音频基础知识

合集下载

数字音频基础知识

数字音频基础知识

第一章数字音频基础知识重要内容⏹声音基础知识⏹结识数字音频⏹数字音频专业知识第1节声音基础知识1.1 声音旳产生⏹声音是由振动产生旳。

物体振动停止,发声也停止。

当振动波传到人耳时,人便听到了声音。

⏹人能听到旳声音,涉及语音、音乐和其他声音(环境声、音效声、自然声等),可以分为乐音和噪音。

✦乐音是由规则旳振动产生旳,只包具有限旳某些特定频率,具有拟定旳波形。

✦噪音是由不规则旳振动产生旳,它包具有一定范畴内旳多种音频旳声振动,没有拟定旳波形。

1.2 声音旳传播⏹声音靠介质传播,真空不能传声。

✦介质:可以传播声音旳物质。

✦声音在所有介质中都以声波形式传播。

⏹音速✦声音在每秒内传播旳距离叫音速。

✦声音在固体、液体中比在气体中传播得快。

✦15ºC 时空气中旳声速为340m/s 。

1.3 声音旳感知⏹外界传来旳声音引起鼓膜振动经听小骨及其他组织传给听觉神经,听觉神经再把信号传给大脑,这样人就听到了声音。

⏹双耳效应旳应用:立体声⏹人耳能感受到(听觉)旳频率范畴约为20Hz~20kHz,称此频率范畴内旳声音为可听声(audible sound)或音频(audio),频率<20Hz声音为次声,频率>20kHz声音为超声。

