基于51单片机的流水灯设计说明
51单片机流水灯程序

51单片机流水灯程序51单片机是一种广泛使用的微控制器,具有丰富的IO端口和定时器资源。
流水灯程序是51单片机入门的基础示例之一,通过多个LED灯按照一定顺序逐个亮起或熄灭,形成流水灯的效果。
下面详细介绍51单片机流水灯程序的编写。
一、硬件连接要实现流水灯效果,需要将多个LED灯连接到51单片机的IO端口上。
一般使用P1端口作为输出端口控制LED灯的亮灭,P2端口作为输出口控制LED灯亮起的顺序。
具体连接方式如下:•将LED灯的阳极通过限流电阻连接到VCC。
•将每个LED灯的阴极通过限流电阻连接到P1端口。
•将P2端口的每个引脚依次连接到每个LED灯的阴极。
二、程序实现#include <reg52.h> //包含51单片机头文件#define LED P1 //定义LED为P1端口#define ORDER P2 //定义顺序控制为P2端口void delay(unsigned int t); //延时函数声明void main(){unsigned char i;while(1) //循环控制流水灯效果{for(i=0; i<8; i++) //控制8个LED灯{LED = 0x01<<i; //将第i个LED灯置亮delay(10000); //延时一段时间,使LED灯亮起后延时熄灭LED = 0x01>>(i+1); //将第i个LED灯置灭}}}void delay(unsigned int t) //延时函数定义{unsigned int i, j;for(i=0; i<t; i++){for(j=0; j<1275; j++);}}该程序首先定义了LED和ORDER两个变量,分别对应P1和P2端口的输出口。
在主函数中,使用一个while循环控制流水灯效果。
在循环内部,使用一个for循环控制8个LED灯的状态。
在每次循环中,先将第i个LED灯置亮,延时一段时间后将其置灭,然后进入下一个循环。
51单片机流水灯实验报告

51单片机流水灯实验报告51单片机流水灯实验报告引言:51单片机是一种常用的微控制器,广泛应用于各种电子设备中。
流水灯实验是学习单片机编程的基础实验之一,通过控制多个LED灯的亮灭顺序,可以了解单片机的基本原理和编程方法。
一、实验目的本实验旨在通过使用51单片机,设计并实现一个简单的流水灯电路,加深对单片机原理的理解,掌握基本的单片机编程方法。
二、实验原理51单片机是一种8位微控制器,具有强大的功能和广泛的应用。
流水灯实验中,我们需要控制多个LED灯的亮灭顺序,通过编写程序,将指令发送给单片机,控制LED灯的亮灭。
三、实验器材1. 51单片机开发板2. LED灯若干3. 面包板4. 连接线四、实验步骤1. 将51单片机开发板连接到电脑上,打开开发板的编程软件。
2. 在编程软件中,新建一个工程,选择适合的单片机型号。
3. 编写程序,设置相应的引脚为输出模式,并配置流水灯的亮灭顺序。
4. 将单片机开发板与面包板连接,将LED灯连接到相应的引脚上。
5. 将编写好的程序下载到单片机中。
6. 打开电源,观察LED灯的亮灭顺序是否符合预期。
五、实验结果与分析经过实验,我们成功地实现了一个简单的流水灯电路。
LED灯按照设定的顺序亮灭,形成了流水灯的效果。
通过调整程序中的指令顺序,我们可以改变LED灯的亮灭顺序,实现不同的流水灯效果。
六、实验心得通过这次实验,我对51单片机的原理和编程方法有了更深入的了解。
流水灯实验是一种简单但基础的实验,通过实际操作和编程,加深了我对单片机的理解和掌握。
在实验过程中,我遇到了一些问题,如LED灯连接错误、程序逻辑错误等,但通过仔细检查和调试,最终成功解决了这些问题。
这次实验让我更加熟悉了单片机的应用,为以后更复杂的项目打下了基础。
七、实验拓展在掌握了基本的流水灯实验后,我们可以进一步拓展实验内容。
例如,可以增加控制开关,实现对流水灯的启停控制;可以设计不同的流水灯效果,如闪烁、变速等;还可以与其他传感器、模块进行组合,实现更多功能和效果。
基于51单片机的流水灯设计

