色谱联用技术
色谱联用技术-2016

具有相同动能、不同质量的离子,其飞行速度不同而分 离。如果固定离子飞行距离,则不同质量离子的飞行时 间不同,质量小的离子飞行时间短而首先到达检测器。
特点: (1)结构简单,体积较大,价格略贵 (2)扫描速度快,与色谱出峰速度匹 配,适合联用
(3)灵敏度高
(4)质量分辨率高
(5)检测质量无上限
气相色谱-四极杆质谱仪
特定m/z离子在阱内一 定轨道上稳定旋转, 改变端电极电压,不
同m/z离子飞出阱到达
检测器;
特点: (1)结构简单,体积小,价格低 (2)扫描速度快,与色谱出峰速度匹 配,适合联用
(3)自身可做多级,有利于定性
(4)质量分辨率6000-9000
(5)检测的m/z范围小
3.飞行时间质量分析器(TOF)
10
12
14
TIC Spectrum of Four Diterpenoids of Radix Salviae Miltiorrhizae
LC-MS-MS MRM Chromatograms of Radix Salviae Miltoirrhizae Sample
反应离子监测
7.4
高效液相色谱-核磁共振
LC-MS (四极杆)联用仪器结构示意图
LC-MS (离子阱)联用仪器结构示意图
三、液质联用的应用
医药、临床:药物代谢、药物动力学、杂 质分析、天然产物分析、疾病诊断 生物化学:肽、蛋白质、寡核苷酸、糖 环境化学:农药和农残分析、有机污染物、 土壤/食品/水分析 食品科学:香料、添加物、包装物、蛋白 质、致癌物 化学:有机合成物
◦ 操作参数的影响
提高LC柱的负载量 负载量为100g。 采用停流技术 描累积)。 内径4.6mm色谱柱,合适的
色谱联用技术PPT课件

生物医学研究
用于研究生物体内的代 谢过程、疾病诊断和药
物研发。
02
色谱联用技术的原理
色谱分离原理
分离原理
色谱分离技术基于不同物质在固定相和流动相之间的分配 平衡,利用不同物质在两相之间的吸附、溶解等性质差异 实现分离。
分离过程
在色谱柱中,流动相携带待分离物质通过固定相,由于不 同物质与固定相的相互作用不同,导致在固定相中的滞留 时间不同,从而实现分离。
液相色谱-质谱联用(LC-MS):适用于复杂有机物和 生物样品的分离和检测。
液相色谱-核磁共振联用(LC-NMR):适用于复杂有 机物和生物大分子的结构分析。
色谱联用技术的应用领域
环境监测
用于检测空气、水体和 土壤中的有害物质。
食品检测
用于检测食品中的农药 残留、添加剂和有害物
质。
药物分析
用于研究药物代谢、药 物成分分析和药物质量
对样品要求高
色谱联用技术对样品的纯度和浓度要求较高, 否则会影响分离效果和检测结果。
改进方向
降低仪器成本
通过改进技术和工艺,降低色谱联用技术的 仪器成本,使其更具有实际应用价值。
缩短样品处理时间
通过改进分离技术和方法,缩短样品处理时 间,提高分离效率。
简化操作过程
优化色谱联用技术的操作流程,降低操作难 度,提高工作效率。
智能化与自动化
借助人工智能和机器人技术,实现 色谱联用技术的自动化进样、数据 处理和结果解读,提高分析效率。
THANKS FOR WATCHING
感谢您的观看
常用色谱柱
硅胶、氧化铝、活性炭等。
质谱原理
01
02
03
离子化过程
质谱技术通过高能电子束 或激光束将样品分子离子 化,使样品分子失去电子 成为带正电荷的离子。
最全色谱联用技术汇总

最全色谱联用技术汇总人类进入21世纪,科学技术高度发展,先进的分析仪器不断涌现,每一类分析仪器在一定范围内起独特作用,并且要求在一定的条件下使用。
如色谱作为一种分析方法,其最大特点在于能将一个复杂的混合物分离为各自单一组分,但它的定性、确定结构的能力较差,而质谱(MS)、红外光谱(IR)、紫外光谱(UV)、等离子体发射光谱(ICP—AES)和核磁共振波谱(NMR) 等技术对一个纯组分的结构确定变得较容易。
因此,只有将色谱、固相(微)萃取、膜分离等分离技术与质谱等鉴定、检测仪器联用才能得到一个完整的分析,取得丰富的信息与准确的结果。
分析仪器联用技术已在全行业样品分析中得到应用,并有广阔的发展前景。
随着新物质不断出现,以及科技的进步,对分析工具的技术要求更高,仪器联用将发挥重要的作用。
1色谱—色谱联用技术样品组分较简单时,通常用一根色谱柱,一种分离模式即可以得到很好的分离,但对于某些较复杂的组分,无论如何优化色谱条件、参数也无法使其中一些组分得到较好的分离,这时可采用色谱—色谱联用技术。
