2种方法实现流水灯

合集下载

51单片机流水灯程序

51单片机流水灯程序

51单片机流水灯程序51单片机是一种广泛使用的微控制器,具有丰富的IO端口和定时器资源。

流水灯程序是51单片机入门的基础示例之一,通过多个LED灯按照一定顺序逐个亮起或熄灭,形成流水灯的效果。

下面详细介绍51单片机流水灯程序的编写。

一、硬件连接要实现流水灯效果,需要将多个LED灯连接到51单片机的IO端口上。

一般使用P1端口作为输出端口控制LED灯的亮灭,P2端口作为输出口控制LED灯亮起的顺序。

具体连接方式如下:•将LED灯的阳极通过限流电阻连接到VCC。

•将每个LED灯的阴极通过限流电阻连接到P1端口。

•将P2端口的每个引脚依次连接到每个LED灯的阴极。

二、程序实现#include <reg52.h> //包含51单片机头文件#define LED P1 //定义LED为P1端口#define ORDER P2 //定义顺序控制为P2端口void delay(unsigned int t); //延时函数声明void main(){unsigned char i;while(1) //循环控制流水灯效果{for(i=0; i<8; i++) //控制8个LED灯{LED = 0x01<<i; //将第i个LED灯置亮delay(10000); //延时一段时间,使LED灯亮起后延时熄灭LED = 0x01>>(i+1); //将第i个LED灯置灭}}}void delay(unsigned int t) //延时函数定义{unsigned int i, j;for(i=0; i<t; i++){for(j=0; j<1275; j++);}}该程序首先定义了LED和ORDER两个变量,分别对应P1和P2端口的输出口。

在主函数中,使用一个while循环控制流水灯效果。

在循环内部,使用一个for循环控制8个LED灯的状态。

在每次循环中,先将第i个LED灯置亮,延时一段时间后将其置灭,然后进入下一个循环。

单片机流水灯实验原理

单片机流水灯实验原理

单片机流水灯实验原理
单片机流水灯实验原理:
流水灯是一种基本的电子实验,通过使用单片机控制多个
LED 灯的亮灭来实现灯光在各个灯珠之间流动的效果。

流水
灯实验原理如下:
1. 硬件连接:将多个 LED 灯和适当的电流限制电阻连接到单
片机的不同输出引脚上。

每个 LED 灯的阴极与电流限制电阻
连接到负极(GND),而阳极连接到单片机的 IO 引脚。

需要
注意的是,单片机的 IO 引脚的输出电压应该能够点亮 LED 灯。

2. 软件设计:使用单片机的 GPIO(通用输入输出)功能,设
置相应的输出引脚作为流水灯的控制引脚。

通过对这些引脚进行高低电平控制,实现不同 LED 灯的点亮和熄灭。

3. 流水灯效果:为了实现流水灯的效果,我们将需要在不同的时间间隔内控制不同的 LED 灯点亮。

可以使用一个循环来实
现这种效果,循环中通过更新和改变控制引脚的电平状态来控制流水灯的亮灭顺序。

4. 控制顺序:通过改变控制引脚的电平状态的顺序,可以改变流水灯的流动顺序。

可以通过在循环中使用延迟函数来控制灯的变换速度,或者使用计数器等其他方法来实现更复杂的流水灯效果。

通过以上原理,我们可以实现单片机流水灯实验并观察到灯光在不同的 LED 灯之间流动的效果。

五种编程方式实现流水灯的单片机C程序

五种编程方式实现流水灯的单片机C程序
P1 = P1 | 0x03;//熄灭第1、2个发光二极管
delay(200);//延时
P1 = P1 | 0x07;//熄灭第1~3个发光二极管
delay(200);//延时
P1 = P1 | 0x0f;//熄灭第1~4个发光二极管
delay(200);//延时
P1 = P1 | 0x1f;//熄灭第1~5个发光二极管
delay(200);//延时
P1 = P1 | 0x3f;//熄灭第1~6个发光二极管
delay(200);//延时
P1 = P1 | 0x7f;//熄灭第1~7个发光二极管
delay(200);//延时
P1 = P1 | 0x7f;//熄灭所有发光二极管
delay(200);//延时
}
}
//函数名:delay
delay(200);
a = _cror_(a, 1);
}
}
P2 = 0xff;
for(j = 0; j < 10; j++)
{
delay(300);
P2 = ~P2;
}
}
}
for(j = 0; j < 255; j++);
}
//功能:采用循环结构实现的流水灯控制程序
//此方式中采用的移位,按位取反等操作是位操作
#include <reg51.h>//包含头文件REG51.H
void delay(unsigned char i);//延时函数声明
void main()//主函数
//形式参数:unsigned char i;
// i控制空循环的外循环次数,共循环i*255次

