苏教版高一数学必修4三角函数单元测试

合集下载

苏教版高中数学必修4三角函数单元测试.doc

苏教版高中数学必修4三角函数单元测试.doc

南京师范大学附属扬子中学三角函数(苏教版必修4)单元测试一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于:A.52B.-52C.51D.-51 2.若cos(π+α)=-23,21π<α<2π,则sin(2π-α)等于:A.-23 B.23 C.21 D.±23 3. 已知sin α>sin β,那么下列命题成立的是:A.若α,β是第一象限角,则cos α>cos βB.若α,β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β 4.若sin x +cos x =1,那么sin n x +cos n x 的值是:A .1B .0C .-1D .不能确定 5. 函数y=-x ·cos x 的部分图象是:6. 函数x x y sin cos 2-=的值域是: A 、[]1,1-B 、⎥⎦⎤⎢⎣⎡45,1C 、[]2,0D 、⎥⎦⎤⎢⎣⎡-45,17. 已知:函数sin()y A x ωϕ=+,在同一周期内,当12x π=时取最大值4y =;当712x π=时,取最小值4y =-,那么函数的解析式为: A .4sin(2)3y x π=+ B. 4sin(2)3y x π=-+C 4sin(4)3=+y x π. D. 4sin(4)3y x π=-+8. 在函数y =|tan x |,y =|sin(x +2π)|,y =|sin2x |,y =sin(2x -2π)四个函数中,既是以π为周期的偶函数,又是区间(0,2π)上的增函数个数是:A .1B .2C .3D .49. 定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为: A. 21- B. 23C. 23- D 21 10. 下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是:A.)32sin(π-=x y B.)62sin(π-=x y C .)62sin(π+=x yD .)62sin(π+=x y11.函数f(x)=cos(3x +φ)的图象关于原点中心对称,则:A .φ=π2B .φ=k π+π2C .φ=k πD .φ=2k π-π2(k ∈Z)12.2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于:A .1B .2524-C .257D .725-二.填空题:本大题共4小题,每小题4分,共16分。

高一数学苏教版必修4三角函数单元检测题

高一数学苏教版必修4三角函数单元检测题

因 a·b m ,又 a·b cos ·tan
1
2 .故 cos ·tan
1
m 2.
4
4
由于 0
π,所以 4
2cos2 sin 2( cos sin
) 2cos2 sin(2 2π) cos sin
2cos2 cos
sin 2 sin
2cos (cos sin ) cos sin
1 tan 2cos
点 ( ,1) 和最低点 (7 , 3) ,求此函数的解析式
12
12
2 ) 在同一周期内有最高
20. 已知函数 f ( x) 2 cos x(sin x cos x) 1, x R.
莫愁前路无知己,天下谁人不识君。
(I) 求函数 f (x) 的最小正周期; 3
(II) 求函数 f ( x) 在区间 , 上的最小值和最大值 . 84
B. 必要而不充分条件
C. 充分必要条件 D. 既不充分也
8. 已知函数 f ( x) sin x
( 0) 的最小正周期为 ,则该函数的图象
莫愁前路无知己,天下谁人不识君。
A.关于直线 x 对称
B.关于点 ,0 对称 C.关于点 ,0 对称
D.关于直线 x 对称
9.将 y
x 2cos
π 的图象按向量 a
21.已知 0< < , 为f (x) cos(2x
) 的最小正周期,
r a
=(
tan(
1 +
),- 1),
4
8
4
r
uuru
2cos2 sin 2(
)
b =( cos ,2),且 agb =m,求
.
cos sin

必修4三角函数单元测试题(含答案)

必修4三角函数单元测试题(含答案)