⏹人旳发音器官发出旳声音(人声)旳频率大概是80Hz~3400Hz。

人说话旳声音(话音voice / 语音speech)旳频率一般为300Hz~3000 Hz(带宽约3kHz)。

⏹老式乐器旳发声范畴为16Hz (C2)~7kHz(a5),如钢琴旳为27.5Hz (A2)~4186Hz(c5)。

1.4 声音旳三要素⏹声音具有三个要素:音调、响度(音量/音强)和音色⏹人们就是根据声音旳三要素来辨别声音。

音调(pitch )⏹音调:声音旳高下(高音、低音),由“频率”(frequency)决定,频率越高音调越高。

✦声音旳频率是指每秒中声音信号变化旳次数,用Hz 表达。

例如,20Hz 表达声音信号在1 秒钟内周期性地变化20 次。

音频基础知识及编码原理

音频基础知识及编码原理

音频基础知识及编码原理音频是我们日常生活中不可或缺的一部分,它通过我们的耳朵传达声音信息。

音频的基础知识和编码原理对于我们理解音频的特性和进行音频处理都是非常重要的。

一、音频基础知识1.音频信号:音频信号是一种连续时间变化的模拟信号,它可以通过声音的压力波来传递声音信息。

在计算机中,音频信号会被采样和量化为离散的数字信号。

2.音频频率:音频频率是指声音中的振荡周期数量。

它以赫兹(Hz)为单位表示,描述了声波的频率。

人类可以听到的频率范围约为20Hz到20kHz,不同的生物和设备有着不同的频率感知范围。

3.音频幅度:音频幅度是指声音的强度或振幅。

它可以通过声音的声压级来表示,单位为分贝(dB)。

声压级越高,声音就越大;声压级越低,声音就越小。

4. 音频声道:音频声道是指音频信号的通道数量。

单声道(mono)只有一个通道,立体声(stereo)有两个通道,多声道(multi-channel)有三个或更多个通道。

5.音频采样率:音频采样率是指音频信号在单位时间内进行采样的次数。

它以赫兹(Hz)为单位表示,描述了数字音频的采样精度。

常见的采样率有44.1kHz和48kHz,高采样率可以提高音频的质量。

二、音频编码原理音频编码是将模拟音频信号转换为数字音频信号的过程。

在音频编码中,采样和量化是两个主要步骤。

1.采样:采样是将连续时间的模拟音频信号转换为离散时间的数字音频信号的过程。

采样率决定了采样的频率,即每秒钟采样的次数。

采样过程会将每个采样点的幅度值记录下来,形成一个采样序列。

2.量化:量化是将连续的模拟音频信号转换为离散的数字音频信号的过程。

它将每个采样点的幅度值映射到一个有限的数值范围内,通常使用固定的比特数来表示每个采样点的幅度。

3.压缩编码:为了减小数字音频的文件大小,音频信号通常会经过压缩编码的处理。

压缩编码可以通过去除信号中的冗余信息或者使用有损压缩算法来实现。

常见的音频压缩编码格式有MP3、AAC和FLAC等。

音频基础知识

音频基础知识

音频,英文是AUDIO,也许你会在录像机或VCD的背板上看到过AUDIO输出或输入口。

这样我们可以很通俗地解释音频,只要是我们听得见的声音,就可以作为音频信号进行传输。

有关音频的物理属性由于过于专业,请大家参考其他资料。

自然界中的声音非常复杂,波形极其复杂,通常我们采用的是脉冲代码调制编码,即PCM编码。

PCM通过采样、量化、编码三个步骤将连续变化的模拟信号转换为数字编码。

一、音频基本概念1、什么是采样率和采样大小(位/bit)。

声音其实是一种能量波,因此也有频率和振幅的特征,频率对应于时间轴线,振幅对应于电平轴线。

波是无限光滑的,弦线可以看成由无数点组成,由于存储空间是相对有限的,数字编码过程中,必须对弦线的点进行采样。

采样的过程就是抽取某点的频率值,很显然,在一秒中内抽取的点越多,获取得频率信息更丰富,为了复原波形,一次振动中,必须有2个点的采样,人耳能够感觉到的最高频率为20kHz,因此要满足人耳的听觉要求,则需要至少每秒进行40k次采样,用40kHz表达,这个40kHz就是采样率。

我们常见的CD,采样率为。

光有频率信息是不够的,我们还必须获得该频率的能量值并量化,用于表示信号强度。

量化电平数为2的整数次幂,我们常见的CD位16bit的采样大小,即2的16次方。

采样大小相对采样率更难理解,因为要显得抽象点,举个简单例子:假设对一个波进行8次采样,采样点分别对应的能量值分别为A1-A8,但我们只使用2bit的采样大小,结果我们只能保留A1-A8中4个点的值而舍弃另外4个。

如果我们进行3bit的采样大小,则刚好记录下8个点的所有信息。

采样率和采样大小的值越大,记录的波形更接近原始信号。

2、有损和无损根据采样率和采样大小可以得知,相对自然界的信号,音频编码最多只能做到无限接近,至少目前的技术只能这样了,相对自然界的信号,任何数字音频编码方案都是有损的,因为无法完全还原。

