最新循环冷却水基础知识
循环水基础知识

1工业上使用循环水的意义1.1冷却水对水质的要求在许多工业生产中,水是直接或间接使用的重要工业原料之一,其中大量的是用来作为冷却介质,通常在选用水作为冷却介质时,需注意选用的水要能满足以下几点要求:1) 水温要尽可能低一些在同样设备条件下,水温愈低,日产量愈高。
同时冷却水温度愈低,用水量也相应减少。
2) 水质不易结垢冷却水在使用中,要求在换热设备的传热表面上不易生成水垢,以免影响传热设备的传热效率。
这对工厂安全生产是一个关键。
生产实践告诉我们,由于水质不好,易结水垢而影响工厂生产的例子是屡见不鲜的。
3) 水质对金属设备不易产生腐蚀冷却水在使用中,要求对金属设备最好不产生腐蚀,如果腐蚀不可避免,则要求腐蚀性愈小愈好,以免传热设备因腐蚀太快而迅速减少有效传热面积或过早报废。
4) 水质不易滋生菌藻冷却水在使用过程中,要求菌藻获等微生物在水中不易滋生繁殖,这样可避免或减少因茵藻繁殖而形成大量的粘泥污垢。
过多的粘泥污垢会导致管道堵塞和腐蚀。
1.2循环冷却水运行时存在的问题对循环冷却水系统,冷却水在不断循环使用过程中,由于水的温度升高,水流速度的变化,水的蒸发,各种无机离子和有机物质的浓缩,冷却塔和冷水池在室外受到阳光照射、风吹雨淋、灰尘杂物的飘落,以及设备结构和材料等多种因素的综合作用,会产生以下三种危害:1) 严重的水垢附着2) 设备腐蚀3) 菌藻微生物的大量滋生,以及由此形成的粘泥污垢堵塞管道等这些危害会威胁和破坏工厂长周期地安全生产,甚至造成经济损失,因此不能掉以轻心,在日常运行时,必须要选择一种经济实用的循环水处理方案,务使上述危害减轻,直至使其不发生。
1.3循环冷却水水质处理的意义冷却水长期循环使用后,必然会带来结垢、腐蚀和菌藻滋生这三种危害,而循环冷却水的处理就是通过水质处理的办法使三种危害减轻或消除,这样做有几个好处1) 稳定生产没有水垢附着,腐蚀穿孔和污泥堵塞等危害,系统中的换热器可以始终在良好的环境中工作,除计划中的检修外,意外的停产检修事故就会减少,从而在循环冷却水入面为工厂长周期安全生产提供了保证。
循环冷却水基本知识PPT-BUCKMAN

D = 漂移损失drift (gpm or m3/h)
MU = 补充水makeup (gpm or m3/h
BDC = 控制排污量 controlled blowdown (gpm or m3/h)
BD = 总排污量 total blowdown (gpm or m3/h)
L = 渗漏 leakage (gpm or m3/h)
排放
-将塔内溶解固体高的水部分排出从而降低循环水的溶解 固体含量(或电导率)。 -切记,高电导率。
易发生矿物结垢。 这些被排放的高浓度的水被等量(含蒸发部分)的低浓 度的新鲜水所补充。
温降 – 温差
- 较热回水与较冷的供应水之间的温差。
Part Three:冷却水易发生的问题
结垢
微生物 滋长
腐蚀
苯比热为0.10 因此水是一种理想的用于冷却塔的传热介质
为什么水不是十全十美的冷却介质 ?
水是“万能溶剂” - 易溶解氧气、二氧化碳等气体 钙、镁、铁等固体 粘土、淤泥等悬浮物
所有这些污染物使水对工厂设备会造成损害。
重要化学特性
电导率 - 能传导电流的能力.