基于51单片机的流水灯设计51单片机是一种常用的微控制器,它具有高性价比、易于编程和广泛的应用范围。
流水灯是一种常见的电子灯光装置,它通过类似于瀑布般的效果,逐个点亮一系列的灯。
本文将介绍基于51单片机的流水灯的设计。
流水灯的设计过程可以分为硬件设计和软件设计两个步骤。
硬件设计:在硬件设计方面,我们需要准备以下器件和材料:1.51单片机开发板2.杜邦线3.LED灯4.电阻接下来,根据流水灯的设计思路,将多个LED灯连接在一起,形成一个线性的灯带。
为了控制LED灯的亮灭,我们需要使用51单片机的GPIO 口来提供高低电平信号。
通过改变GPIO口的输出信号,我们可以实现各个LED灯的顺序点亮和熄灭。
软件设计:在软件设计方面,我们需要使用到汇编或C语言来编写控制程序。
以下是一个简单的流水灯程序的伪代码:```1.初始化51单片机的GPIO口方向,设置为输出模式2. 定义一个存储灯光模式的数组,比如`light_pattern[] = {0xFF, 0x7F, 0x3F, 0x1F, 0x0F, 0x07, 0x03, 0x01}`3.定义一个循环计数器`i`4.进入无限循环5. 通过将`light_pattern[i]`的值写入GPIO口,控制LED灯的亮灭6.延时一定时间(比如几百毫秒)7.更新循环计数器`i`8.如果`i`超过了数组的长度,将其重置为09.结束循环```在程序中,我们可以通过循环计数器`i`来依次点亮和熄灭LED灯。
通过不断更新`i`的值,我们可以实现灯光模式的循环播放。
总结:。
基于51单片机的流水灯及点阵设计报告

目录1. 引言 (2)1.1 背景 (2)1.2 设计目的 (2)1.3 参考资料 (2)2. 方案设计与比较论证2.1 设计任务 (2)2.2 设计要求 (2)2.3 方案的选择 (3)3. 总体设计 (3)3.1 开发与运行环境 (3)3.2 系统软件工作流程图 (3)3.3 硬件结构 (4)4. 系统功能测试与整体指标 (6)4.1 系统各模块功能的性能测试 (6)4.1.1 LED小灯模块 (6)4.1.2 点阵模块 (9)4.1.3 按键模块 (10)4.2 系统功能测试 (12)4.3 系统误差与问题分析 (12)5. 总结 (13)附录1;详细程序 (14)1. 引言1.1 背景随着电子技术的飞速发展,电子行业和社会上的各行各业息息相关,从家用电器到航空航天,无一不与电子产业的发展密切相关。
当我们看到大街小巷都是变幻多彩的霓虹灯时,心中是否会感到很新奇?当我们看到绚丽多彩的广告牌时,心中是否会觉得很神奇?这些神奇的流水灯只是电子产业的冰山一角,更多的知识需要我们在以后的道路上慢慢探索。
在单片机上实现流水灯很简单,只需要几条指令就可以完成,大部分学生都可以完成任务。
于是我们就思考一个新的问题,能不能实现一个亮度渐变的、按规律移动的超酷流水灯?这就是本次设计的背景及意义。
1.2 设计目的本次基于51单片机的流水灯设计主要是为了让我们增进对80C51单片机电路的感性认识,加深对理论方面的理解。
了解软硬件的有关知识,并掌握软硬件设计过程、方法及实现,为以后设计和实现应用系统打下良好基础。
虽然本次设计较为简单,但是涵盖的内容较为丰富,运用了单片机的动态扫描、定时器、中断,用for循环来实现彗星灯的效果,PWM波控制LED的亮灭程度,独立按键的应用等等,另外,通过简单课题的设计练习,使我们了解必须提交的各项工程文件,达到巩固、充实和综合运用所学知识解决实际问题的目的。
1.3 参考资料【1】单片机原理及应用·马永杰主编·清华大学出版社 2011.8【2】51单片机C语言教程·郭天祥主编·电子工业出版社 2009.12【3】模拟电子技术基础·康华光主编·高等教育出版社 2006.012. 方案设计与比较论证2.1 设计任务(1)基于51单片机实现一个亮度渐变的、按规律移动的超酷流水灯;(2)基于51单片机实现在点阵上动态显示“心”型和依次显示“西北师大”;(3)通过独立按键实现流水灯和点阵显示的切换。
基于51单片机流水灯毕业设计