在计算机应用中,能够达到最高保真水平的就是PCM编码,被广泛用于素材保存及音乐欣赏,CD、DVD以及我们常见的WAV文件中均有应用。

电视音频技术的基础知识

电视音频技术的基础知识

电视音频技术的基础知识电视音频技术是指在电视广播和电视节目制作中所涉及的音频相关技术。

音频在电视中扮演着重要的角色,它不仅可以提供声音的传输,还能为观众带来更具沉浸感的观影体验。

以下是一些关于电视音频技术的基础知识。

1. 音频信号:在电视中,声音通过电子设备被转换为可传输的电信号。

这些电信号可以是模拟信号或数字信号。

模拟信号是连续的波形,而数字信号是用离散的数值来表示声音的。

2. 音频编码:为了将声音传输或存储,音频编码技术被使用。

音频编码是将声音信号转换成数字格式的过程。

其中一种常用的音频编码格式是MPEG(Moving Picture Experts Group)音频编码,如MP3。

3. 音频采样率:音频采样率指音频信号在一秒钟内被采样的次数。

常见的音频采样率有44.1kHz和48kHz。

较高的采样率能提供更好的音质,但也需要更多的存储空间和传输带宽。

4. 立体声和多声道声音:电视广播中最常见的音频格式是立体声,它将声音分为左右两个声道进行传输。

而在电影院和一些家庭影院系统中,多声道音频技术被使用。

多声道音频可以提供更真实的环绕声效果,常见的多声道配置包括5.1声道和7.1声道。

5. 声音混合:在电视广播和电视节目制作中,常常需要将不同来源的声音进行混合。

声音混合是指将多个音频信号合并成单一的混合信号。

这样可以控制音量和平衡不同音频源之间的比例。

6. 音频处理:音频处理是指对音频信号进行滤波、均衡和增强等技术。

音频处理可以改善音质,使声音更加清晰和饱满。

7. 音频同步:音频同步是指在电视广播和电视节目制作中保持音频和视频之间的同步。

这是非常重要的,以确保观众可以准确地听到与所看到的画面相符的声音。

总结起来,电视音频技术是一项复杂而重要的技术,它涉及到音频信号的传输、编码、采样率、立体声和多声道音频以及音频处理等方面。

了解这些基础知识可以帮助我们更好地理解和欣赏电视音频的质量和效果。

电视音频技术是电视广播和电视节目制作中至关重要的一部分。

音频基础知识

音频基础知识

Audio知识简介干一行专一行VS学一行丢一行第一部分:HTS基本概念:HTS(Home Theater System)通俗的讲就是将电影院搬到家里,然后就成了家庭影院,就公司的产品而言可以简单的理解为:DVD/BD player + 功放+ Speaker 组成:节目源(碟片+碟机等)+ 放声系统(AV功放+音箱组等)+显示部分(电视机/投影仪)配置家庭影院的好处:高清晰的如水晶般的画面,环绕的立体声,清晰的人声,震撼的低音效果,可以提供几乎身临其境的感觉。

在强烈的视听冲击下,能感受到现实和虚拟的完美交汇,触发更深的人生感悟。

第二部分:Audio百度定义:1.Audio指人说话的声音频率,通常指300Hz---3400Hz的频带2.指存储声音内容的文件3.在某些方面能指作为波滤的振动。

音频这个专业术语,人类能够听到的所有声音都称之为音频,它可能包括噪音,声音被录制下来以后,无论是说话声,歌声乐器都可以通过数字音乐软件处理。

把它制作成CD,这时候所有的声音没有改变,因为CD本来就是音频文件的一种类型。

而音频只是储存在计算机里的声音,演讲和音乐,如果有计算机加上相应的音频卡,可以把所有的声音录制下来,声音的声学特性,音的高低都可以用计算机硬盘文件的方式储存下来,反过来,也可以把眄来的音频文件通过一定的音频程序播放,还原以前录下的声音。

Audio的分类:按编码格式分类:mp3,wav, aac, ogg, flac, aiff, ac3(亦称之Dolby digital), dts, pcm, Dolby true hd(HD), Dolby digital plus(HD), dts hd master audio(HD), dts hd high resolution audio(HD), dts hd low bit rate(HD)多声道音频的分类:C:center L: left front R: Right frontLS: Left surround RS: right surround S: surround(单个环绕声道)LB:left back surround RB: right back surroundCs: Center surround1.带LFE声道的分法:根据码流中实际的通道数分X的值为0/1,0表示不带LFE通道,1表示含LFE通道1.x C 如1.0 为C,1.1为C+LFE2.x->L+R3.x->C+L+R4.x->L+R+LS+RS5.x->L+R+C+LS+RS6.x->L+R+C+LS+RS+Cs7.x->L+R+C+LS+RS+LB+RB2.不带LFE声音的分法:根据喇叭摆放的位置分其中C/L/R均摆放在前面,LS/RS/S/LB/RB均摆在两边/后面,如下图1/0->C2/0->L+R3/0->C+L+R2/1->L+R+S2/2->L+R+LS+RS3/1->L+R+C+S3/2->L+R+C+LS+RS3/3->L+R+C+LS+RS+Cs3/4->L+R+C+LS+RS+LB+RB3.声音信号的传输:(1)定义及I2S总线构成:I2S(Inter-IC Sound)总线是飞利浦公司为数字音频设备之间的音频数据传输而制定的一种总线标准,该总线专责于音频设备之间的数据人,广泛应用于各种多媒体系统。