流水灯的实验原理及步骤

流水灯的实验原理及步骤

流水灯的实验原理及步骤流水灯(也称为跑马灯)是一种由多个LED灯组成的电子显示器件,常常被用于电子实验、电子产品展示等场合中。

流水灯可以通过变化发光的方式来传递信息或者装饰环境,具有简单、实用、灵活的特点。

下面将详细介绍流水灯的实验原理及步骤。

实验原理:流水灯的实现原理是通过控制每个LED灯的点亮与熄灭来形成一种连续而有序的动画效果,使得LED灯看起来像是在“流水”一样运动。

一般来说,流水灯采用的是LED的时分多路复用技术,即通过定时器控制每个LED点亮和熄灭的时刻,使得它们按照一定的顺序依次发光。

实验步骤:1. 准备材料:LED灯(数量根据需要决定)、电阻(限流电阻,选择合适的阻值)、电路板、导线、面包板或焊接工具等。

2. 连接电路:根据所需的LED数量,设计电路图,按照图上的连线方式将LED 连接到电路板上,注意保持连线的正确性。

3. 添加电阻:根据LED的工作电压和电流需求,计算每个LED对应的限流电阻的阻值,将电阻依次与LED进行串联连接。

4. 供电测试:将电路板连接到电源上,确认电源电压是否符合LED的工作电压要求。

注意检查整个电路的连线是否正确,电阻是否接在了正确位置。

5. 编写程序:使用单片机或其他控制芯片来控制LED的点亮和熄灭。

根据所采用的开发平台和编程语言,编写相应的代码,控制每个LED的状态和时间间隔。

6. 调试程序:将编写好的程序下载到控制芯片中,并连接到电路板上。

通过电脑或其他输入设备控制程序运行,观察LED的点亮和熄灭效果。

根据需要调整程序中每个LED的点亮时间和顺序,使得LED灯看起来像是在流水一样运动。

7. 完善电路:根据实际需求,可以设计并添加其他功能模块,如按键控制、调节亮度等。

总结:流水灯实验是一种常见的电子实验,通过控制LED灯的点亮和熄灭来形成一种连续的流动效果。

实验的原理是利用LED的时分多路复用技术和控制芯片的编程来实现。

实验步骤包括准备材料、连接电路、添加限流电阻、供电测试、编写程序、调试程序和完善电路等。

五种编程方式实现流水灯的单片机C程序

五种编程方式实现流水灯的单片机C程序

五种编程方式实现流水灯的单片机C程序流水灯是一种常见的灯光效果,常用于装饰和展示。

实现流水灯的程序可以使用多种不同的编程方式,包括传统的顺序编程、状态机编程、中断编程、调度器编程和面向对象编程。

下面分别介绍这五种方式实现流水灯的程序。

1.顺序编程方式:顺序编程是最常见的编程方式,也是最直接的方式。

下面是使用顺序编程方式实现流水灯的C程序:```c#include <reg52.h>void delay(unsigned int t)while(t--)for(int i=0; i<50; i++);}void mainunsigned char led = 0x80; // 初始灯光状态while(1)P0 = led; // 输出灯光状态delay(500); // 延时一段时间led >>= 1; // 右移一位,实现流水灯效果if(led == 0) // 到达最右边后重新开始led = 0x80;}}```2.状态机编程方式:状态机编程是一种基于状态的编程方式,通过定义不同的状态和状态转换来实现流水灯效果。