纯水(不含可溶固体)不会导电。 随着水中集聚越多溶解的物质,它的电导率也越大。
冷却过程
Cold cooling water in
Cooled process out
Hot process in
Hot cooling water out
Part Two:冷却水术语
冷却塔基本概念
L
T1Dຫໍສະໝຸດ 热负荷冷却塔BDC CB
T2 R
MU
参数:
CM
E = 蒸发量 evaporation (gpm or m3/h)
工业循环冷却水系统基础知识及运行管理详解(干货分享)

工业循环冷却水系统基础知识及运行管理详解工业循环冷却水系统在运行过程中,由于水分蒸发、风吹损失等情况使循环水不断浓缩,其中所含的盐类超标,阴阳离子增加、pH值明显变化,致使水质恶化,而循环水的温度,pH值和营养成分有利于微生物的繁殖,冷却塔上充足的日光照射更是藻类生长的理想地方。
而结垢控制及腐蚀控制、微生物的控制等等,必然的需要进行循环水处理。
一、循环水运行过程中主要产生的问题(1)水垢由于循环水在冷却过程中不断地蒸发,使水中含盐浓度不断增高,超过某些盐类的溶解度而沉淀。
常见的有碳酸钙、磷酸钙、硅酸镁等垢。
水垢的质地比较致密,大大的降低了传热效率,0.6毫米的垢厚就使传热系数降低了20%。
(2)污垢污垢主要由水中的有机物、微生物菌落和分泌物、泥沙、粉尘等构成,垢的质地松软,不仅降低传热效率而且还引起垢下腐蚀,缩短设备使用寿命。
(3)腐蚀循环水对换热设备的腐蚀,主要是电化腐蚀,产生的原因有设备制造缺陷、水中充足的氧气、水中腐蚀性离子(Cl-、Fe2+、Cu2+)以及微生物分泌的黏液所生成的污垢等因素,腐蚀的后果十分严重,不加控制极短的时间即使换热器、输水管路设备报废。
(4)微生物黏泥因为循环水中溶有充足的氧气、合适的温度及富养条件,很适合微生物的生长繁殖,如不及时控制将迅速导致水质恶化、发臭、变黑,冷却塔大量黏垢沉积甚至堵塞,冷却散热效果大幅下降,设备腐蚀加剧。
因此循环水处理必须控制微生物的繁殖。
二、循环水的浓缩倍数循环水浓缩倍数是指循环水系统在运行过程中,由于水分蒸发、风吹损失等情况使循环水不断浓缩的倍率(以补充水作基准进行比较),它是衡量水质控制好坏的一个重要综合指标。
浓缩倍数低,耗水量、排污量均大且水处理药剂的效能得不到充分发挥;浓缩倍数高可以减少水量,节约水处理费用;可是浓缩倍数过高,水的结垢倾向会增大,结垢控制及腐蚀控制的难度会增加,水处理药剂会失效,不利于微生物的控制,故循环水的浓缩倍数要有一个合理的控制指标。
循环水冷却知识汇总

循环水冷却知识汇总问:给排水循环水冷却塔是什么?答:干式冷却塔干式冷却难的热水在散热翅管内流动,靠与管外空气的温差,形成接触传热而冷却。
所以干式冷却塔的特点是:①没有水的蒸发损失,也无风吹和排污损失,所以干式冷却塔适合于缺水地区,如我国的北方地区。
因为没有蒸发,所以也没有但空气从冷却塔出口排出所造成的污染。
②水的冷却靠接触传热,冷却极限为空气的干球温度效率低,冷却水温高。
③需要大量的金属管(铝管或钢管),因此造价为同容量湿式塔的4~6倍。
因干式冷却塔有后两点不利因素,所以在有条件的地区,应尽量采用湿塔。
干塔可以用自然通风,也可以用机械通风。
以火电厂常用的干式冷却塔为例,分为间接冷却和直接冷却两类。
间接冷却是指用冷却塔中冷却后的水,送往凝汽器中冷却由汽轮机井出的乏汽。