基于51单片机的流水灯毕业设计方案:一、引言流水灯是一种常见的电子设计项目,适合初学者练习和毕业设计。
通过使用51单片机和少量外围元件,可以实现一个简单而有趣的流水灯效果。
本文将介绍基于51单片机的流水灯设计方案,包括硬件连接、软件程序设计和效果展示等内容。
二、硬件设计1. 材料准备:51单片机(如STC89C52)、LED灯若干(建议4-8个)、电阻、面包板、连线等。
2. 连接方式:将LED灯按顺序连接到51单片机的IO口,每个LED 灯通过一个电阻连接到IO口,确保电流限制。
3. 电源供应:连接电源至电路板,保证正常工作电压和电流。
三、软件设计1. 编程环境:使用Keil C51等集成开发环境进行程序编写。
2. 程序设计:设计一个循环移位的程序,控制51单片机的IO口依次点亮LED灯,形成流水灯效果。
3. 定时控制:通过定时器中断或延时函数控制LED灯的亮灭时间,实现流水灯的效果。
四、效果展示1. 烧录程序:将编写好的程序烧录到51单片机中。
2. 调试测试:连接电路并通电,观察LED灯按顺序点亮并流动的效果。
3. 优化改进:根据实际效果调整程序和硬件设计,优化流水灯的效果和稳定性。
五、注意事项1. 电路连接:确保电路连接正确,避免短路或接反现象。
2. 程序设计:合理设计程序逻辑,确保LED灯的流水效果符合预期。
3. 调试测试:在调试过程中注意观察LED灯的亮暗情况,及时发现问题并进行调整。
六、总结基于51单片机的流水灯设计是一个适合初学者和毕业设计的简单而有趣的项目,通过设计和实现可以提升对单片机编程和电路连接的理解和技能。
希望通过本文的介绍,读者能够顺利完成基于51单片机的流水灯毕业设计,并在实践中不断提升自己的电子设计能力。
《单片机原理及应用》基于51单片机实验箱的流水灯设计

《单片机原理及应用》基于51单片机实验箱的流水灯设计一、实验目的和要求1.掌握单片机基本资源使用。
2.掌握单片机电路原理图。
3.掌握单片机C语言软件开发以及试验箱使用。
二、实验内容和原理实验内容:1.绘制程序流程图并编写C语言程序2.在实验箱中进行测试,最后提交实验报告三、主要仪器设备Keil4软件、C51单片机实验箱。
四、操作方法与实验步骤4.1 题目要求使用单片机实验箱实现流水灯功能。
4.2 系统设计思路主程序中实现流水灯功能,时间单位采用500ms信号,作为实现流水灯的发光二极管和单片机的P1相连。
4.2 C程序编制(包含详细的文字和程序流程图)#include<intrins.h>#include<reg52.h>#define uchar unsiged char#define uint unsigned intvoid mDelay(uint Delay){int i;for(;Delay>0;Delay--)for(i=0;i<110;i++);}void main(){unsigned char a,i;While(1){a=0x01;for(i=0;i<8;i++){a=-crol-(a,1)P2=amDelay(500);}}4.3 测试分析(包含文字和图像叙述)在KeilC51软件软件中编写好程序并调试好后,连接单片机实验箱,实验结果如下:实验箱上连接的八个灯,每个灯间隔500ms的时间一个接一个的循环闪烁。
五、讨论和心得(不少于100字)通过此次实验,我不仅加深了对单片机理论的理解,将理论很好地应用到实际当中去,而且我还学会了如何去培养我们的创新精神,试验过程还是比较繁琐,但是还是完成了这次试验,使我对于理解单片机的基本原理更加深刻,将所学知识运用到实践中,在实践中发现问题,强化理论知识。
课程名称:单片机原理及应用实验项目名称(二):定时计数器的应用—按钮控制LED灯四、实验目的和要求1.掌握单片机基本资源使用。
基于51单片机的流水灯

基于51单片机的流水灯利用51单片机P0口实现8个LED(发光二极管)的流水灯控制。
可以使用Proteus软件进行仿真调试。
1 硬件设计利用单片机的PO口控制8个LED,其电路如下图所示。
在桌面上双击图标,打开ISIS 7 Professional窗口(本人使用的是v7.4 SP3中文版)。