必修4三角函数单元测试题(含答案) 三角函数单元测试1.sin210的值是多少?A。

3/2B。

-3/2C。

1/2D。

-1/22.终边相同的角是哪一组?A。

π或kπB。

(2k+1)π或(4k±1)π(k∈Z)C。

kπ±π/3或π/3k(k∈Z)D。

kπ±π/6或kπ±π/6(k∈Z)3.已知cosθ·tanθ<0,那么角θ在哪两个象限之间?A。

第一或第二象限角B。

第二或第三象限角C。

第三或第四象限角D。

第一或第四象限角4.已知弧度数为2的圆心角所对的弦长是2,则这个圆心角所对的弧长是多少?A。

2sin1B。

sin2C。

2D。

π5.要得到函数y=2sin(xπ/36),x∈R的图像,只需把函数y=2sinx,x∈R的图像上所有的点:A。

向左平移π/36个单位长度,再把所得各点的横坐标不变,纵坐标伸长到原来的3倍B。

向右平移π/36个单位长度,再把所得各点的横坐标不变,纵坐标伸长到原来的3倍C。

向左平移π/36个单位长度,再把所得各点的横坐标不变,纵坐标缩短到原来的1/3D。

向右平移π/36个单位长度,再把所得各点的横坐标不变,纵坐标缩短到原来的1/36.设函数f(x)=sin((x+π/3)/3)(x∈R),则f(x)在区间:A。

(2π/7,2π/3)上是增函数B。

(-π,2π/3)上是减函数C。

(π,8π/4)上是增函数D。

(-π,2π/3)上是增函数7.函数y=Asin(ωx+φ)(ω>0,φ<π)的部分图象如图所示,则函数表达式是:A。

y=-4sin(x+π/4)B。

y=4sin(x-π/4)C。

y=-4sin(x-π/4)D。

y=4sin(x+π/4)8.函数y=sin(3x-π/4)的图象是中心对称图形,其中它的一个对称中心是:A。

(-π/4,0)B。

(-π,0)C。

(π,0)D。

(11π/12,0)9.已知f(1+cosx)=cos2x,则f(x)的图象是下图的:(删除明显有问题的段落)4.A5.D6.C7.B8.A9.C10.B二、填空题11.012.513.1/214.-sin(15π/4)三、解答题15.cosα=√(1-sin²α)=√(1-1/4)=√(3/4)=±√3/216.M={θ|θ∈[0,π/4]},N={θ|θ∈[π/4,π]}17.(1)sin²θ+cos²θ+sinθ+cosθ+2sinθcosθ=1+sinθ+cosθsinθ+cosθ+2sinθcosθ=sinθ+cosθ2sinθcosθ=0sinθ=0或cosθ=0θ=kπ或θ=kπ±π/2 (k∈Z)2)将sinθ和cosθ代入原方程得m=1/218.(1)f(x)=sin(3x-π/2)2)a=2,b=419.最大值为1/√3,最小值为-120.(I)π/2II)g(x)=2cos(2x-π/2)-sin(2x)二、填空题11.412.013.414.20三、解答题15.已知 $A(-2,a)$ 是角 $\alpha$ 终边上的一点,且$\sin\alpha=-\dfrac{a}{\sqrt{a^2+16}}$,求 $\cos\alpha$ 的值。

苏教版高中数学必修4同步测试:1.2任意角的三角函数

苏教版高中数学必修4同步测试:1.2任意角的三角函数

1.2任意角的三角函数1x 567811.(10分)已知方程sin(α-3π)=2cos(α-4π),求)sin()2π3sin(2)π2cos(5)πsin(αααα----+-的值.12.(10分)已知1tan tan αα,是关于x 的方程 2230x kx k -+-=的两个实根,且ππ273<<α,求ααsin cos +的值13.(12分)已知,2(cos sin ≤=+m m xx)1≠m 且.求:(1)x x 33cos sin +的值; (2)x x 44cos sin +的值14.(12分)已知=3+2,求++2的值.1.2任意角的三角函数答题纸得分:一、填空题1. 2. 3. 4.5. 6. 7. 8.二、解答题9.10.11.12.13.14.1.2任意角的三角函数答案一、填空题 1.三解析:22(),().2422k k k k k k ααππππ+<<π+π∈π+<<π+∈Z Z 当2()k n n =∈Z 时,2α在第一象限;当21()k n n =+∈Z 时,2α在第三象限.而coscoscos0222ααα=-⇒≤,2α∴在第三象限.2.<解析:32,sin 20;3,cos30;4,tan 40sin 2cos3tan 40.222πππ<<π><<π<π<<><,所以 3.-33解析:tan690°=tan(-30°+2×360°)=tan(-30°)=-tan30°=-33. 4.三解析:注意到2013°=360°×5+(180°+33°),因此2013°角的终边在第三象限,所以sin2013°<0, cos2013°<0,所以点A 位于第三象限. 5.②解析:1717sin0,cos 01818MP OM ππ=>=<. 6.四、三、二解析:当θ是第二象限角时,sin 0,cos 0θθ><; 当θ是第三象限角时,sin 0,cos 0θθ<<;当θ是第四象限角时,sin 0,cos 0θθ<>.7.解析:原式=cos390°-sin390°=cos30°-sin30°=. 8.0解析:原式=cos α+sin α=cos α+sin α =cos α·+sin α·=0.二、解答题 9.解:(1)当的终边落在第一象限的角平分线上时:sin α=,cos α=,tan α=1;(2)当的终边落在第三象限的角平分线上时:sin α=,cos α=,tan α=1.10.解:∵θ的终边过点(x ,-1)(x ≠0),∴tan θ=.又tan θ=-x ,∴=1,∴x =±1. 当x =1时,sin θ=-,cos θ=; 当x =-1时,sin θ=-,cos θ=-. 11.解:∵sin(α-3π)=2cos(α-4π),∴-sin(3π-α)=2cos(4π-α), ∴-sin(π-α)=2cos(-α), ∴sin α=-2cos α且cos α≠0,∴43cos 4cos 3cos 2cos 2cos 5cos 2sin cos 2cos 5sin -=-=--+-=+-+=αααααααααα原式.12.解:21tan 31,2tan k k αα⋅=-=∴=±Q , 而ππ273<<α,则tan α>0,1tan 2,tan k αα+==得tan 1α=,则sin cos αα==,cos sin αα∴+=13.解:由sin cos ,x x m +=得212sin cos ,x x m +=即21sin cos .2m x x -= (1)233313sin cos (sin cos )(1sin cos )(1)22m m m x x x x x x m --+=+-=-=, (2)24244222121sin cos 12sin cos 12()22m m m x x x x --+++=-=-=.14.解:由已知得,∴tan α=.∴+sin(+α)cos(+α)+2 =+(-cos α)(-sin α)+2 =+sin αcos α+2= = =.。