色谱—色谱联用技术也称为多维色谱。
气相色谱—气相色谱(GC—GC)联用该联用技术已有30多年的历史,在工业分析中得到广泛的应用,GC—GC联用仪已商品化。
如采用SE-52毛细管柱分析柠檬油时,采用二级GC联用能将化合物的对映异构体得到很好分离。
液相色谱—液相色谱(LC—LC)联用Hube于20世纪70年代提出LC—LC联用,技术的关键是柱切换,通过改变色谱柱与色谱柱、进样器与色谱柱、色谱柱与检测器之间的连接,以改变流动相的流向,实现样品的分离、净化、富集、制备和检测。
液相色谱有多种分离模式,可以灵活选用分离模式的组合,其选择性调节能力远大于GC—GC联用技术,具有更强的分离能力。
该接口技术比GC—GC联用的要复杂得多,至今市场上尚未见商品化的LC—LC 联用系统,分析工作者多是自行组装LC—LC系统,适用于特定组分的分离和分析。
液相色谱质谱联用技术在药物分析中的应用

液相色谱质谱联用技术在药物分析中的应用液相色谱质谱联用技术(LC-MS)已经成为分析化学领域中的一项重要工具。
它不仅可以用于生化分析和环境检测,还在药物分析中表现出很强的优势。
本文将重点介绍液相色谱质谱联用技术在药物分析中的应用。
一、液相色谱质谱联用技术的原理及优势液相色谱质谱联用技术是将液相色谱(LC)和质谱(MS)两种技术结合起来,使得样品经过某种分离后直接进入质谱分析器,从而达到高灵敏度,高选择性和高分辨率的目的。
液相色谱的选择性和分离能力可以使样品中各种成分被分离出来,而质谱则以其高灵敏度和特异性,鉴别每一个分离出来的成分,确保每种物质都得到准确的定量和定性分析。
液相色谱质谱联用技术优势显著,其主要表现在以下三个方面:1. 更高的分离能力和选择性,增强样品分离和分析的准确性和可靠性。
2. 具有高度的灵敏性和特异性,能提高分析的探测下限和峰面积,使得样品中的低浓度成分也能准确地被检测到。
3. 可以进行组分结构的确定和鉴定,通过分子离子的质量谱图,可确定组分的分子结构和可能的化学反应路径。
二、液相色谱质谱联用技术在药物分析中的应用液相色谱质谱联用技术在药物分析中的应用已经得到广泛的发展和应用。
主要表现在以下几个方面:1. 药物代谢研究液相色谱质谱联用技术被广泛应用于药物代谢研究中。
通过监测药物的代谢产物,可以研究药物在体内的代谢途径,剖析药物的药效,药物代谢动力学参数和评价药物对人体生理的影响。
2. 药物成分分析液相色谱质谱联用技术可以实现药物中各种成分的分离和分析,确保药物的安全和质量。
通过确定药物中的各种成分,可以评价药物的性质和作用机理,为药物的研发和质量监测提供有力的技术支持。
3. 毒物分析液相色谱质谱联用技术也可以用于毒物分析。
通过对毒物样品进行分离和质谱分析,可以鉴定毒物类别和浓度,及时采取措施,保护公众健康安全。
4. 药物残留检测液相色谱质谱联用技术可以用于药物残留检测。
通过在食品、动物和植物中定量检测药物残留量,可以评估药物对环境和健康的影响,保障食品安全。
色谱联用技术

4、2 气相色谱-质谱联用 GC-MS
1、气相色谱与“四谱”工作条件得适应性
方法 气相色谱 质谱 红外 紫外 核磁共振
操作特性
气相
是 是 不希望 否
否
灵敏度(毫微克) 是 是 否 取决于样品 否
扫描时间匹配
是 是①
否
是②
连续流动
是 是否
否
否
温度匹配
是否
否
否
工作气压
是 否是
是
是
①傅里叶变换红外; ②傅里叶变换核磁共振
– 峰存储模式( peak parking ) • 实际上就是一种离线模式。 • 由LC流出得峰存储在毛细管回路中,然后通过 适当得阀系统依次送入NMR探头中进行 NMR测定,LC分析过程不中断。 • 体系中有三个阀,12个存储峰得毛细管回路, 整个过程由计算机控制。
PB EI
2、 电喷雾电离(ESI,接口+软电离技术)
Charged Droplets
+ ++
-
+ - -++ -
++
+ +
Evaporation
Rayleigh Limit
Reached
+ +++
+-+--+-- +++
Analyte Ions
Solvent Ion Clusters Salts/Ion pairs Neutrals
APCI
放电针 类似于化学电离 属于气相电离 0、2~2ml/min 极性较小得化合物 产生单电荷离子
三、质量分析器
1、 四极杆质量分析器
色谱联用技术LCMS

由于 HPLC目前的应用极其广泛, 特别是在我们药学专业应用更为普遍, 所以 LC-MS 在使用上比 GC-MS 有更 高的使用价值。