直接冷却是指不用凝汽器,将汽轮机排出的乏汽,用管道引人冷却塔直接冷却,变为凝结水,用水泵送回锅炉重复使用。
海勒(Heller)系统间接空冷干式自然通风冷却塔。
它的特点是使用喷射式凝汽器,汽轮机排出的乏汽与从冷却塔来的冷水,在凝汽器内直接混合,因此端差很小。
混合后的水,约2%送回锅炉,其余的水送到冷却塔冷却。
因冷却水和锅炉水为同一种水,所以对水质要求高。
另外一个特点是,经冷却塔冷却后的水仍有较大的余压,在送人凝汽器以前,先用小型水轮发电机口收能量。
它的散热器放在塔简的外边,类似湿式横流塔。
散热器也可以像湿式逆流塔一样放在塔筒里面,但为了排走散热器中的水,散热器不是完全水平布置,而有一定的坡度。
另外一种间接空冷塔,使用表面式凝汽器,乏汽和冷却水互不相混。
散热器用翅片管或螺纹管,材质为钢或铝。
管断面为椭圆形或圆形。
直接空冷塔从汽轮机排出的乏汽,通过管道直接送入冷却塔内的散热管,用风机通风冷却成凝结水,不要凝汽器,所以称直接空冷。
因为是将蒸汽直接送人散热管,而不像间接空冷送人冷却塔的是热水、因蒸汽体积比水大得多,所以送汽管特别粗,直径约为间接空冷的三倍多。
循环冷却水基础知识

循环冷却水基础知识循环冷却水基础知识一.循环水工作原理因循环水生产的工艺特点决定,水在循环使用的过程中,会出现水温升高、水体平衡破坏以及结垢、腐蚀、微生物危害等问题。
因此循环水处理需解决两方面的问题:a.要使已升高的水温降低,以保持较好的冷却效果-----称之为循环水冷却。
二.水与空气对流接触时,如果空气的温度低于水的温度,则水中的热量会直接传给空气,使空气温度升高,水温降低。
二者温差越大,传热效果越好。
(3)辐射传热辐射传热不需要传热介质的作用,而是由一种电磁波的形式来传播热能的现象。
辐射传热只是在大面积的冷却池内才起作用。
在冷却塔的传热中,辐射散热可以忽略不计。
这三种散热过程在水冷却中所起的作用,随空气的物理性质不同而异。
春、夏、秋三季内,室外气温较高,因此以蒸发散热为主,最炎热的夏季的蒸发散热量可达总热量的90%以上。
冬季空气温度较低,接触散热的作用增大,从夏季的10%~20%增加到40%~50%,严寒的天气甚至可增加到70%左右。
三.垢剂,破坏结垢离子的结晶长大而达到阻垢的目的。
(2)缓蚀处理在循环水系统中,主要是通过加缓蚀剂在金属表面形成一层致密的保护膜以阻止电化学反应发生的方法来控制腐蚀,系统开工初期都要投加高浓度的缓蚀剂进行预膜,正常运行后按要求连续投加进行补膜。
(3)悬浮物、浊度、微生物的控制循环水中悬浮物、浊度等可通过旁滤处理进行去除,同时利用阻垢剂来提高极限碳酸盐硬度,限制循环水中的CaCO3的析出。
微生物可通过投加杀菌剂来得到控制,一般要求是氧化性和非氧化性的杀菌剂混合使用。
四.循环冷却水的任务式中α—蒸发损失率,% α=C(T1-T2)%R——系统中循环水量,m3/h B——排污水量,m3/h E——蒸发水量,m3/hT 1,T2——为循环水冷却水进、出冷却塔的温度,℃C——损失系数。
与季节有关:夏季(25~30℃)为0.15~0.16冬季(-15~ -10℃)为0.06~0.08春秋季(0~10℃)为0.10~0.121%D——风吹损失量,m/h;N——浓缩倍数。
循环冷却水工作原理

循环冷却水工作原理引言:循环冷却水是工业生产中常用的一种冷却方式,它通过将水循环流动,将热量带走,以达到降低温度的目的。