苏教版高中数学必修4三角函数的图象和性质单元练习题

苏教版高中数学必修4三角函数的图象和性质单元练习题

高中数学学习材料 (灿若寒星 精心整理制作)三角函数的图象和性质单元练习题一、选择题(5×12=60分) 1.函数y =tan 35x 是A.周期为π的偶函数B.周期为53π的奇函数C.周期为53 π的偶函数 D.周期为π的奇函数2.已知f (x )=sin(x +π2 ),g(x )=cos(x -π2),则f (x )的图象A.与g(x )的图象相同B.与g(x )的图象关于y 轴对称C.向左平移π2个单位,得到g(x )的图象D.向右平移π2 个单位,得到g(x )的图象3.若x ∈(0,2π),函数y =sin x +-tan x 的定义域是A.( π2 ,π]B.( π2 ,π)C.(0,π)D.( 3π2 ,2π)4.函数y =sin(2x +5π2 )的图象的一条对称轴方程为A.x =5π4B.x =-π2C.x =π8D.x =π45.函数y =log cos1cos x 的值域是 A.[-1,1]B.(-∞,+∞)C.]0,(D.[0,+∞)6.如果|x |≤π4 ,那么函数f (x )=cos 2x +sin x 的最小值是A.2-12B.1-22C.-2+12D.-17.函数f (x )=sin x +5π2 ,g (x )=cos x +5π2,则A.f (x )与g (x )皆为奇函数B.f (x )与g (x )皆为偶函数C.f (x )是奇函数,g (x )是偶函数D.f (x )是偶函数,g (x )是奇函数 8.下列函数中,图象关于原点对称的是 A.y =-|sin x | B.y =-x ·sin |x | C.y =sin(-|x |) D.y =sin |x |9.要得到函数y =sin(2x -π4 )的图象,只要将y =sin2x 的图象A.向左平移π4B.向右平移π4C.向左平移π8D.向右平移π810.下图是函数y =2sin(ωx +ϕ)(|ϕ|<π2 )的图象,那么A .ω=1011 ,ϕ=π6B.ω=1011 ,ϕ=-π6C .ω=2,ϕ=π6D.ω=2,ϕ=-π611.在[0,2π]上满足sin x ≥12 的x 的取值范围是A.[0,π6]B.[π6 ,5π6 ]C.[π6 ,2π3]D.[5π6,π]12.函数y =5+sin 22x 的最小正周期为 A.2πB.πC. π2D. π4二、填空题(4×6=24分)13.若函数y =A cos(ωx -3)的周期为2,则ω= ;若最大值是5,则A = . 14.由y =sin ωx 变为y =A sin(ωx +ϕ),若“先平移,后伸缩”,则应平移 个单位;若“先伸缩,后平移”,则应平移 个单位即得y =sin(ωx +ϕ);再把纵坐标扩大到原来的A 倍,就是y =A sin(ωx +ϕ)(其中A >0). 15.不等式sin x >cos x 的解集为 . 16.函数y =sin(-2x +π3)的递增区间是 .17.已知f (x )=ax +b sin 3x +1(a ,b 为常数),且f (5)=7,则f (-5)= . 18.使函数y =2tan x 与y =cos x 同时为单调递增的区间是 .第Ⅱ卷一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题13 14 15 16 17 18 三、解答题19.求y =2cos x -1lg (tan x +1)的定义域.20.已知:cos (-α)tan (π+α)cos (―π―α)sin (2π-α)=3,求:2cos 2(π2+α)+3sin (π+α)cos (π+α)cos (2π+α)+sin (-α)cos (―π2 ―α)的值.21.若f (x )=A sin(x -π3 )+B ,且f (π3 )+f (π2 )=7,f (π)-f (0)=23 ,求f (x ).22.若⎩⎨⎧=+=θθθθcos sin cos sin y x ,试求y =f (x )的解析式.23.设A 、B 、C 是三角形的三内角,且lgsin A =0,又sin B 、sin C 是关于x 的方程4x 2-2( 3 +1)x +k =0的两个根,求实数k 的值.三角函数的图象和性质单元复习题答案一、选择题 题号123456789101112答案 B D A B D B D B D C B C二、填空题13 π 5 14 |ϕ| |ωϕ| 15 x ∈(2k π+π4 ,2k π+5π4 )(k ∈Z)16 k π+5π12 ≤x ≤k π+11π12 (k ∈Z ) 17 -5 18 (kπ-π2 ,kπ)k ∈Z三、解答题19.求y =2cos x -1lg (tan x +1)的定义域.解:由题意得⎪⎩⎪⎨⎧≠+>+≥-11tan 01tan 01cos 2x x x ⇒⎪⎪⎩⎪⎪⎨⎧≠->≥0tan 1tan 21cos x x x ⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧≠+<<-+≤≤-πππππππππk x k x k k x k 432423232(k ∈Z )⇒2kπ-π4 <x <2kπ或2k π<x ≤2k π+π3 (k ∈Z )20.21.若f (x )=A sin(x -π3 )+B ,且f (π3 )+f (π2)=7,f (π)-f (0)=2 3 ,求f (x ).解:由已知得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=++-=32)0()(7)2()3()3sin()(f f f f B x A x f ππππ⇒⎩⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-++=++⇒32322323721B A B A B A B A B f (x )=2sin(x -π3 )+322.若⎩⎨⎧=+=θθθθcos sin cos sin y x ,试求y =f (x )的解析式.解:由x =sin θ+cos θ⇒x 2=1+2sin θcos θ⇒sin θcos θ=x 2-12∴y =f (x )=sin θcos θ=x 2-1223.设A 、B 、C 是三角形的三内角,且lgsin A =0,又sin B 、sin C 是关于x 的方程4x 2-2( 3 +1)x +k =0的两个根,求实数k 的值. 解:已知得sin A =1,又0<A <π ∴A =π2 ,∴B +C =π2则sin B =sin(π2-C )=cos C∴⎪⎪⎩⎪⎪⎨⎧=⋅+=+4cos sin 213cos sin k C C C C ∴1+2sin C ·cos C =2+32∴2sin C cos C =23∴k =4sin C cos C = 3。