音频入门知识

音频入门知识

音频入门知识声音的概念.1. 声音是一种机械振动状态的传播现象,它表现为一种机械被即声波。

产生声波的条件:a) 有作机械振动的物体:声源 b) 有能传播机械振功的弹性介质 声波示意(L. A. Rowe )2.声波频率声压变化可以是周期性的和非周期性 频率概念循环(cycle)- 压缩/稀薄过程 频率(frequency):每秒cycle 数,单位 hertz (Hz) 周期 – cycle 的持续时间 (1/frequency)声音信号一般由许多频率不同的信号组成,称为复合信号;而单一频率的信号称为分量信号时间幅度频率范围频率小于20Hz 一般称为次声波(subsonic)人的听觉器官能感知的声音频率范围约为20Hz~20kHz的信号称为音频(Audio)信号人发音器官发声频率约是80~3400Hz,但人说话的信号频率约为300~3000Hz,即话音(speech)信号高于20kHz的信号称为超声波 (ultrasonic)超声波及次声波一般不能引起人听觉器官的感觉,但可借助一些仪器设备进行观察和测量乐音与噪音1.一般乐音指具有确定的基频以及与该基频有较小整数倍关系的各阶谐频(harmonic tone)2.频率比基音高的所有分音统称泛音(over tone),泛音的频率不必与基音成整数倍关系3.在主观上把令人不愉快或不需要的声音定义为噪音4.噪音的频谱较为复杂,具有无规则的振幅和波形的连续频谱声音三要素1.响度(音响)loudness到达人耳的声扰动振幅所产生的听觉的大小声振动能量是物理特性,可用声强(sound pressure)定义,单位:帕斯卡 (Pa)实用上通常都以对数方式的声压级 (sound pressure level)表示,单位:分贝(db)响度是主观量,不能用任何仪器正确地测量声音响度使用了以两个声强之比的对数为基础的相对标度,单位:宋(sone)2.音调(音高)pitch或tone人对声音刺激频率的主观判断与估量,称之为音调 (Pitch),单位:美(Mel)Frequency是物理量,而音调是人的感觉听觉经验一般女生的声音比男生高较大物体振动的音调较低3.音色(音质)timber由其频谱决定: 不同乐器发出同一音高的乐音,仍然可以分辨可以把音色描述为音的瞬时横截面,即用谐音(泛音)的数目、强度、分布和相位来描述。

音频的基础知识

音频的基础知识

音频的基础知识一、计算机和网络是怎样存储、处理和传递声音的?计算机和网络存储、处理和传递的是二进制数据。

用二进制数字序列表示声音,是利用现代信息技术处理和传递声音信号的前提。

数字声音的获取有以下两种方式:1、将声音数字化2、利用MIDI设备输入或用计算机软件编写MIDI音乐二、声音的数字化模拟音频信号:声波通过话筒转变为时间上连续的电压波,电压波与引起电压波的声波的变化规律是一致的,因此可以利用电压波来模拟声音信号,这种电压波被称为模拟音频信号。

模拟/数字转换:计算机内部只能处理数字信息,因此必须借助于一种设备,将时间上连续的模拟音频信号转变为用来表示声音的数据序列,计算机才能进行识别和处理,也就是通过话筒以及相关电压放大电路把声波转换成电压的波形。