下面是使用状态机编程方式实现流水灯的C程序:```c#include <reg52.h>typedef enumState1,State2,State3,State4,State5} State;void delay(unsigned int t)while(t--)for(int i=0; i<50; i++);}void mainState state = State1; // 初始状态为State1 while(1)switch(state)case State1:P0=0x80;delay(500);state = State2;break;case State2:P0=0x40;delay(500);state = State3;break;case State3:P0=0x20;delay(500);state = State4;break;case State4:P0=0x10;delay(500);state = State5;break;case State5:P0=0x08;delay(500);state = State1;break;}}```3.中断编程方式:中断编程方式是一种基于中断事件的编程方式,通过在特定的中断事件触发时改变灯光状态来实现流水灯效果。

【实验2io口实现流水灯】

【实验2io口实现流水灯】

实验二IO口实现LED灯闪烁一、实验目的:1.正确安装keil软件2.正确安装调试驱动,熟悉实验板的用法3.学习IO口的使用方法。

二、实验设备:单片机开发板、学生自带笔记本电脑三、实验内容:利用单片机IO口做输出,接发光二极管,编写程序,使发光二极管按照要求点亮。

四、实验原理:1.LPC1114一共有42个GPIO,分为4个端口,P0、P1、P2口都是12位的宽度,引脚从Px.0~Px.11,P3口是6位的宽度,引脚从P3.0~P3.5。

引脚的内部构造如图所示。

其中Rpu为上拉电阻、Rpd为下拉电阻。

2.为了节省芯片的空间和引脚的数目,LPC1100系列微处理器的大多数引脚都采用功能复用方式,用户在使用某个外设的时候,要先设置引脚。

控制引脚设置的寄存器称之为IO配置寄存器,每个端口管脚PIOn_m都分配一个了一个IO配置寄存器IOCON_PIOn_m,以控制管脚功能和电气特性。

3.IOCON_PIOn_m寄存器其位域定义如表所列。

4.各引脚IOCON寄存器的位[2:0]配置不同的值所相应功能。

5.GPIO寄存器GPIO数据寄存器用于读取输入管脚的状态数据,或配置输出管脚的输出状态,表5-5对GPIOnDATA寄存器位进行描述。

GPIO的数据方向的设置是通过对GPIOnDIR寄存器的位进行与或操作实现的,LPC1100微处理器和8051单片机的GPIO不同,在使用前一定要先设置数据方向才能使用,6.发光二级管的工作电压和工作电流如何?___________________________________________________________________________ ___________________________________________________________________________ _________________________________________________________________________。

流水灯实验总结

流水灯实验总结

流水灯实验总结引言流水灯实验是一种常见的电子实验,通过使用多个LED灯按照一定的顺序依次亮起和熄灭来形成一种流水的效果。

本文将总结流水灯实验的实验内容、步骤和实验结果,并对实验中遇到的问题和解决方法进行分析。

实验材料•Arduino UNO开发板•220欧姆电阻•10个LED灯•连线材料实验步骤1.连线:将Arduino UNO开发板与LED灯连接起来。

将10个LED灯的阴极(短腿)依次与220欧姆电阻连接,然后再将电阻的另一端依次与Arduino开发板的数字输出引脚连接。

2.编写代码:打开Arduino集成开发环境(IDE),编写代码以实现流水灯效果。

代码示例如下:int ledPins[] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11};int numPins = 10;void setup() {for (int i = 0; i < numPins; i++) {pinMode(ledPins[i], OUTPUT);}}void loop() {for (int i = 0; i < numPins; i++) {digitalWrite(ledPins[i], HIGH);delay(100);digitalWrite(ledPins[i], LOW);}delay(100);}3.上传代码:将代码上传到Arduino UNO开发板中。