本文将介绍循环冷却水的工作原理及其应用。
一、循环冷却水的定义与作用循环冷却水是指通过水泵将水在冷却设备中循环流动,以吸收热量并将其带走的一种冷却方式。
它主要用于工业生产中需要降低设备或材料温度的场合,如冶金、化工、电力等行业。
二、循环冷却水的工作原理1. 水泵供水:循环冷却水系统首先需要通过水泵将冷却水从水源处抽取出来,然后通过管道输送到冷却设备。
2. 冷却设备:冷却设备通常由散热器、冷却塔等组成。
冷却水从水泵流入冷却设备后,会与热源接触,吸收热量。
3. 热量传递:冷却水与热源接触后,热量会从热源传递到冷却水。
这是因为热量会自高温区域向低温区域传递。
4. 冷却水循环:冷却水经过吸收热量后,温度升高,然后被泵送回到水源处进行冷却。
循环冷却水系统通过不断循环流动,使冷却水能够持续吸收热量并带走。
三、循环冷却水的优势与应用1. 高效冷却:循环冷却水系统能够将热量快速带走,因此可以实现高效冷却,提高设备的工作效率。
2. 节能环保:循环冷却水系统通过不断循环利用水资源,减少了水的消耗。
同时,它也能减少热能的损失,提高能源利用效率,达到节能减排的目的。
3. 应用广泛:循环冷却水系统广泛应用于各个行业,如电力发电厂、冶金工业、化工厂等。
它不仅可用于设备的冷却,还可用于材料的冷却、设备的洗涤等多种场合。
四、循环冷却水系统的注意事项1. 水质处理:循环冷却水系统中的水质对系统的正常运行至关重要。
需要定期进行水质测试和处理,保持水质清洁,防止水垢、腐蚀等问题的发生。
2. 设备维护:定期对冷却设备进行维护保养,清洗冷却塔、更换散热器等,以确保设备的正常运行和寿命。
3. 温度控制:根据实际需要,对循环冷却水系统进行温度控制,防止温度过高或过低对设备造成损坏。
结论:循环冷却水通过将水循环流动,以吸收热量并将其带走的方式,实现了设备和材料的降温。
循环冷却水知识

循环冷却水处理第一节循环冷却水处理概况一、冷却系统的类型1、直流系统早期工厂的冷却水系统采取直流系统。
冷却水从水源流经热交换器后又回流到水源处。
优点是快速有效:水源处的水温较低;灵活性:可在最小的传热面条件下冷却。
表现为腐蚀、污垢和微生物繁殖,但相对较小;系统内由水引起的问题主要取决于原水的性质。
由于水在系统内没有浓缩,一般不会发生明显的物理和化学变化,冷却水系统内水的流量和温度的变化、加上水的性质各不相同(河水、湖水常含有大量悬浮物和沉积物,且随季节变化;水中常含铁和结垢的盐类),使得系统的管理工作更加复杂。
图3-1 直流冷却水系统图3-2 封闭式循环冷却水系统2、密闭式循环冷却水系统1)定义水密闭循环,并交替冷却和加热,而不与空气接触。
在密闭系统中,冷却水携带的热量通常通过水-水换热器传给敞开式循环水系统中的循环水,热量再从水中散发到大气中去。
2)组成完全密闭的循环水系统;用于对水冷却或去除水中的热量的冷却器或热交换器。
3)密闭系统在工业上的应用(1)冷却气体管路的气体来冷却燃汽轮机或变压器冷却用的油冷却器;(2)柴油发动机和气体发动机;(3)制冷机;(4)以控制可靠的工艺过程的温度为目的:原子反应堆的辅助冷却器;炼铁高炉的炉体、风口等的冷却等。
4)密闭系统的优点(1)水温易控制;(2)水质问题的控制简单化:补充水量少;(3)补充水仅用于补偿水泵填料的泄露水量或因检修而排放的水量;(4)水的蒸发很少;(5)结垢程度较轻:一般用软化水或去离子水。
