 满足BD →=2DC →,则AD →等于( ) A.13AC →+23AB → B.53AB →-23AC →C.23AC →-13AB → D.23AC →+13AB → 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 示意图如图所示,由题意可得AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →.跟踪训练4 如图所示,四边形OADB 是以向量OA →=a ,OB →=b 为邻边的平行四边形.又BM =13BC ,CN =13CD ,试用a ,b 表示OM →,ON →,MN →.考点 向量共线定理及其应用 题点 用已知向量表示未知向量解 因为BM →=13BC →=16BA →=16(OA →-OB →)=16(a -b ),所以OM →=OB →+BM →=b +16a -16b =16a +56b .因为CN →=13CD →=16OD →,所以ON →=OC →+CN →=12OD →+16OD →=23OD →=23(OA →+OB →)=23(a +b ). MN →=ON →-OM →=23(a +b )-16a -56b =12a -16b .向量的综合应用典例 如图,设O 是△ABC 内一点,且满足OA →+2OB →+3OC →=0,则△ABC 与△AOC 的面积之比为________.答案 3解析 如图所示,分别取BC ,AC 边的中点D ,E ,则OB →+OC →=2OD →,① OA →+OC →=2OE →,② 由①×2+②可得OA →+2OB →+3OC →=2(2OD →+OE →). 又因为OA →+2OB →+3OC →=0, 所以2OD →+OE →=0,即OE →=-2OD →, 所以OD →,OE →共线,且|OE →|=2|OD →|.所以S △AOC =2S △COE =2×23S △CDE =2×23×14S △ABC =13S △ABC ,所以S △ABC S △AOC=3.[素养评析] 本题主要考查向量共线条件的应用,解题时需充分利用好几何图形,借助几何直观使问题得解,这正体现了数学中直观想象的核心素养.1.下列各式计算正确的有( ) (1)(-7)6a =-42a ; (2)7(a +b )-8b =7a +15b ; (3)a -2b +a +2b =2a ; (4)4(2a +b )=8a +4b .A .1个B .2个C .3个D .4个 考点 向量的线性运算及应用 题点 向量的线性运算 答案 C解析 (1)(3)(4)正确,(2)错,7(a +b )-8b =7a +7b -8b =7a -b . 2.在△ABC 中,M 是BC 的中点,则AB →+AC →等于( ) A.12AM → B.AM → C .2AM → D.MA → 考点 向量的线性运算及应用 题点 向量的线性运算 答案 C解析 如图,作出平行四边形ABEC ,因为M 是BC 的中点,所以M 也是AE 的中点,由题意知,AB →+AC →=AE →=2AM →,故选C.3.设e 1,e 2是两个不共线的向量,若向量m =-e 1+k e 2 (k ∈R )与向量n =e 2-2e 1共线,则( ) A .k =0 B .k =1 C .k =2D .k =12考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 D解析 当k =12时,m =-e 1+12e 2,n =-2e 1+e 2.∴n =2m ,此时m ,n 共线.4.已知P ,A ,B ,C 是平面内四点,且P A →+PB →+PC →=AC →,则下列向量一定共线的是( ) A.PC →与PB → B.P A →与PB → C.P A →与PC →D.PC →与AB → 考点 向量共线定理及其应用 题点 利用向量共线定理判定向量共线 答案 B解析 因为P A →+PB →+PC →=AC →, 所以P A →+PB →+PC →+CA →=0, 即-2P A →=PB →,所以P A →与PB →共线.5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.考点 向量共线定理及其应用 题点 用已知向量表示未知向量 解 OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.1.实数与向量可以进行数乘运算,但不能进行加减运算,例如λ+a ,λ-a 是没有意义的. 2.λa 的几何意义就是把向量a 沿着a 的方向或反方向扩大或缩小为原来的|λ|倍.向量a|a |表示与向量a 同向的单位向量.3.向量共线定理是证明三点共线的重要工具,即三点共线问题通常转化为向量共线问题.一、选择题1.下列说法中正确的是( ) A .λa 与a 的方向不是相同就是相反 B .若a ,b 共线,则b =λa C .若|b |=2|a |,则b =±2a D .若b =±2a ,则|b |=2|a | 考点 向量数乘的定义及运算 题点 向量数乘的定义及几何意义 答案 D解析 显然当b =±2a 时,必有|b |=2|a |. 2.3(2a -4b )等于( ) A .5a +7b B .5a -7b C .6a +12bD .6a -12b考点 向量的线性运算及应用 题点 向量的线性运算 答案 D解析 利用向量数乘的运算律,可得3(2a -4b )=6a -12b ,故选D.3.已知a ,b 是不共线的向量,AB →=λa +2b ,AC →=a +(λ-1)b ,且A ,B ,C 三点共线,则实数λ的值为( ) A .-1 B .2 C .-2或1D .-1或2考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 D解析 因为A ,B ,C 三点共线, 所以存在实数k 使AB →=kAC →. 因为AB →=λa +2b ,AC →=a +(λ-1)b , 所以λa +2b =k [a +(λ-1)b ].因为a 与b 不共线,所以⎩⎪⎨⎪⎧λ=k ,2=k (λ-1),解得λ=2或λ=-1.4.如图,△ABC 中,AB →=a ,AC →=b ,DC →=3BD →,AE →=2EC →,则DE →等于( )A .-13a +34bB.512a -34b C.34a +13b D .-34a +512b考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 DE →=DC →+CE →=34BC →+⎝⎛⎭⎫-13AC → =34(AC →-AB →)-13AC →=-34AB →+512AC →=-34a +512b ,故选D.5.