通过“采样”和“量化”可以实现模拟量的数字化,这个过程称为“模数转换”(A/D转换),承担转换任务的电路和芯片称为“数模转换器”(ADC)采样:按一定的频率,即每个一小段时间,测得模拟信号的模拟量值。

量化:采样时测的的模拟电压值,要进行分级量化。

方法是按整个电压变化的最大幅度划分成几个区段,把落在某区段的采样到的样品值归成一类,并给出相应的量化值。

通过采样和量化,一个连续的波形变成了一系列二进制数字表示的数据。

数字化的声音的质量取决于采样频率和量化分级的细密程度。

量化的分辨率越高,所得数字化的声音的保真程度也越好,数据量也越大。

在播放时,计算机还要将数字信号转化成模拟信号。

例题:在某声音的数字化过程中,使用44.1KHZ的取样频率,16位量化位数,则采集四声道的此声音1分钟所需的储存空间约为__A165.75MB B21.168MBC20.672MB D10.584MB波形声音的码率(kb/s)=44.1 * 16 * 4=2822.4kb/s2822.4kb/s=2822.4/8=352.8KB/s352.8KB/s* 60s=21168KB=20.672MB选C三、MIDI音乐MIDI是音乐设备数字接口。

音频基础知识

音频基础知识

⾳频基础知识⼀.⾳频基础知识1.⾳频编解码原理数字⾳频的出现,是为了满⾜复制、存储、传输的需求,⾳频信号的数据量对于进⾏传输或存储形成巨⼤的压⼒,⾳频信号的压缩是在保证⼀定声⾳质量的条件下,尽可能以最⼩的数据率来表达和传送声⾳信息。

信号压缩过程是对采样、量化后的原始数字⾳频信号流运⽤适,当的数字信号处理技术进⾏信号数据的处理,将⾳频信号中去除对⼈们感受信息影响可以忽略的成分,仅仅对有⽤的那部分⾳频信号,进⾏编排,从⽽降低了参与编码的数据量。

数字⾳频信号中包含的对⼈们感受信息影响可以忽略的成分称为冗余,包括时域冗余、频域冗余和听觉冗余。

1.1时域冗余.幅度分布的⾮均匀性:信号的量化⽐特分布是针对信号的整个动态范围⽽设定的,对于⼩幅度信号⽽⾔,⼤量的⽐特数A.幅度分布的⾮均匀性据位被闲置。

B.样值间的相关性:声⾳信号是⼀个连续表达过程,通过采样之后,相邻的信号具有极强的相似性,信号差值与信号本⾝相⽐,数据量要⼩的多。

C.信号周期的相关性:声⾳信息在整个可闻域的范围内,每个瞬间只有部分频率成分在起作⽤,即特征频率,这些特征频率会以⼀定的周期反复出现,周期之间具有相关关系。

D.长时⾃我相关性:声⾳信息序列的样值、周期相关性,在⼀个相对较长的时间间隔也会是相对稳定的,这种稳定关系具有很⾼的相关系数。

E.静⾳:声⾳信息中的停顿间歇,⽆论是采样还是量化都会形成冗余,找出停顿间歇并将其样值数据去除,可以减少数据量。

1.2频域冗余.长时功率谱密度的⾮均匀性:任何⼀种声⾳信息,在相当长的时间间隔内,功率分布在低频部分⼤于⾼频部分,功率谱A.长时功率谱密度的⾮均匀性具有明显的⾮平坦性,对于给定的频段⽽⾔,存在相应的冗余。

B.语⾔特有的短时功率谱密度:语⾳信号在某些频率上会出现峰值,⽽在另⼀些频率上出现⾕值,这些共振峰频率具有较⼤的能量,由它们决定了不同的语⾳特征,整个语⾔的功率谱以基⾳频率为基础,形成了向⾼次谐波递减的结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CODEC图1基本音频输入输出系统框图1.模拟音频接口1.13.5mm接口1.1.1插座首先要了解前置音频插座的结构。