(6)腐蚀问题不严重:氧不是处于饱和状态。
3、敞开式循环冷却水系统1)定义冷却水通过热交换器后,水温提高成为热水,热水经冷却塔曝气与空气接触,由于水的蒸发散热和接触散热使水温降低,冷却后的水再循环利用。
又称为冷却塔系统。
图3-3 敞开式循环冷却水系统1-补充水(M);2-冷却塔;3-冷水池;4-循环水泵;5-渗漏水(F);6-冷却水;7-冷却用换热器;8-热水(R);9-排污水(B);10-蒸发损失(E);11-风吹损失(D);12-空气2)水冷却原理通过水与空气接触,由以下三个过程共同作用的结果。
循环冷却水基础知识

第一章工业循循环冷却水处理知识总则为了贯彻国家节约水资源和保护环境的方针政策,促进工业循环冷却水的循环利用和污水资源化,有效控制和降低循环冷却水所产生的各种危害,保证设备的换热效率和延长使用寿命,减少排污、达标排污的要求,减少对环境的污染和破坏,使工业循环冷却水处理达到技术先进、经济适用、安全可靠的运行方针。
循环冷却水的处理,是许多学科交叉渗透的边缘科学,它涉及到无机化学、高分子化学、电化学、数学、微生物和工程学等领域,本手册为本单位(兰州华星高科技开发有限公司)技术售后服务而制定,根据火力发电厂水质的监督和处理原理而编写,可提供化验员及即将从事工业循环冷却水处理人员学习,本手册力求自己现有的水平的基础上,尽可能满足工业循环冷却水处理工作者的需求,廖误之处,敬请赐教。
目录一、循环冷却水系统各术语定义和符号 (4)1.术语 (4)2.符号 (8)二、循环冷却水处理指标控制及平衡关系 (10)1.间冷开式系统循环冷却水换热设备的控制条件 (10)2.循环冷却水水质指标 (10)3循环冷却水计算平衡关系 (13)三.循环冷却水系统中沉积物及其控制 (16)1.影响结垢的主要因素 (16)1.1水质 (16)1.2温度 (16)1.3流速 (17)1.4表面状态 (17)2.垢的形成机理 (17)3.阻垢剂的作用机理 (17)3.1螯合 (18)3.2低剂量效应 (18)3.3晶格畸变 (18)3.4分散作用 (18)4.腐蚀问题 (19)4.1影响腐蚀速度的因素 (19)5.缓蚀剂的缓蚀机理 (22)6.微生物问题 (23)6.1冷却水中微生物的主要危害 (23)6.2循环冷却水中微生物的处理 (25)7.循环水运行条件 (26)7.1.浓缩倍数 (26)7.2 PH值 (27)一、循环冷却水系统各术语定义和符号1.术语1.1循环冷却水系统recirculating cooling wanger system以水作为冷却介质,并循环运行的一种给水装置,由换热设备、冷却设备、处理设施、水泵、管道及其他有关设施组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
循环冷却水基础知识一.循环水工作原理因循环水生产的工艺特点决定,水在循环使用的过程中,会出现水温升高、水体平衡破坏以及结垢、腐蚀、微生物危害等问题。
因此循环水处理需解决两方面的问题:a.要使已升高的水温降低,以保持较好的冷却效果-----称之为循环水冷却。
b.要防止因水体平衡破坏和系统特点导致的结垢物沉淀、水质腐蚀及微生物繁殖的危害,以保持整个循环水系统正常运行,针对这方面进行的水质处理称为循环水处理。