苏教版高一数学必修4第1章三角函数全章测试

苏教版高一数学必修4第1章三角函数全章测试

三角函数全章测试测试卷(120分钟,满分150分)一、选择题(每题5分,共60分)1.若角α的终边落在直线y=-x 上,则ααααcos cos 1sin 1sin 22-+-的值等于( ) A .0 B .2C .-2D .2tg α 2.设θ∈(0,2π),若sin θ<0且cos2θ<0,则θ的取值范围是( )A .πθπ23<< B .4745πθπ<<C .πθπ223<<D .πθπ434<<3.函数12cos 32sin -+=x x y 的定义域是( )A .]1211,125[ππππ++k k (k ∈Z ) B .]3,[πππ+k k (k ∈Z ) C .]4,12[ππππ+-k k (k ∈Z )D .]2,6[ππππ+-k k (k ∈Z )4.函数)4332(sin 4cos 412ππ≤≤--+=x x x y 的值域是( ) A .[0,8] B .[-3,5] C .]122,3[--D .[-4,5]5.已知α,β∈),2(ππ,cos α+sin β>0,则( )A .α+β<πB .23πβα>+ C .23πβα=+D .23πβα<+6.已知tan α,tan β是方程04332=++x x 的两根,且α,β∈)2,2(ππ-,则α+β等于( )A .3πB .3π或π32-C .3π-或π32D .π32-7.有四个函数:①x y 2sin =②y=|sinx|③2cot 2tan x x y -=④y=sin|x|,其中周期是π,且在)2,0(π上是增函数的函数个数是( )A .1B .2C .3D .48.函数)2tan tan 1(sin x x x y +=的最小正周期是( ) A .π B .2π C .2πD .23π 9.22sin =x 是tanx=1成立的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分条件也非必要条件 10.设︒-︒=6sin 236cos 21a ,︒+︒=13tan 113tan 22b ,240sin 1︒-=c 则( ) A .a <b <cB .a <c <bC .b <c <aD .c <b <a11.把函数x x y sin 3cos -=的图象向左平移m 个单位,所得的图象关于y 轴对称,则m 的最小值是( )A .6πB .3π C .32πD .π12.已知函数)32sin(31π-=x y ,)32sin(42π+=x y ,那么函数21y y y +=的振幅A 的值是( )A .5B .7C .13D .13二、填空题(每题4分,共16分)13.函数xx y 2cos 1)4tan(-+=π的最小正周期是_____________。