4.运行实验:启动Arduino开发板,LED灯将会按照代码中设置的顺序依次亮起和熄灭,形成流水的效果。

实验结果实验结果显示,LED灯按照代码中设置的顺序依次亮起和熄灭,形成了流水的效果。

流水的速度可以通过代码中设置的延迟时间进行调整。

实验问题及解决方法问题一:LED灯没有亮起解决方法:检查LED灯连接是否正确,确认电阻和Arduino开发板的连接是否正确。

检查代码中的引脚设置是否正确。

问题二:LED灯不能按照预期的顺序亮起和熄灭解决方法:检查代码中的引脚设置是否与实际连接的顺序一致。

流水灯的实验原理及步骤

流水灯的实验原理及步骤

流水灯的实验原理及步骤流水灯是一种用于电子电路实验的简单电路。

它由一组LED灯组成,灯珠逐个点亮,呈现出流水的效果。

以下是流水灯的实验原理及步骤:实验原理:流水灯的实验原理是借助555计时器和数个逻辑门实现的。

555计时器产生的方波信号通过逻辑门的组合,控制LED灯的亮灭顺序,从而实现流水的效果。

实验步骤:1.准备材料和工具:一块实验面板、555计时器、几个逻辑门(如74LS04等)、一组LED灯、几个电阻、导线等。

2.将555计时器、逻辑门、LED灯等器件按照连线图连接在实验面板上。

具体连接方式如下:- 将VCC引脚连接到正电源。

- 将GND引脚连接到地线。

- 连接一个电阻和电容来设置555计时器的频率。

电阻连接到引脚7(DISCHARGE)和引脚8(VCC)之间,电容连接到引脚6(THRESHOLD)和引脚2(TRIGGER)之间。

同时将电容的另一端连接到地线。

- 将555计时器的引脚3(OUTPUT)连接到逻辑门1的一个输入端,再将逻辑门1的输出端连接到一个电阻,电阻的另一端连接到LED灯1的正极。

LED 灯1的负极连接到地线。

- 将LED灯1的负极连接到逻辑门2的一个输入端,再将逻辑门2的输出端连接到一个电阻,电阻的另一端连接到LED灯2的正极。

LED灯2的负极连接到地线。

- 依此类推,将其他LED灯也连接起来,形成流水灯的效果。

3.检查连接是否正确,确保没有短路或接触不良的地方。

4.将正电源接入电路,调整电阻和电容的值,以控制流水灯的速度和亮度。

5.观察LED灯的亮灭顺序,若亮灯顺序与预期不符,可能需要调整逻辑门的输入连接方式。

6.实验完成后,断开电源,注意安全。

以上是流水灯的实验原理及步骤,希望对你有帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
for(y=110;y>0;y--); }
/* *名称:显示函数 *功能:实现流水灯功能 */ void display() {
uchar temp=0,i=0;
P1=0xfe;
//左移模块
temp=P1;
for(i=0;i<8;i++)
{
P1=temp;
temp=(temp<<1)|0x01;
delay(1000);
void;
void main() {
while(1) {
display(); } }
/* *名称:延时函数 *功能:实现延时.5眤为 1000 时,延时约 1s. */ void delay(uint z) {
uint x,y; for(x=z;x>0;x--)
delay(500);
}
}
还有一种方法就是将数据放到数组中,然后利用 for 循环,将数据取出赋值。
平常用到的 2 种实现流水灯的方法
/* *作用:实现流水灯功能 *思路:通过左移和右移运算符实现 *不足:在首尾 2 个灯上停留时间过长,产生类似停顿现象 *解决方法:右移模块初始赋值 0xbf,循环改为 6 次 */
Author : LONG
#include<reg52.h> #define uchar unsigned char #define uint unsigned int
uchar temp=0,i=0;
P1=0xfe;
//左移模块
temp=P1;
for(i=0;i<8;i++)
{
P1=temp;
temp=_crol_(temp,1);
delay(500);
}
P1=0x7f;
//右移模块
temp=P1;
for(i=0;i<8;i++)
{
P1=temp;
temp=_cror_(temp,1);
*/
#include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int
void delay(uint); void display();
void main() {
while(1) {
display(); } }
}
P1=0x7f;
//右移模块
temp=P1;
for(i=0;i<8;i++)
{
P1=temp;
temp=(temp>>1)|0x80;
delay(1000);
}
}
/* *作用:实现流水灯功能 *思路:通过自带函数_crol_(),与_cror_();在头文件 intrins.h 中包含 *不足:在首尾 2 个灯上停留时间过长,产生类似停顿现象 *解决方法:右移模块初始赋值 0xbf,循环改为 6 次
/* *名称:延时函数
*功能:实现延时.5眤为 1000 时,延时约 1s. */ void delay(uint z) {
uint x,y; for(x=z;x>0;x--)
for(y=110;y>0;y--); }
/* *名称:显示函数 *功能:实现流水灯功能 */ void display() {
相关文档
最新文档