如图,AB 是⊙O 的直径,点C ,D 是半圆弧AB 上的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A .a -12bB.12a -b C .a +12bD.12a +b 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 连接CD ,OD ,如图所示.∵点C ,D 是半圆弧AB 上的两个三等分点, ∴AC =CD ,∠CAD =∠DAB =12×60°=30°. ∵OA =OD ,∴∠ADO =∠DAO =30°. 由此可得∠CAD =∠ADO =30°,∴AC ∥DO . 由AC =CD ,得∠CDA =∠CAD =30°, ∴∠CDA =∠DAO ,∴CD ∥AO , ∴四边形ACDO 为平行四边形, ∴AD →=AO →+AC →=12AB →+AC →=12a +b .6.已知m ,n 是实数,a ,b 是向量,则下列说法中正确的是( ) ①m (a -b )=m a -m b ;②(m -n )a =m a -n a ; ③若m a =m b ,则a =b ;④若m a =n a ,则m =n . A .②④ B .①② C .①③ D .③④ 考点 向量数乘的定义及运算 题点 向量数乘的运算及运算律 答案 B解析 ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a =b ,错误;④中,若a =0,则m ,n 没有关系,错误.7.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD交于点F .若AC →=a ,BD →=b ,则AF →等于( ) A.14a +12b B.13a +23b C.12a +14b D.23a +13b 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 ∵△DEF ∽△BEA , ∴DF AB =DE EB =13,∴DF =13AB , ∴AF →=AD →+DF →=AD →+13AB →.∵AC →=AB →+AD →=a ,BD →=AD →-AB →=b , 联立得AB →=12(a -b ),AD →=12(a +b ),∴AF →=12(a +b )+16(a -b )=23a +13b .二、填空题8.(a +9b -2c )+(b +2c )=________. 考点 向量的线性运算及应用 题点 向量的线性运算 答案 a +10b9.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又∵向量λa +b 与a +2b 平行,则存在唯一的实数μ, 使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.10.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________.(用a ,b表示)考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 14b -14a解析 如图,MN →=MB →+BA →+AN →=-12b -a +34AC →=-12b -a +34(a +b )=14b -14a .11.若非零向量a 与b 不共线,k a +2b 与3a +k b 共线,则实数k 的值为________. 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 ±6解析 ∵k a +2b 与3a +k b 共线, ∴存在实数λ,使得k a +2b =λ(3a +k b ), ∴(k -3λ)a +(2-λk )b =0, ∴(k -3λ)a =(λk -2)b .∵a 与b 不共线,∴⎩⎪⎨⎪⎧k -3λ=0,λk -2=0,∴k =±6.12.如图,在△ABC 中,延长CB 到D ,使BD =BC ,当点E 在线段AD 上移动时,若AE →=λAB→+μAC →,则t =λ-μ的最大值是________.考点 向量共线定理及其应用题点 向量共线定理在平面几何中的应用 答案 3解析 设AE →=kAD →,0≤k ≤1,则AE →=k (AC →+2CB →)=k [AC →+2(AB →-AC →)]=2kAB →-kAC →, ∵AE →=λAB →+μAC →,且AB →与AC →不共线,∴⎩⎪⎨⎪⎧λ=2k ,μ=-k ,∴t =λ-μ=3k .又0≤k ≤1,∴当k =1时,t 取最大值3. 故t =λ-μ的最大值为3. 三、解答题 13.计算:(1)6(3a -2b )+9(-2a +b );(2)12⎣⎡⎦⎤(3a +2b )-23a -b -76⎣⎡⎦⎤12a +37⎝⎛⎭⎫b +76a ; (3)6(a -b +c )-4(a -2b +c )-2(-2a +c ). 考点 向量的线性运算及应用 题点 向量的线性运算解 (1)原式=18a -12b -18a +9b =-3b . (2)原式=12⎝⎛⎭⎫3a -23a +2b -b -76⎝⎛⎭⎫12a +12a +37b=12⎝⎛⎭⎫73a +b -76⎝⎛⎭⎫a +37b =76a +12b -76a -12b =0. (3)原式=6a -6b +6c -4a +8b -4c +4a -2c =(6a -4a +4a )+(8b -6b )+(6c -4c -2c ) =6a +2b .14.在平行四边形ABCD 中,M ,N 分别是DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →和AD →.考点 向量的线性运算及应用 题点 用已知向量表示未知向量 解 如图,设AB →=a ,AD →=b . ∵M ,N 分别是DC ,BC 的中点,∴BN →=12b ,DM →=12a .∵在△ADM 和△ABN 中, ⎩⎪⎨⎪⎧AD →+DM →=AM →,AB →+BN →=AN →,即⎩⎨⎧ b +12a =c , ①a +12b =d . ②①×2-②,得b =23(2c -d ), ②×2-①,得a =23(2d -c ). ∴AB →=43d -23c ,AD →=43c -23d .15.已知在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,求证:四边形ABCD为梯形.考点 向量共线定理及其应用题点 向量共线定理在平面几何中的应用证明 如图所示.→=AB→+BC→+CD→∵AD=(a+2b)+(-4a-b)+(-5a-3b)=-8a-2b=2(-4a-b),→=2BC→.∴AD→与BC→共线,且|AD→|=2|BC→|.∴AD又∵这两个向量所在的直线不重合,∴AD∥BC,且AD=2BC.∴四边形ABCD是以AD,BC为两条底边的梯形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数与向量的乘积1.实数与向量的乘积:设λ为任意实数,a r 为任意的非零向量。