高中数学(苏教版,必修四)课时作业与单元检测第一章三角函数(17份)第1章 章末检测(B)

高中数学(苏教版,必修四)课时作业与单元检测第一章三角函数(17份)第1章  章末检测(B)

第1章 三角函数(B)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知cos α=12,α∈(370°,520°),则α=________. 2.若sin x ·cos x <0,则角x 的终边位于第________象限.3.已知tan(-α-43π)=-5,则tan(π3+α)的值为________. 4.如果cos α=15,且α是第四象限的角,那么cos(α+π2)=________. 5.函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ=________.6.若sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是________.7.已知函数y =2sin (ωx +φ))(ω>0)在区间[0,2π]的图象如图,那么ω=________.8.设θ是第二象限角,则点P (sin θ,cos θ)落在第________象限.9.将函数y =sin(x -θ)的图象F 向右平移π3个单位长度得到图象F ′,若F ′的一条对称轴是直线x =π4,则θ的所有可能取值的集合是________. 10.在同一平面直角坐标系中,函数y =cos ⎝⎛⎭⎫x 2+3π2(x ∈[0,2π])的图象和直线y =12的交点个数是______.11.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则a ,b ,c 按从小到大的顺序是________. 12.函数y =A sin(ωx +φ)(A 、ω、φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=________.13.设定义在区间(0,π2)上的函数y =6cos x 的图象与y =5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y =sin x 的图象交于点P 2,则线段P 1P 2的长为________.14.给出下列命题:(1)函数y =sin |x |不是周期函数;(2)函数y =tan x 在定义域内为增函数;(3)函数y =|cos 2x +12|的最小正周期为π2; (4)函数y =4sin(2x +π3),x ∈R 的一个对称中心为(-π6,0). 其中正确命题的序号是________.二、解答题(本大题共6小题,共90分)15.(14分)已知α是第三象限角,f (α)=sin (α-π2)cos (3π2+α)tan (π-α)tan (-α-π)sin (-π-α). (1)化简f (α);(2)若cos(α-32π)=15,求f (α)的值.16.(14分)已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值. (1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.17.(14分)已知sin α+cos α=15, 求:(1)sin α-cos α;(2)sin 3α+cos 3α.18.(16分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)如何由函数y =2sin x 的图象通过适当的变换得到函数f (x )的图象,写出变换过程.19.(16分)函数y =A sin(ωx +φ)(A >0,ω>0,0≤φ≤π2)在x ∈(0,7π)内只取到一个最大值和一个最小值,且当x =π时,y max =3;当x =6π,y min =-3.(1)求出此函数的解析式;(2)求该函数的单调递增区间;(3)是否存在实数m ,满足不等式A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ)?若存在,求出m 的范围(或值),若不存在,请说明理由.20.(16分)已知某海滨浴场海浪的高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作:y =f (t )(1)根据以上数据,求函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?第1章 三角函数(B)1.420° 2.二或四 3.54.265解析 ∵α是第四象限的角且cos α=15. ∴sin α= -1-cos 2α=-265, ∴cos(α+π2)=-sin α=265. 5.k π+π2(k ∈Z ) 解析 若函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则f (0)=cos φ=0,∴φ=k π+π2,(k ∈Z ).6.310解析 ∵sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=2, ∴tan θ=3.∴sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θtan 2θ+1=310. 7.2解析 由图象知2T =2π,T =π,∴2πω=π,ω=2. 8.四解析 由已知θ是第二象限角,∴sin θ>0,cos θ<0,则点P (sin θ,cos θ)落在第四象限.9.{θ|θ=k π-7π12,k ∈Z } 解析 将y =sin(x -θ)向右平移π3个单位长度得到的解析式为y =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π3-θ=sin(x -π3-θ).