二、LC-MS的工作原理
与GC-MS基本相同,最大的不同是接口不同。 另外, LC-MS 一般用来分析挥发性差,热不稳 定的样品,应用范围增大。 非极性化合物不能分析。(难以离子化)
(1)种类:甲醇、乙腈、水和它们不同比例的混合 物以及易挥发盐的缓冲溶液。 若流动相需用缓冲溶液,该缓冲液最好具有挥发 性,这样可减少缓冲盐在离子源内的沉积。
应当根据样品所需的极性以及样品的pH值,调节 流动相的pH。
蛋白酵素
流动相应当具有低的蒸发热和低的表面张力,以 增强离子的解吸作用,离子化效率提高。 (2)流速:和色谱柱的内径有关,内径越小流量越 小。 0.3 1.0 2.1 4.6 内径(mm) 10 30~60 200~500 >700 流速(μl/min)
五、 HPLC-MS的灵敏度
MSD与DAD的比较
(三甘油)
(椰子油) 椰子油
氨基甲酸盐
六、LC-MS联用仪的真空
七、 碰撞诱导解离(CID)技术
电喷雾是一种“软”电离技术,通常只形成准 分子离子,提供分子量信息。但是在实际工作中, 特别是对未知化合物的分析,不仅需要分子量,而 且更需要尽可能多的化合物碎片信息。 碰撞诱导解离(CID)可解决这一不足。
电喷雾接口( ESI)液滴变化示意图:
Charged Droplets
--+ + ++ + + + + + + + + + + + - + - + ++ - -- + + -+ --+ + ++
色谱联用技术(LC-MS).

常用于强极性化合物及高分子化合物的测定,一般 不适于非极性或弱极性化合物的分析;
由于温度较低,因此较适用于热不稳定化合物;
只能允许非常小的液体流量(0.2~1mL)。
② 大气压化学源(API-±CI、APCI)
大气压化学源 工作原理
与ESI相似,所不同的是通过电晕放电针首先 使溶剂离子化,离子化的溶剂与待分析物气态分 子发生离子交换反应,形成准分子离子,使分析 物离子化。
(1)种类:甲醇、乙腈、水和它们不同比例的混合 物以及易挥发盐的缓冲溶液。 若流动相需用缓冲溶液,该缓冲液最好具有挥发 性,这样可pH值,调节 流动相的pH。
蛋白酵素
流动相应当具有低的蒸发热和低的表面张力,以 增强离子的解吸作用,离子化效率提高。 (2)流速:和色谱柱的内径有关,内径越小流量越 小。 0.3 1.0 2.1 4.6 内径(mm) 10 30~60 200~500 >700 流速(μl/min)
母离子分析可用来鉴定和确认类型已知的 化合物,尽管它们的母离子的质量可以不同, 但在分裂过程中会生成共同的子离子,这种扫 描功能在药物代谢研究中十分重要。
Product Ion Scan(子离子扫描)
-After identification, the precursor ion is sent into the collision cell and fragmented by CID -Q1 is fixed, Q3 sweeps a given mass range -Used for structural elucidation(结构确认) -First step to developing quantitative method
(2) 负离子方式
分析化学中的色谱与质谱联用技术

分析化学中的色谱与质谱联用技术在分析化学领域中,色谱与质谱是两个重要的分离与鉴定技术。
色谱技术通过物质在固定相和移动相之间的相互作用进行分离,而质谱技术则通过分析物质的质量谱图来鉴定其组成和结构。
将这两种技术联用起来,即色谱与质谱联用技术(GC-MS和LC-MS),可以得到更加准确、可靠的分析结果。
一、色谱与质谱联用技术的基本原理色谱与质谱联用技术是将色谱技术和质谱技术有机地结合在一起,形成一种强大的分析手段。
其基本原理是先利用色谱技术将待分析物质分离出来,再通过质谱技术对分离后的物质进行鉴定和分析。
二、色谱与质谱联用技术的应用色谱与质谱联用技术在分析化学中有着广泛的应用,以下是一些典型的应用领域:1. 食品安全检测色谱与质谱联用技术可以用于检测食品中的农药残留、兽药及抗生素等有害物质,保障食品的安全性。
2. 环境监测通过色谱与质谱联用技术,可以快速准确地检测环境中的有机污染物,如挥发性有机化合物、农药、重金属等,为环境保护和治理提供有力支持。
3. 药物分析色谱与质谱联用技术有助于药物的质量控制和研发。
通过分析药物的组分和结构,可以确保药物的疗效和安全性。