根据英特尔关于AC97前置音频接口的规范,机箱的前置音频面板采用两种3.5毫米微型插座:1开关型的,2无开关型的,见下图:开关型的2/3,4/5端是两个开关,当没有插头插入时,2/3,4/5端是连通的,当插头插入时2/3,4/5端断开。

无开关的就没有3,4两个开关端。

1.1.2二段三段四段3.5mm插头有几种规格,最常见的是三段式的,四段式的则在消费电子中应用越来越多,另外也有二段式的,通常用于麦克风二段、三段式插头如下图所示:二芯插头一般用于麦克,三芯插头一般用于立体声音耳机(有源音箱)。

现在二芯插头很少,所以麦克也用三芯插头。

耳机和麦克插头的接线定义如下图:四段式插头根据我们市面上出现的不同标准的耳机插头,耳机市场才将不同的耳机接头方式划分为2个类别:N版和i版,N版耳机主要是适用于NOKIA、MOTO、OPPO、BBK等手机,而我们的i版耳机插头则主要适用于iphone、HTC、魅族和PC、MP3等电子数码通讯设备。

要了解清楚这个问题之前,我们先要认识我们耳机插头的结构,在市面上销售的耳机插头主要分为:2.5mm和3.5mm,又被分为单音耳机插头、立体耳机插头、四极耳机插头、五极耳机插头,主要普遍还是3.5mm见的居多,一般的3.5mm 的耳机插头大多都是三段式的结构,看完下图你就清楚了!图为普通耳机插头三段式结构N版耳机和i版耳机同样是3.5mm的标准,她们之所以适用于不用的手机类型,也正是因为她们的接头设计不同,N版和i版又有一个共同点,就是都采用的是4段式的耳机插针的结构,不同的是N版的耳机插头从左到右依次是左声道、右声道、麦克、地线,i版耳机从左到右依次是左声道、右声道、地线、麦克。

详情请看下图:NOKIA耳机插头四段式插头结构Iphone手机四段式耳机插头结构1.2RCA接口:RCA接头就是常说的莲花头。

每一根 RCA线缆负责传输一个声道的音频信号,所以立体声信号,需要使用一对线缆。

对于多声道系统,就要根据实际的声道数量配以相同数量的线缆。

立体声RCA音频接口,一般将右声道用红色标注,左声道则用蓝色或者白色标注。

RCA转3.5mm接口1.3XLR接口卡侬头是一种更高端的音频接口,是专为电容麦等高端话筒服务的。

“卡侬”是由英文CANNON音译来的,CANNON看起来和“佳能”的英文名很像,不过两者确实没什么关系卡侬头分为很多种类:两芯、三芯、四芯、大三芯等种类,但最常见的还是三芯卡侬头三芯卡侬头分为接地端、热线(又称火线)、;冷线(又称零线),分别接到话筒上相应的位置。

由于接地是悬浮独立的,所以在长距离传输时不易受到外界杂波讯号的干扰,专业器材多使用平衡接口就是因为它即使长距离传输依然具有高信噪比的优点。

另外,平衡传输也可大幅降低共模失真。

如果放大系统内是真正的平衡线路,当然使用平衡接线最能发挥效果,不过只使用单端接头,平衡线路还是会开足马力在工作,并不会另一半线路就休息了。

有相当一部分音箱和音响产品并不是真平衡线路,通常XLR接头的正负半波接端会一起进入线路板的同一个点,XLR接头在此只是好看与方便,并没有太突出的作用。

1.4TRS接口:1/4 TRS平衡接口能提供平衡输入/输出。

TRS的含义是Tip(signal)、Ring(signal)、Sleeve(ground)。

分别代表了该接口的3个接触点(其实与6.22mm接口一样)。

1/4 TRS平衡接口除了具有和6.22mm接口一样的优点——耐磨损外,还具有平衡口拥有的高信噪比,抗干扰能力强等特点。

对于一个真正的1/4 TRS 平衡接口来说,其成本将是非平衡的2倍多。

因此采用1/4 TRS平衡接口的设备一般是高档设备,只有在2000元以上的专业卡上才可以看到。

1.5Line in/Line out/Mic in/Speaker out音频接口上一版会标注Line in/Line out/Mic in/Speaker out等名称,使用时不能混淆。