其对称轴是x =π4,则π4-π3-θ=k π+π2(k ∈Z ). ∴θ=-k π-7π12(k ∈Z ).即θ=k π-712π,k ∈Z . 10.2解析 函数y =cos ⎝⎛⎭⎫x 2+3π2=sin x 2,x ∈[0,2π],图象如图所示,直线y =12与该图象有两个交点.11.b <a <c解析 ∵a =sin 5π7=sin(π-5π7)=sin 2π7. 2π7-π4=8π28-7π28>0. ∴π4<2π7<π2. 又α∈⎝⎛⎭⎫π4,π2时,sin α>cos α.∴a =sin 2π7>cos 2π7=b . 又α∈⎝⎛⎭⎫0,π2时,sin α<tan α. ∴c =tan 2π7>sin 2π7=a . ∴c >a .∴c >a >b .12.3解析 由函数y =Asin(ωx +φ)的图象可知:T 2=(-π3)-(-23π)=π3,∴T =23π. ∵T =2πω=23π,∴ω=3. 13.23解析 由⎩⎪⎨⎪⎧y =6cos x ,y =5tan x消去y 得6cos x =5tan x . 整理得6cos 2 x =5sin x,6sin 2x +5sin x -6=0,(3sin x -2)(2sin x +3)=0,所以sin x =23或sin x =-32(舍去). 点P 2的纵坐标y 2=23, 所以P 1P 2=23. 14.(1)(4)解析 本题考查三角函数的图象与性质.(1)由于函数y =sin |x |是偶函数,作出y 轴右侧的图象,再关于y 轴对称即得左侧图象,观察图象可知没有周期性出现,即不是周期函数;(2)错,正切函数在定义域内不单调,整个图象具有周期性,因此不单调;(3)由周期函数的定义f (x +π2)=|-cos 2x +12|≠f (x ),∴π2不是函数的周期;(4)由于f (-π6)=0,故根据对称中心的意义可知(-π6,0)是函数的一个对称中心,故只有(1)(4)是正确的.15.解 (1)f (α)=sin (α-π2)cos (3π2+α)tan (π-α)tan (-α-π)sin (-π-α)=-sin (π2-α)sin α(-tan α)(-tan α)sin α=cos αsin αtan α-tan αsin α=-cos α.(2)∵cos(α-3π2)=cos(3π2-α)=-sin α=15.∴sin α=-15. ∵α是第三象限角,∴cos α=-265. ∴f (α)=-cos α=265. 16.解 由已知4sin θ-2cos θ3sin θ+5cos θ=611, ∴4tan θ-23tan θ+5=611. 解得:tan θ=2.(1)原式=5tan 2θ+2tan θ-3=55=1. (2)原式=sin 2θ-4sin θcos θ+3cos 2θ=sin 2θ-4sin θcos θ+3cos 2θsin 2θ+cos 2θ=tan 2θ-4tan θ+31+tan 2θ=-15. 17.解 (1)由sin α+cos α=15,得2sin αcos α=-2425, ∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925, ∴sin α-cos α=±75. (2)sin 3α+cos 3α=(sin α+cos α)(sin 2α-sin αcos α+cos 2α)=(sin α+cos α)(1-sin αcos α),由(1)知sin αcos α=-1225且sin α+cos α=15, ∴sin 3α+cos 3α=15×⎝⎛⎭⎫1+1225=37125. 18.解 (1)由图象知A =2.f (x )的最小正周期T =4×(5π12-π6)=π,故ω=2πT =2. 将点(π6,2)代入f (x )的解析式得 sin(π3+φ)=1,又|φ|<π2,∴φ=π6, 故函数f (x )的解析式为f (x )=2sin(2x +π6). (2)变换过程如下:19.解 (1)由题意得A =3,12T =5π⇒T =10π, ∴ω=2πT =15.∴y =3sin(15x +φ),由于点(π,3)在此函数图象上,则有3sin(π5+φ)=3,∵0≤φ≤π2,∴φ=π2-π5=3π10. ∴y =3sin(15x +3π10). (2)当2k π-π2≤15x +3π10≤2k π+π2时,即10k π-4π≤x ≤10k π+π时,原函数单调递增. ∴原函数的单调递增区间为[10k π-4π,10k π+π](k ∈Z ).(3)m 满足⎩⎪⎨⎪⎧-m 2+2m +3≥0,-m 2+4≥0, 解得-1≤m ≤2.∵-m 2+2m +3=-(m -1)2+4≤4,∴0≤-m 2+2m +3≤2,同理0≤-m 2+4≤2.由(2)知函数在[-4π,π]上递增,若有: A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ),只需要:-m 2+2m +3>-m 2+4,即m >12成立即可,所以存在m ∈(12,2],使A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ)成立.20.解 (1)由表中数据知周期T =12,∴ω=2πT =2π12=π6, 由t =0,y =1.5,得A +b =1.5.由t =3,y =1.0,得b =1.0.∴A =0.5,b =1,∴y =12cos π6t +1. (2)由题知,当y >1时才可对冲浪者开放, ∴12cos π6t +1>1, ∴cos π6t >0,∴2k π-π2<π6t <2k π+π2, 即12k -3<t <12k +3.①∵0≤t ≤24,故可令①中k 分别为0,1,2,即0≤t <3或9<t <15或21<t ≤24,∴在规定时间上午8∶00至晚上20∶00之间,有6个小时时间可供冲浪者运动,即上午9∶00至下午3∶00.。