单击菜单命令“文件”→“新建设计”,选择DEFAULT模板,保存文件名为“LSD.DSN”。
在器件选择按钮中单击“P”按钮,或执行菜单命令“库”→“拾取元件/符号”,添加如下表所示都可以不画,它们都是默认的。
在ISIS原理图编辑窗口中放置元件,再单击工具箱中元件终端图标,在对象选择器中单击POWER和GROUND放置电源和地。
放置好元件后,布好线。
左键双击各元件,设置相应元件参数,完成电路图的设计。
2 软件设计流水灯又称为跑马灯,在函数中可以将P0口的八种不同状态做成一维数组,循环执行即可,如下所示。
当然也可以采用其它函授来实现,如左移一位<<1(或右移一位>>1),循环左移函授_crol_(或循环右移函授_cror_)等。
/****************************************************************** 流水灯*******************************************************************/ #include "reg51.h"const tab[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};void delayms(unsigned int x) //延时{unsigned int j;unsigned char k;for(j=0;j<x;j++){for(k=0;k<120;k++);}}void main(){unsigned char k;while(1){for(k=1;k<8;k++){P0=tab[k];delayms(500);}}}打开Keil程序(本人使用的是Keil8.05中文版),执行菜单命令“工程”→“新建工程”创建“流水灯”项目,并选择单片机型号为AT89C51。
实验一51单片机流水灯实验实验报告

实验一 51单片机流水灯实验实验报告
“流水灯”实验报告 一、实验目的 1.了解单片机I/O口的工作原理。 2.掌握51单片机的汇编指令。 3.熟悉汇编程序开发,调试以及仿真环境。 二、实验内容 通过汇编指令对单片机I/O进行编程(本实验使用P0口),以控制八个发光二极管以一定顺序亮灭。(即流水灯效果) 三、实验原理 通过更改P0口8位的高低电平,分别控制8个发光二极管的亮灭。具体的亮灭情况如下表:
要实现“流水灯”效果,也就是需要将P0口的输出值发生以下变化: FE→FD→FB→F7→EF→DF→BF→7F→BF→DF→EF→F7→FB→FD→FE→...... 可以使用一个循环,不断对数据进行移位运算实现。这里的移位指令采用RL和RR,即不带进位的位移运算指令。如果使用带 进位的位移运算指令(RLC和RRC),则需要定期把CY置0,否则会出现同时亮起两个发光二极管的情况。 四、实验过程 1.在仿真系统中绘制RG 0000H Delay: MOV R0, #0FFH SJMP Start Delay1: MOV R1, #0FFH Start: MOV A, #0FEH Delay2: NOP MOV P0, A DJNZ R1, Delay2 CLR P2.7 DJNZ R0, Delay1 CLR P3.7 RET Move: MOV R2, #7H END MOV R3, #7H RMove: RL A MOV P0, A CALL Delay DJNZ R2, RMove LMove: RR A MOV P0, A CALL Delay DJNZ R3, LMove SJMP Move 五、实验结果 为了便于实验结果的描述,下面分别把P0.0, P0.1…, P0.7对应的发光二极管编号为1, 2, …, 8号二极管。 在仿真系统中,先从1号二极管下面是在仿真系统中的实验结果:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于51单片机的流水灯设计
一.基本功能
利用AT89c51作为主控器组成一个LED流水灯系统,实现8个LED 灯的左、右循环显示。