二.循环水冷却原理:本装置采用的是敞开式循环冷却水系统,水的冷却主要在冷却塔内完成。
循环水经过换热设备升温后返回至冷却塔与空气直接接触,在蒸发散热、接触散热和辐射散热三个过程的共同作用下得到冷却。
(1)蒸发散热水在冷却设备中形成大小水滴或极薄的水膜,扩大其与空气的接触面积和延长接触时间,使部分水蒸发,水汽从水中带走汽化所需的热量,从而使水冷却。
(2)接触传热水与空气对流接触时,如果空气的温度低于水的温度,则水中的热量会直接传给空气,使空气温度升高,水温降低。
二者温差越大,传热效果越好。
(3)辐射传热辐射传热不需要传热介质的作用,而是由一种电磁波的形式来传播热能的现象。
辐射传热只是在大面积的冷却池内才起作用。
在冷却塔的传热中,辐射散热可以忽略不计。
这三种散热过程在水冷却中所起的作用,随空气的物理性质不同而异。
春、夏、秋三季内,室外气温较高,因此以蒸发散热为主,最炎热的夏季的蒸发散热量可达总热量的90%以上。
冬季空气温度较低,接触散热的作用增大,从夏季的10%〜20%增加到40%〜50% ,严寒的天气甚至可增加到70% 左右。
冷却塔一般由通风筒、配水系统、淋水装置、通风设备、收水器和集水池组成,其中淋水装置也称填料,是冷却设备中的一个关键部分,其作用是将需要冷却的热水多次溅散成水滴或形成水膜,以增加水和空气的热交换。
冷却塔中水的冷却过程主要是在淋水装置中进行的。
三.循环水处理基本概念循环水处理是用物理的或化学的方法使循环水即不产生结垢,也不发生腐蚀,同时去除循环水中悬浮杂质,杀灭循环水中微生物的过程。
(1 )阻垢处理针对水垢形成的原因,在循环水处理工艺中,一方面通过排污或补加低硬度水降低成垢离子的浓度,使其保持在允许的浓度范围内以避免结垢。
另一方面,通过投加阻垢剂,破坏结垢离子的结晶长大而达到阻垢的目的。
(2)缓蚀处理在循环水系统中,主要是通过加缓蚀剂在金属表面形成一层致密的保护膜以阻止电化学反应发生的方法来控制腐蚀,系统开工初期都要投加高浓度的缓蚀剂进行预膜,正常运行后按要求连续投加进行补膜。
(3)悬浮物、浊度、微生物的控制循环水中悬浮物、浊度等可通过旁滤处理进行去除,同时利用阻垢剂来提高极限碳酸盐硬度,限制循环水中的CaCO 3 的析出。
微生物可通过投加杀菌剂来得到控制,一般要求是氧化性和非氧化性的杀菌剂混合使用。
四.循环冷却水的任务循环水装置的主要任务是供全厂系统生产冷却用水。
将自来水公司提供的新鲜水补充入循环水池后,用循环水泵加压送合成,尿素等系统做为冷却水,为搞好安全生产,降低系统腐蚀,结垢在最低程度,使用换热器的换热效果达到最佳状态,必须控制循环水质在工艺指标范围内。
五.冷却水平衡冷却水在循环过程中水量的损失共有四部分水量损失:(1)蒸发水量E:冷却过程中,从冷却水中蒸发逸入大气的水蒸汽量可由下式计算:E= a R —B)m3/h式中a—蒸发损失率,% a=C (T1-T2)% R ——系统中循环水量,m3/h B ——排污水量,m3/hE ――蒸发水量,m3/hT i, T2 ----------- 为循环水冷却水进、出冷却塔的温度,CC ——损失系数。
与季节有关:夏季(25~30 °C)为0.15〜0.16冬季(-15〜-10 C)为0.06〜0.08 春秋季(0〜10 C)为0.10〜0.12蒸发水量 E 在实际应用中的粗略计算是以冷却塔进、出水温差 5.5C,E 取总循环水量的1%。