苏教版高中数学必修4高一三角函数自主测试试卷.docx

苏教版高中数学必修4高一三角函数自主测试试卷.docx

高一三角函数自主测试试卷命题人: 审核人:一.填空题:(每题5分,共70分)1.终过落在坐标轴上角的集合是 .2. 05sin 495cos()4π+-等于 .3. 函数x x x f 2sin 2cos 89)(--=的最大值为 .4.将图象y=tan2x 向左平移6π个单位,得到图象的函数解析式是 .5.若角α的始边在x 轴的正半轴,顶点在坐标原点,角α终边与单位圆交点的横坐标为21-,则=αsin . 6.若11sin 1tan 2=-αα,则角α为第 象限角.7. 函数lgcos y x =的定义域是 .8. 已知函数1()2cos()3f x k x π=+的一个周期的长度不小于2,则正整数k(0)k ≠的取值是 .9.函数x x f sin 21)(-=的值域为 .10. 给出下列命题:① 函数)232cos(π+=x y 是奇函数;② 存在实数,α使得;2cos sin =+αα③ 若α、β是第一象限角且βα<,则βαtan tan <;④ 8π=x 是函数)452sin(π+=x y 的一条对称轴方程; ⑤ 函数)32sin(π+=x y 的图象关于点()0,12π成中心对称图形.其中正确的序号为 .11. 已知34sin ,cos 2525θθ==-,则角θ所在的现象为 .12. 将函数y=f(x)的图象上各点的横坐标扩大两倍,纵坐标不变;然后将整个图象向右平移4π 个单位,若所得图象恰好与函数)6sin(3π+=x y 的图象完全相同,则函数y=f(x)的表达式是 .13.函数12log sin()42x y π=-的单调递增区间是 .14. 为了使函数)0)(sin(>=ωωx y 在区间[0,1]上至少出现50次最大值,则ω的最小值 为 .二.解答题:15. (本题满分14分)已知sin()3cos(2)απαπ-=--,求3332sin ()5cos (3)33sin ()sin ()cos(2)2πααππαπααπ-+--+--的值.16. (本题满分14分) 已知函数1)63sin(21++=πx y (1). 求y 取得最值时的x 的值;(2). 求函数的单调递增区间、单调递减区间;(3)写出它的图象可以怎样由正弦函数的图象变换得出.17. (本题满分14分)已知函数f(x)=Asin()(0,0,)x A x R ωϕω+>>∈在一个周期内的图象如图所示,求直线3y =与函数f(x)图象的所交的坐标.18.已知函数f (x )=2a sin (2x -3π)+b 的定义域为[0,2π],值域为[-5,1],求a 和b 的值.2 -2 52π y72π 32π 2π 2π- 0 x19. 已知函数x x y cos 21cos 21+=, (1). 画出函数的简图;(2). 此函数是否为周期函数?若是,求出它的最小正周期;(3). 指出此函数的单调区间.20.若x x a a x f 2sin 2cos 221)(---=的最小值为g(a ).(1)求g(a )的表达式(2)当g(a )=21时,求a 的值,并求此时f(x)的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学同步单元测试(必修4)
任意角、弧度 任意角的三角函数 三角函数图像和性质
一、选择题:(5*12=60分) 1.函数)4
cot(π
-
=x y 的定义域是 ( )
A.{x R x x 且,|∈}Z
k k ∈+
≠,4