λ与a r的乘积是一个向量,记作______模:a λr 的模等于||a r 的_____倍,即||a λ=r_____方向:(1)当0λ>时,规定a λr 与a r的方向______ (2) 当0λ=时,规定a λ=r ______(3)当0λ<时,规定a λr 与a r的方向______由于规定了a λr 的模||a λr与a λr 的方向,这样a λr 就能确定了。

4.根据实数与向量的乘积的定义,可知a λr 与a r是____________的向量 5.两个非零向量a r 与b r 平行的充要条件是:存在非零实数λ,使b =r______6. 实数与向量的乘积满足以下运算律:设,R λμ∈,则(1)()a a a λμλμ+=+r r r (2)()()a a λμλμ=r r (3)()a b a b λλλ+=+r r r r7.已知非零向量a r 的单位向量0a =u u r ______,方向与向量a r______例2下列结论中⑴,a b r r 是两向量,则a b r r 与的关系必为,,a b a b a b >=<r r r r r r三者中的一个.⑵两个相等的向量,当它们的起点不同时,终点也一定不同. ⑶平行向量就是共线向量,共线向量就是平行向量. ⑷温度有零上与零下,因此温度是向量. 其中正确的序号为__________实数与向量的乘积 教学目标:1.理解实数与向量乘积的意义,知道λa ρ的大小、方向与a ρ的大小、方向之间的关系。