1.5.1Line in与Mic inLine in是作为线路输入,输入的信号在外部设备中已经进行过放大,因此输入信号幅度相对较大。

Mic in是作为麦克风输入,麦克风给过来的信号通常较小,需要在内部增加麦克风放大。

1.5.2Line out和Headphone out/Speaker outLine out作为线路输出,一般由DAC直接输出,输出信号相对较小,接到播放设备上还要再进行信号放大。

由于后级会接阻抗很大的放大器,Line out一般输出阻抗较大。

Headphone out/Speaker out作为耳机/扬声器输出,在设备内部已经进行过放大,输出信号相对较大,直接驱动耳机/扬声器上即可播放。

由于后级直接接阻抗很低的耳机或者扬声器,所以输出阻抗很小。

例如将耳机接到Line out上,输出信号本身较小,并且由于阻抗问题,会发现声音非常小。

2.麦克风2.1类型2.1.1动圈式麦克风动圈话筒是由磁场中运动的导体产生电信号的话筒,是由振膜带动线圈振动,从而使在磁场中的线圈感应出电压。

特点:信号放大倍数小,失真小,声音还原性好,指向性好,无需直流工作电压,噪声小,结构牢固,性能稳定,但灵敏度较低,一般都在5mV以内,所以拾音距离比较近,在使用时有必须近讲的限制。

(备注:无线手持话筒虽然也需要装电池,但它的电池是给发射音频电路供电,并非给动圈音头供电)2.1.2电容式麦克风这类话筒的振膜就是电容器的一个电极,当振膜振动,振膜和固定的后极板间的距离跟着变化,就产生了可变电容量,这个可变电容量和话筒本身所带的前置放大器一起产生了信号电压。

电容话筒需要供电才能工作(比如:1.5V、3V、48V幻象供电等)特点:频率特性好,在音频范围内幅频特性曲线平坦,这一点优于动圈话筒;无方向性;灵敏度高,噪声小,音色柔和;输出信号电平比较大,失真小,瞬态响应性能好,这是动圈话筒所达不到的优点;工作特性不够稳定,低频段灵敏度随着使用时间的增加而下降,寿命比较短,工作时需要直流电源造成使用不方便。

电容话筒中有前置放大器,当然就得有一个电源,由于体积关系,这个电源一般是放在话筒之外的。

除了供给电容器振膜的极化电压外,也为前置放大器的电子管或晶体管供给必要的电压。

我们称它为幻象电源。

由于有了这个前置放大器,所以电容话筒相对要灵敏一些,在使用时不可少的一些附属设备有:防震架(一般会随话筒赠送)、防风罩、防喷罩、优质的话筒架。

如果要进行超近距离的录音工作,一个防喷罩是不可少的。

电容话筒从“拾音头”上又分为驻极体式和大电容式两种。

大电容音头体积较大,频响宽广而有色彩,具备高分解清晰音色,一般用来组装录音、播音等参数要求较高的话筒,但它又有不耐潮湿的弱点,一般都要在比较干燥的场所使用或保存,保存时要放干燥剂。