(2)风吹损失水量D由于空气流,被空气带走部分水滴。
对于强制通风冷却塔,风吹损失D 为总循环水量的0.1% 。
(3)排污水量B为了控制冷却水循环过程中因蒸发损失而引起的浓缩过程,必须人为地排掉的水量。
B=E/( N-1 )-D式中 B ——排污水量,m3/hD 风吹损失量,m3/h;N ――浓缩倍数。
(4 )渗漏损失F在管道和储水系统中因渗漏而损失的水量。
在敞开式循环冷却水系统,为维持系统的水量平衡,补充水量M应是蒸发水量E、风吹损失水量D、排污水量B和渗漏损失F 各项水量损失之和,如下图3 —1所示。
E DH ------ ► FM ______ ___ ___B图3 —1循环水系统水量平衡示意图M=E+D+B+F(5)浓缩倍数的计算浓缩倍数的含义是以循环水的含盐量与补充含盐量之比,是微量水稳剂配方与生产经济运行的重要指标。
六.冷却水水质处理原理冷却水在循环使用过程中,水在冷却塔内和空气充分接触,使水中的溶解氧得到补充,所以循环水中溶解氧总是饱和的。
水中溶解氧是造成金属电化学腐蚀的主要原因,这是冷却水循环使用后易带来的问题之一。
水在冷却塔中蒸发,使循环水中含盐量逐渐增加,加上水中二氧化碳在塔中解析逸散,使水中碳酸钙在传热面上结垢析出的倾向增加,这是问题之二。
冷却水和空气接触,吸收了空气中大量的灰尘、泥沙、微生物及其抱子,使系统的污泥增加。
冷却塔内的光线、适宜的温度、充足的氧和养分都有利于细菌和藻类的生长,从而使系统粘泥增加,在换热器内沉积下来,造成了粘泥的危害,这是水循环使用后易带来的问题之三。
循环水及补充水的水质中各种的杂质的最高最低允许含量,下表可提供参考七•腐蚀及影响因素由于和周围介质相互作用,使材质(通常是金属)遭受破坏或是材料性能恶化的过程称之为腐蚀。
1、水中溶解氧对腐蚀的影响:在冷却水中有较丰富的溶解氧,在通常情况下,水中含026〜10 mL/L。
氧对钢铁的腐蚀有两个相反的作用:(1)参加阴极反应,加速腐蚀;(2)在金属表面形成氧化物膜,抑制腐蚀。
一般规律是在氧低浓度时起去极化作用,加速腐蚀,随着氧浓度的增加腐蚀速度也增加。
但达到一定值后,腐蚀速度开始下降,这时的溶解氧浓度称之为临界点值。
腐蚀速度减小的原因是由于氧使碳钢表面生成氧化膜所致。
溶解氧的临界点值与水的PH值有关,当水的PH值为6时,一般不会形成氧化膜。
所以溶解氧越多,腐蚀越快。
当水的PH值为7左右时,溶解氧的临界点浓度为20 m g/L, PH值升高到8时,其临界点浓度为16 m g /L。
因此,碳钢在中性或微碱性水中时,腐蚀速度起先随溶解氧的浓度增加而增加,但过了临界点,腐蚀速度随溶解氧的浓度升高而降低,这也是碳刚在碱性水中腐蚀速度比在酸性水中要低的原因。
—般来说,循环冷却水在30 C左右时,溶解氧8~9 m g/L, 往往不会超过临界点值,所以溶解氧常是加速腐蚀的主要因素。
在热交换器中,当水不能充满整个热交换器时在水线附近特别容易发生水线腐蚀,这是因为在热交换器中,水温升高,溶解氧逸到上部空间,在水线附近产生氧的浓差电池,导致加速这种局部腐蚀。
2、水中溶解盐类的浓度对腐蚀的影响:水中溶解盐类的浓度对腐蚀的影响,综合起来有以下三个方面:(1)水中溶解盐类的浓度很高时,将使水的导电性增大,容易发生电化学作用,增大腐蚀电流使腐蚀增加。