2.掌握实数与向量积的结合律和两条分配律。

3.掌握两个非零向量a ,b 平行的充要条件是a =λb ,解决简单的几何问题。

4.掌握两个向量a ,b 平行的充要条件是λa +μb =0教学重点:1.理解实数与向量乘积的意义,知道λa ρ的大小、方向与a ρ的大小、方向之间的关系。

2.掌握实数与向量积的结合律和两条分配律。

3.掌握两个非零向量a ,b 平行的充要条件是a =λb ,解决简单的几何问题。

教学难点:对向量平行的充要条件的理解和运用 教学过程:一、复习:向量的加法、减法的定义、运算法则。

二、1.引入新课:已知非零向量a ρ 作出a ρ+a ρ+a ρ和(-a ρ)+(-a ρ)+(-a ρ)OC =++=a ρ+a ρ+a ρ=3a ρ=MN QM PQ ++=(-a ρ)+(-a ρ)+(-a ρ)=-3a ρ讨论:1︒3a ρ与a ρ方向相同且|3a ρ|=3|a ρ| 2︒-3a ρ与a ρ方向相反且|-3a ρ|=3|a ρ|2.从而提出课题:实数与向量的积实数λ与向量a ρ的积,记作:λa ρa ρa ρa ρa ρOABCa -a ρ-a ρ-aρ-NMQP定义:实数λ与向量a ρ的积是一个向量,记作:λa ρ1︒|λa ρ|=|λ||a ρ|2︒λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ=0 3.特别地,当0a =r r 时,我们规定R λ∈,都有0a λ=r r当1λ=时,规定1a a =r r ;当1λ=-时,规定(1)a -r与向量a r 的大小相等且方向相反,即(1)a a -=-r r4.运算定律:结合律:λ(μa ρ)=(λμ)a ρ①第一分配律:(λ+μ)a ρ=λa ρ+μa ρ②第二分配律:λ(a ρ+b ρ)=λa ρ+λb ρ ③结合律证明:如果λ=0,μ=0,a ρ=0至少有一个成立,则①式成立如果λ≠0,μ≠0,a ρ≠有:|λ(μa ρ)|=|λ||μa ρ|=|λ||μ||a ρ||(λμ)a ρ|=|λμ|| a ρ|=|λ||μ||a ρ| ∴|λ(μa ρ)|=|(λμ)a ρ|如果λ、μ同号,则①式两端向量的方向都与a ρ同向; 如果λ、μ异号,则①式两端向量的方向都与a ρ反向。

从而λ(μa ρ)=(λμ)a ρ第一分配律证明:如果λ=0,μ=0,a ρ=0至少有一个成立,则②式显然成立 如果λ≠0,μ≠0,a ρ≠当λ、μ同号时,则λa ρ和μa ρ同向, ∴|(λ+μ)a ρ|=|λ+μ||a ρ|=(|λ|+|μ|)|a ρ||λa ρ+μa ρ|=|λa ρ|+|μa ρ|=|λ||a ρ|+|μ||a ρ|=(|λ|+|μ|)|a ρ| ∵λ、μ同号 ∴②两边向量方向都与a ρ同向 即:|(λ+μ)a ρ|=|λa ρ+μa ρ|当λ、μ异号,当λ>μ时 ②两边向量的方向都与λa ρ同向 当λ<μ时 ②两边向量的方向都与μa ρ同向还可证:|(λ+μ)a ρ|=|λa ρ+μa ρ|∴②式成立 第二分配律证明:如果a ρ=0,b ρ=0中至少有一个成立,或λ=0,λ=1则③式显然成立 当a ρ≠,b ρ≠且λ≠0,λ≠1时1︒当λ>0且λ≠1时在平面内任取一点O ,作=OA a ρ =AB b ρ =1OA λa ρ=11B A λb ρ 则=OBa ρ+b ρ =1OB λa ρ+λb ρ由作法知:AB ∥11B A 有∠OAB=∠OA 1B 1 ||=λ|11B A | ==111λ ∴△OAB ∽△OA 1B 1=||1OB λ ∠AOB=∠ A 1OB 1因此,O ,B ,B 1在同一直线上,|1OB |=|λ| 1OB 与λ方向也相同λ(a ρ+b ρ)=λa ρ+λb ρ当λ<0时 可类似证明:λ(a ρ+b ρ)=λa ρ+λ∴ ③式成立例1、计算(1)(-3)×4a (2) OABB 1A 11()()ab a b a ---+23例2、已知向量a r 与b r 为任意向量,化简:12126()4()3()2323a b a b a b -++-+r r r r r r三、非零向量平行的充要条件(向量共线定理)1.若有向量a ρ(a ρ≠)、b ρ,实数λ,使a =λb 则由实数与向量积的定义知:a ρ与b ρ为平行向量若a ρ与b ρ平行(a ρ≠0)且||:||=μ,则当a ρ与b ρ同向时a =μb当a ρ与b ρ反向时a =-μb从而得:非零向量a ρ,b ρ平行的充要条件是:有且只有一个非零实数λ使 a =λb 定理:非零向量a ρ,b ρ平行的充要条件是:有且只有一个非零实数λ使 a =λb例3、已知AB AD 3=,BC DE 3=,试判断AC 与AE 是否共线。