π B. {x R x x 且,|∈}Z k k ∈+≠,4ππ
C. {x R x x 且,|∈}Z
k k ∈≠,π D. {x R x x 且,|∈}Z k k ∈±≠,4
2ππ
2.已知角α的终边过点P (4a ,-3a )(a <0),则2sin α+cos α的值是 ( ) A .25 B .-2
5
C .0
D .与a 的取值有关
3.若θ是第三象限角,且02
cos <θ
,则
2
θ
是 ( )
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角
4.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )
A .B=A ∩C
B .B ∪C=
C C .A ⊂C
D .A=B=C 5.α为第二象限角,P(x, 5)为其终边上一点,且cos α=
2
4
x ,则x 值为( ) A . 3 B .± 3 C .- 3 D .- 2
6.cot(α-4π)²cos(α+π)²sin 2
(α-3π)tan(π+α)²cos 3
(-α-π)的结果是( ) A .1
B .0
C .-1
D .12
7.设sin123°=a ,则tan123°=( ) A .1-a
2
a
B .
a 1-a
2
C .1-a 2
1-a
2
D .a 1-a 2
a 2-1
8.如果1弧度的圆心角所对的弦长为2,则这个圆心角所对的弧长为( ) A .1
sin0.5
B .sin0.5
C .2sin0.5
D .tan0.5
9.先将函数y =sin2x 的图象向右平移π
3个单位,再将所得图象作关于y 轴的对称变换,
所得图象的解析式是( ) A .y =sin(-2x +π
3)
B .y =sin(-2x ―π
3)
C .y =sin(-2x +2π
3)
D .y =sin(-2x ―2π
3
)
-4π3

3
8π3
x
y
o -2
2
10.函数y =Asin(ωx +φ)在一个周期上的图象为上图所示.则函数的解析式是( ) A .y =2sin(x 2-2π3)
B .y =2sin(x 2+4π
3
)
C .y =2sin(x 2+2π
3
)
D .y =2sin(x 2-π
3
)
11.下列函数中,周期为π,且在(0, π
2)上单调递增的是( )
A .y =tan|x|
B .y =|cotx|
C .y =|sinx|
D .y =|cosx|
12.若α满足sin α-2cos α
sin α+3cos α=2,则sin α²cos α的值等于( )
A .865
B .-865
C .±865
D .以上都不对 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
二、填空题:(16分)
13.已知sin θ-cos θ=12
,则sin 3θ-cos 3
θ=_____.
14.函数y =|sinx|sinx +cosx |cosx|+|tanx|tanx +cotx
|cotx|
的值域为______.
15.设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是 . 16.函数y =sin(π
4
-2x)的单调递增区间是__________
三、解答题:(74分)
17.已知扇形的周长为L ,问当扇形的圆心角α和半径R 各取何值时,扇形面积最大?
(12分)
18.已知函数y =3sin3x .
(1)作出函数在x ∈[π6,5π
6
]上的图象.
(2)求(1)中函数的图象与直线y =3所围成的封闭图形的面积 (3)求f(x)的最小正周期; (4)求f(x)的单调区间;
(5)求f(x)图象的对称轴,对称中心.(20分)
19.已知α为第三象限角,且f(α)=sin(π-α)cos(2π―α).tan(―α+3π
2
)
cot α.sin(π+α).(14
分)
(1)化简f(α);
(2)若cos(α-3π2)=1
5,求f(α)的值;
(3)若α=-1860°,求f(α)的值.
20.(14分)已知函数f(x)=Asin )2,0)((π
ϕωϕω<
>+x 的图像与y 轴交于点⎪⎭

⎝⎛23,0。

它与y 轴右侧的第一个最大值点和最小值点分别为)3,2(),3,(00-+πx x 。

(1) 求函数y=f(x)的解析式;
(2)用“五点法”作此函数在一个周期内的图像;
(3)说明它是由函数y=sinx 的图像经过哪些变换而得到的.
21.(14分)是否存在α.β,α∈(-π2,π
2),β∈(0,π),使等式sin(3π-α)=2
cos(π
2-β),3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值,若不
存在,请说明理由.
答案:
1.B 2.A3.B4.B5.C6.A7.D8.A 9.D10.D11.C 12.B 提示:由条件得sin α+8cos α=0⇒tan α=-8.
∴sin α²cos α=sin αcos αsin 2α+cos 2
α=1tan α+cot α=1―8―
18=-8
65
. 13.11
16
14.{-2,0,4}
17.解:∵L =2R +αR ,S =12αR 2

∴α=2S R
2.
∴L =2R +2S R
⇒2R 2
-LR +2S =0.
△=L 2
-16S ≥0⇒S ≤L
2
16

故当α=2.R =L 4时,Smax =L
2
16.
18 略
19.(1)f(α)=-cos α.
(2) f(α)=26
5

(3) f(α)=-1
2.
20.略
21.解:由条件得:
⎩⎪⎨⎪⎧sin α=2sin β ① 3cos α=2cos β ②
⇒①2+②2得:sin 2α+3cos 2α=2. ∴cos 2
α=12.
∵α∈(-π2,π
2).
∴α=π4或-π4

将α=π4代入②得:cos β=3
2,又β∈(0,π).
∴β=π
6
代入①适合,
将α=-π
4
代入①得sin β<0不适合,
综上知存在⎩⎨⎧α=π
4
β=π
6
满足题设.。

相关文档
最新文档