(2)影响Fe(OH)2 的胶体状沉淀物的稳定度,使保护膜质量变差,增大腐蚀。
(3)可使氧的溶解度下降,阴极过程减弱,腐蚀速度变小。
上面综合作用的结果,一般来说是使腐蚀增加。
关于水中不同离子与腐蚀的关系,一般有以下原则性认识:(1)水中Cl-、SO 42-等离子的含量高时,会增加水的腐蚀性。
Cl-不仅对不锈钢容易造成应力腐蚀,而且还容易破坏金属上的氧化膜,因此, C l -也是使碳刚产生点蚀的主要原因。
(2)水中的PO 43-、CrO42-、WO 42-等离子能钝化钢铁或生成难溶沉淀物覆盖金属表面,起到抑制腐蚀的作用。
(3)Ca2+、Zn2+、Fe2+等离子由于能与阴极产物OH-生成难溶的沉淀沉积于金属表面,起到防腐蚀作用。
而Ca2+、Fe2+等具有氧化性的阳离子,由于能促进阴极去极化作用,因而是有害的。
3、水的温度对腐蚀的影响:象大多数化学反应一样,腐蚀的速率随水温的升高而成比例地增加。
一般情况下,水温每升高10 C,钢铁的腐蚀速率约增加30%。
这是由于当温度升高时: (1 )氧扩散系数增大,使得溶解氧更容易达到阴极表面而发生去极化作用;(2)溶液电导增加,腐蚀电流增大;(3)水的粘度减小,有利于阳极和阴极反应的去极化作用。
所有这些将使腐蚀速度加大。
但是另一方面,水温度的提高可使水中溶解氧浓度减小。
因此,以上多方面的因素对实际装置表现也不一样。
在开放系统中,起先随温度的上升腐蚀率变大,到80 C时,腐蚀率最大。
以后即随温度的升高而急剧下降,这是因为温度升高所引起的反应速率的增大不如溶解氧浓度减小所引起的反应速率的下降来得大。
冷却水中如含有侵蚀性离子Cl-时,则随温度增加对奥氏体不锈钢的腐蚀性急剧增大,应力腐蚀开裂的可能性大大增加。
4、水的PH 值对腐蚀的影响:在自然界,正常温度下,水的PH 值一般在 4.3~10.0 之间,碳刚在这样的水溶液中,它的表面常常形成Fe(OH )2 覆盖膜。
此时碳钢腐蚀速度主要决定于氧的扩散速度而几乎与PH 值无关,在PH 值为4~10 之间,腐蚀率几乎是不变的。
PH 在10 以上时,铁表面被钝化,腐蚀速度继续下降。
当PH 低于 4.0 时,铁表面保护膜被溶解,水中H+离子浓度因而发生析氢反应腐蚀速度将急剧增加。
实际上,由于水中钙硬的存在,碳钢表面常有一层CaCO 3 保护膜,当PH 值偏酸性时,则碳刚表面不易形成有保护性的致密的CaCO 3 垢层,故PH 值低时,其腐蚀率要比PH 值偏碱性时高些。
5、水流速度对腐蚀的影响碳钢在冷却水中被腐蚀的主要原因是氧的去极化作用,而决定腐蚀速度的又与氧的扩散速度有关。
流速的增加使金属壁和介质接触面的层流层变薄而有利于溶解氧扩散到金属表面。
同时流速较大时,可冲去沉积在金属表面的腐蚀、结垢等生成物,使溶解氧更易向金属表面扩散,导致腐蚀加速,所以碳刚的腐蚀速度是随水流速度的升高而加大。
随着流速进一步的升高,腐蚀速度会降低,这是因流速过大,向金属表面提供氧量已达到足使金属表面形成氧化膜,起到缓蚀的作用。
如果水流速度继续增加,则会破坏氧化膜,使腐蚀速度再次增大。
当流速很高时(大于20m/s ),腐蚀类型将转变为以破坏为主的冲蚀。
一般来说,水流速度在0.6~1m/s 时,腐蚀速度最小。
当然水流速度的选择不能只从腐蚀角度出发,还要考虑到传热的要求,流速过低会使传热效率降低和出现沉积,故水走管程的换热器的冷却水流速不宜小于0.9m/s 。