驻极体式音头体积较小,音色清晰明亮,频响一般只有30~16000Hz,往往可以消减环境的高频和低频噪声,适用于人声的拾取,一般用来组装采访、领夹、会议等话筒。

2.2指标2.2.1灵敏度灵敏度代表麦克风将声音能量转换成电压后所产生的输出讯号强度,是在麦克风单位声压激励下输出电压与输入声压的比值。

当输入信号固定时(1kHz),输出讯号越强,代表麦克风灵敏度越高。

测试麦克风的灵敏度是将1kHz的讯号在94dB的音压电平位准( SPL)下量测开路的麦克风,取得的毫伏特( millivolt )值,单位为mV / Pa。

为与电路中电平的度量一致,灵敏度也可以分贝值表示。

早期分贝多以单位dBm和dBV表示:0dBm=1mW/Pa,即把1Pa输入声压下给600Ω负载带来的1mW功率输出定义为0dB;0dBV=1V/μbar,把在1μbar(0.1Pa)输入声压下产生的1V电压输出定义为0dB。

现在的分贝则以单位dBμ表示:0dBμ=0.775V/Pa,即将1Pa输入声压下话筒0.775V(600Ω负载带来的1mW功率)电压输出定义为0dB(这样就把话筒声压-电压转换后的电平度量,统一到电路中普遍采用的0dB μ= 0.775V这一参考单位)。

显然,不论灵敏度如何表示,我们都可将它转换为dBμ,前提是行输入统一到Pa这个单位。

例如:NEUMANN U89话筒的灵敏度是8mV/Pa,可直接由20lg[(0.008V/Pa)÷(0.775V/Pa)]得出其灵敏度约为-40dBμ。

再如:AKG C414话筒的灵敏度为-60dBV,由0dBV=1V/μbar=10V/Pa先求出1Pa声压下-60dBV的输出电压X:20lg[(X V/Pa)÷(10V/Pa)]=-60 得出X=0.01(V),即它的灵敏度为10mV/Pa。

再由式20lg[(0.01V/Pa)÷(0.775V/Pa)] 可得其灵敏度约为-37dBμ。

注:1bar=100kPa低灵敏度话筒比高灵敏度话筒需要有更大的调音台增益。

但过高的增益会导致更大的噪声。

在为一种平静的音乐(古典吉他、弦乐四重奏)在一定距离下拾音时,可使用一支高灵敏度话筒,而不必考虑调音台的噪音。

当对大音量乐队或近距离拾音时,灵敏度就不那么重要了。

因为话筒的信号电平要比调音台的噪声级要高出许多。

也就是说信号噪声比很高。

下面列出了3种类型话筒的灵敏度指标:•电容话筒:5.6mv/Pa(高灵敏度)•动圈话筒:1.8mv/Pa(中灵敏度)•带式或小型动圈话筒:1.1mv/Pa(低灵敏度)2.2.2信噪比信噪比是原始信号和麦克风自身内部噪声强度的比值,以dB为单位。

一般可以94dB SPL 减去内部噪声强度( A-weighted)来计算。

信噪比越高,音讯放大越干净。

2.2.3等效噪声电平( Equivalent noise level)等效噪音电平又称内部噪声( self noise)。

麦克风的内部噪声在无声音讯号输入状态时可来自若干个方面:1.供给麦克风电源的电压波动(偏置电压)引起的电子噪音2.内部材质电阻(热噪讯),3.外部射频发射器的干扰等。

(手机)2.2.4频率响应频率响应又称带宽(frequency range),是指麦克风感应声波频率的范围,并将声波能量忠实的转换为电子讯号的能力。

麦克风接受到不同频率声音时,输出信号会随着频率的变化而发生放大或衰减。

一般以频率响应曲线图标之。

2.2.5指向性一般分为心形、超心形、8字形、枪式、全向指向等。

请看图02话筒指向示意图2.2.6输出阻抗当一个设备的输出接到另一个设备的输入时,前面的输出阻抗和后面的输入阻抗已经串联在一起了。

形成一个分所谓的阻抗匹配,阻抗匹配要做的就是尽量将电压传到下一个设备,高质量的麦克风阻抗都很低,高频衰减低,可使用将近60公尺长的信号线而不至失真。

相关文档
最新文档