4. 毒物分析色谱与质谱联用技术在毒物学领域有着重要应用。
通过对有毒物质的分离和鉴定,可以为毒物分析和药物中毒的诊断提供帮助。
5. 痕量分析色谱与质谱联用技术可以对样品中的痕量组分进行精确测定,如有机污染物、天然产物中的生物活性成分等。
三、色谱与质谱联用技术的优势色谱与质谱联用技术相比单一技术的应用,具有以下优势:1. 分离效果好通过色谱技术的分离,可以将复杂样品的组分分离出来,减少质谱分析的干扰。
2. 鉴定准确性高质谱技术可以精确地鉴定化合物的结构和组成,提高分析结果的可靠性和准确性。
3. 灵敏度高色谱与质谱联用技术具有很高的灵敏度,能够检测到极低浓度的物质。
4. 宽范围应用色谱与质谱联用技术适用于各种类型的化合物分析,包括有机化合物、无机离子等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/8/5
三、LC-MS联用仪器
hyphenated technology of LC-MS
1. 大气压电离技术(API) (1)电喷雾电离( API Electrospray)
Charged Droplets
构判定,补足EI不足结构信息 依基础性质,选择性优于电子撞击,可以提高信噪比 由分子离子进行CI/MS/MS 有极佳感度与确认性 得到与众不同的谱图和指纹谱图
可卡因—EI质谱图
多为碎片离子 分子离子峰(m/z 303)极弱
可卡因的甲烷化学电离质谱图
化学电离,产生更少的碎片离子,更强的分子离子峰
GC-MS中的分子分离器
分子分离器类型: 微孔玻璃式、半透膜式和喷射式三种。 喷射式分子分离器: 由一对同轴收缩型喷嘴构成,喷嘴被封在一真空室中,如 图所示。可做成多级。
2020/8/5
四极杆质量分析器
(Quadrupole Mass Filter)
Electron Beam Sample in
Ion Beam
A
C
2020/8/5
2020/8/5
+ +
+
+
+
+
++
+
+
+ +
+
++
+
+
+ +
+
+
++
2.离子阱质量分析器
特定m/z离子在阱内一 定轨道上稳定旋转,改变 端电极电压,不同m/z离子 飞出阱到达检测器;
2020/8/5
3. LC-MS (离子阱)联用仪器结构示意图
2020/8/5
4. LC-MS (四极杆)联用仪器结构示意图
+
B
仪器结构
色谱-四极杆质谱仪结构示意图
2020/8/5
四极杆质量分离器
2020/8/5
仪器与结构
2020/8/5
飞行时间质量分析器
2020/8/5
2020/8/5
2020/8/5
2020/8/5
2020/8/5
2020/8/5
2020/8/5
电喷雾电离 Electrospray, API
+ ++
-
+ - -++ -
++
+ +
Evaporation
Rayleigh Limit
Reached
2020/8/5
+ +++
+-+--+-- +++
Analyte Ions
Solvent Ion Clusters
Salts/Ion pairs
Neutrals
+ +
+
++--++ ++-- /5
质谱仪只有在高真空下操作,才能减小气相离子与 其它分子的碰撞几率,才能更容易的通过。
质谱仪的真空度越高,离子越易通过
真空状态
质谱仪的真空获得装置
质谱仪要达到10-4-10-7Torr的真空度,一般是需要由 两种类型的真空泵分段来完成的。
先是由一个机械泵将系统的真空抽到10-2-10-3Torr 然后通过一个分子涡轮泵达到所需的真空度。 对于离子回旋共振这种高分辨质谱仪来说,还需要第
Library
用户自定义谱库
• User Can Create Library by their own MS • Require reliable, tunable MS to produce
reproducible Mass Spectra
化学电离的特点
由M+1分子离子峰与加成离子确认分子量 质谱较电子轰击简洁且高分子量之碎片较多,有利结
(2)大气压化学电离( APCI ) 热喷雾(100-120C), 化学电离; 适用于热稳定化合物分析
2020/8/5
大气压化学电离( APCI )
Nebulizer gas High wattage heater
HPLC inlet
Vaporizer
Dielectric capillary
Corona discharge needle
质谱的裂解过程
分子离子的形成1,2,3
m/z 29 m/z 27
M
M+.