解: ∵DE AD AE +=BC AB 33+=E)(3+= A CAC 3= B D∴AC 与AE 共线。

例4、在ABC ∆中,已知N M ,分别是AC AB ,的中点,用向量的方法证明:BC MN 21//例5、已知111,,OC k OC OB k OB OA k OA ===,求证:ABC ∆相似111C B A ∆实数与向量的乘积作业一、选择题1、下面给出四个命题:① 对于实数m 和向量a 、b 恒有:()b m a m b a m -=-;②对于实数m,n 和向量a ,恒有:B AC OA 1B 1C 1()a n a m a n m -=-;③若b m a m =(m ∈R),则有:b a =;④若a n a m =(m 、n ∈R ,0≠a ),则m=n .其中正确命题的个数是 ( )A .1B .2C .3D .42、设1e 和2e 为两个不平行的向量,则a =21e -2e 与b =1e +λ2e (λ∈R )平行的充要条件是 ( ) A .λ=0 B .λ=-1 C .λ=-2 D .λ=-213、下列各式或命题中:① →→→=-BC AC AB ② →→→=+0BA AB ③ →→=•00AB ④若两个非零向量a 、b 满足 b k a = (k ≠0),则a 、b 同向. 正确的个数为 ( )A .0B .1C .2D .34、点G 是△ABC 的重心,D 是AB 的中点,则GA +GB GC -等于 ( ) A .4GD B .-4GD C .6GD D .-6GD5、在矩形ABCD 中,O 为AC 中点,若 →BC =3a , →DC =2b , 则→AO 等于 ( ) A .21(3a +2b ) B .21(3a -2b ) C .21(2b -3a ) D .21(3b +2a ) 6、若向量方程2x -3(x -2a )=0,则向量x ( )A .56a B .-6a C .6a D .-56a 二、填空题7、已知向量j i a 32-=,j i b -=5,则4a -3b =_____________. 8、在ABCD 中,→AC = a ,→BD =b ,则→AB =_____ __,→AD =______ ___.9、梯形ABCD ,AB ∥CD ,且||2||CD AB =,M 、N 分别是 DC 和AB 的中点,如图,若AB =a ,AD =b ,用a ,b 表示 BC 和MN ,则BC = ;=MN . 10、若ABCD 的中心为O ,P 为该平面上一点,a PO =,那么NA BDM C=+++PD PC PB PA .11、设a 、b 为二不平行向量,如果k a +b 与a +k b 平行,那么k= . 12、已知M 、N 是线段AB 的三等分点,对平面上任一点O ,用OB OA ,来表示ON OM ,,=OM ;=ON .三、解答题13、如图所示,在任意四边形ABCD 中,E 为AD 的中点,F 为BC的中点,求证:EF DC AB 2=+.14、ΔABC 中,AB =a ,AC =b ,点D 、E 分别在线段AB 、AC 上,AD :DB=AE :EC ,证明:DE 与BC 平行.15、如图,ABCD 中,点M 是AB 的中点,点N 在BD 上,且BN=31BD ,求证:M 、N 、C 三点共线.参考答案 一、选择题1.C2.D3.C4.A5. A6.C二、填空题7.j i 97-- 8.()b a AB -=21;()b a AD +=21. 9.b a BC +-=21;b a MN -=41. 10.PO 4.11.1±=k . 12.OB OA OM 3132+=;3231+=.三、解答题13.解:∵BF AB EA EF ++=,CF DC ED EF ++=, ∴ DC AB EF +=2. 14. 解:∵EC AE DB AD =,∴ k ACAEAB AD ==, ∵ ()BC k AB AC k AD AE DE =-=-=,∴ BC DE //. 15.解:∵ CB CD BD -=,∴ ()CD CB BD CB CN +=+=23131, ∵ ()CN CD CB CD CB BM CB CM 2322321=+=+=+=,∴ CM CN //,即:M 、N 、C 三点共线.。

相关文档
最新文档