二.硬件设计
图1.总设计图
1.单片机最小系统
1.1选用AT89C51的引脚功能
图2. AT89C51
XTAL1:单芯片系统时钟的反向放大器输入端。
XTAL2:系统时钟的反向放大器输出端,一般在设计上只要在XTAL1和XTAL2上接上一只石英震荡晶体系统就可以工作了,此外可以在两引脚与地之间加入20PF的小电容,可以使系统更稳定,避免噪音干扰而死机。
RESET:重置引脚,高电平动作,当要对晶体重置时,只要对此引脚电平提升至高电平并保持两个及其周期以上的时间便能完成系统重置的各项动作,使得部特殊功能寄存器容均被设成已知状态。
P3:端口3是具有部提升电路的双向I/O端口,通过控制各个端口的高低电平了实现LED流水灯的控制。
1.2复位电路
如图所示,当按下按键时,就能完成整个系统的复位,使得程序从新运行。
图3.复位电路
1.3时钟电路
时钟电路用于产生单片机工作所需要的时钟信号,单片机本身就是一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在唯一的时钟信号控制下严格地按时序进行工作。
在AT89C51芯片部有一个高增益反相放大器,其输入端为芯片引脚X1,输出端为引脚X2,在芯片的外部跨接晶体振荡器和微调电容,形成反馈电路,就构成了一个稳定的自激振荡器。
此电路采用12MHz的石英晶体。
图4.时钟电路
2.流水灯部分
图5.流水灯电路
三.软件设计
3.1编程语言及编程软件的选择
本设计选择C语言作为编程语言。
C语言虽然执行效率没有汇编语言
高,但语言简洁,使用方便,灵活,运算丰富,表达化类型多样化,数
据结构类型丰富,具有结构化的控制语句,程序设计自由度大,有很好
的可重用性,可移植性等特点。
而汇编语言使用起来并没有这么方便。
本设计选用了Keil作为编程软件,.Keil C51生成的目标代码效率非常
之高,多数语句生成的汇编代码很紧凑,容易理解。
在开发大型软件时更能体现高
级语言的优势。
3.2 LED灯的显示
LED灯在低电平,即I/O口置‘0’时,会亮,相反就灭。
此设计就是通过程序来控制I/O口的电平变化来实现流水灯左右循环闪烁。
四.程序
#include<reg52.h>
#include<intrins.h>
#define uint unsigned int
#define uchar unsigned char
#define kou P3
uchar code dp1[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};
uchar code dp2[]={0x80,0x40,0x20} ;
void delayms(uint z) //延时函数
{
uint i,j;
for(i=z;i>0;i--)
for(j=110;j>0;j--);
}
void main()
{
int i;
for(i=0;i<8;i++)
{
kou=dp1[i];
delayms(500);
}
for(i=0;i<7;i++)
{
kou=dp1[i]+0x80;
delayms(500);
}
for(i=0;i<6;i++)
{
kou=dp1[i]+0x40;
delayms(500);
}
for(i=0;i<5;i++)
{
kou=dp1[i]+0x20;
delayms(500);
}
for(i=0;i<4;i++)
{
kou=dp1[i]+0x10;
delayms(500);
}
for(i=0;i<3;i++)
{
kou=dp1[i]+0x08;
delayms(500);
}
for(i=0;i<2;i++)
{
kou=dp1[i]+0x04;
delayms(500);
}
for(i=0;i<1;i++)
{
kou=dp1[i]+0x02;
delayms(500);
}
for(i=0;i<3;i++)
{
kou=0x00;
delayms(500);
kou=0xff;
delayms(500);
}
}。