M+.
Mass Analysis Data Recording
m/z 43
m/z 57
Plot of Bar Graph
29
43 58
m/z 15
碎片离子的产生1,2,3
质谱图的形成1,2, 3
质谱的裂解过程
-e • CH3-CH2-CH2-CH3
43
29 15
57
71 85 99 113 142
m/z
二、GC-MS联用仪器
hyphenated technology of GC-MS
1.0 DEG/MI
N
Sample
AD CB
AC
DB
HEWLETT PACKARD
5890
Gas Chromatograph (GC)
B
A
CD
Sample
Separation
第五章 色谱联用技术
2020/8/5
一、概述
generalization
质谱:纯物质结构分析 色谱:化合物分离 色谱-质谱联用:共同优点 GC-MS;LC-MS;CE-MS (毛细管电泳-质谱) 困难点: 载气(或流动液)的分离; 出峰时间监测; 仪器小型化; 关键点:接口技术(分子分离器)
2020/8/5
+++ 准分子离子
+ +
++-- ++
+ 其他离子 试样离子
电喷雾电离 Electrospray, API
电喷雾产生多电荷离子, 相对分子质量Mr计算: 选相邻峰,电荷n, n +1 m1=(Mr + n)/2 m2=(Mr + n+1)/ (n+1)
计算结果如 表。 不适用于非 极性化合物
2020/8/5
• Varian 公司真空部拳头产品 • 泵速: 280L/sec • 允许更大的色谱柱流速 • 对泵有更好的控制和监测
--超强的自我诊断功能
离子化方式
GC/MS常用的电离方式
电子撞击电离 (EI)
• 70 eV, 刚性
化学电离 (CI) - 正离子
• 12 eV, 柔性
负离子化学电离 (NCI)
• >0.1 eV, 非常柔性
(注明: >10 eV 才能电离大多数有机物)
电子轰击电离的特点:
➢能量色散小(确保质谱仪有较高的分辨率和质谱重现性); ➢电子流强度可精确控制; ➢电离效率高(确保质谱仪有很高的灵敏度); ➢结构简单,控温、操作简便; ➢质谱图提供化合物的“指纹”特性; ➢可作质量校正
谱 FT-MS
10-9 Torr (高分辨)
真空系统不好会给质谱仪带来什么问题
大量的氧会烧坏离子源的灯丝; 用作加速离子的几千伏高压会引起放电; 离子传输效率降低,极大影响检测灵敏度; 离子碰撞后产生分散,降低质谱分辨率; 引起额外的离子-分子反应,改变裂解模型, 使谱图复
杂化。
真空系统
Varian V301 Navigator 分子涡轮泵
• CH3-CH2-CH2-CH3
• CH3-CH2-CH2-CH3
m/z 58 m/z 43 m/z 29
EI源电离能量与产生碎片的关系
EI的电离能量
标准谱库
商业谱库(70 eV)
• NIST • Wiley Library • Pfleger, Maurer, Weber Drug and Pesticide
三个低温泵才能达到10-9Torr的真空度。
常见质谱仪质量分析器所需真空度
质量分析器类型
真空度要求:
四极杆 Quodrupole
10-4-10-5 Torr
离子阱 Ion Trap
10-3 Torr
飞行时间质谱 TOF
〉10-7 Torr
磁扇式质谱Sector
10-7 Torr
傅立叶变换离子回旋共振质 10-7 Torr(低分辨),
HEWLETT 5972A PACKARD
Mass Selective Detector
MS
Mass Spectrometer
A B C D
Identification
2020/8/5
气质联用色谱仪结构示意图
2020/8/5
2020/8/5
真空系统介绍
质谱仪为何需要真空
质谱仪需要在高真空下工作(10-4-10-7 Torr,视 质谱仪的不同种类而不同)。