2014届高考数学一轮复习(基础知识+高频考点+解题训练)《抛物线》教学案

合集下载

高考数学一轮复习第8章平面解析几何第6节抛物线教学案理(解析版)

高考数学一轮复习第8章平面解析几何第6节抛物线教学案理(解析版)

[考纲传真] 1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.理解数形结合思想.3.了解抛物线的实际背景及抛物线的简单应用.1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的集合叫作抛物线.点F 叫作抛物线的焦点,直线l 叫作抛物线的准线.2.抛物线的标准方程与几何性质1.y 2=ax (a ≠0)的焦点坐标为⎝ ⎛⎭⎪⎫a 4,0,准线方程为x =-a4.2.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则(1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角).(3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长度等于2p ,通径是过焦点最短的弦.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线. (2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( )(3)若一抛物线过点P (-2,3),则其标准方程可写为y 2=2px (p >0).( ) (4)抛物线既是中心对称图形,又是轴对称图形. ( )[答案] (1)× (2)× (3)× (4)× 2.抛物线y =14x 2的准线方程是( )A .y =-1B .y =-2C .x =-1D .x =-2A [∵y =14x 2,∴x 2=4y ,∴准线方程为y =-1.]3.(教材改编)顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是( ) A .y 2=-xB .x 2=-8yC .y 2=-8x 或x 2=-yD .y 2=-x 或x 2=-8yD [若焦点在y 轴上,设抛物线方程为x 2=my ,由题意可知16=-2m ,∴m =-8,即x 2=-8y .若焦点在x 轴上,设抛物线方程为y 2=nx ,由题意,得4=-4n ,∴n =-1,∴y 2=-x .综上知,y 2=-x 或x 2=-8y .故选D .]4.(教材改编)若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1716 B .1516 C.78D .0B [M 到准线的距离等于M 到焦点的距离,又准线方程为y =-116,设M (x ,y ),则y +116=1,∴y=1516.] 5.(教材改编)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于________.8 [|PQ |=x 1+x 2+p =6+2=8.]抛物线的定义及应用【例1】 (1)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,且|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34 B .1 C.54D .74(2)已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,A (3,2),则|PA |+|PF |的最小值为________,取最小值时点P 的坐标为________.(1)C (2)72(2,2) [(1)如图所示,设抛物线的准线为l ,AB 的中点为M ,作AA 1⊥l 于A 1,BB 1⊥l 于B 1,MM 1⊥l 于M 1,由抛物线的定义知p =12,|AA 1|+|BB 1|=|AF |+|BF |=3,则点M 到y 轴的距离为|MM 1|-p 2=12(|AA 1|+|BB 1|)-14=54.故选C.(2)将x =3代入抛物线方程y 2=2x ,得y =± 6.因为6>2,所以点A 在抛物线内部,如图所示.过点P 作PQ ⊥l 于点Q ,则|PA |+|PF |=|PA |+|PQ |, 当PA ⊥l ,即A ,P ,Q 三点共线时,|PA |+|PQ |最小,最小值为72,即|PA |+|PF |的最小值为72,此时点P 的纵坐标为2,代入y 2=2x ,得x =2,所以所求点P 的坐标为(2,2).](1)动圆过点(1,0),且与直线=-1相切,则动圆的圆心的轨迹方程为________.(2)(2017· 全国卷Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.(1)y 2=4x (2)6 [(1)设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .(2)如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2. ∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2,∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6.] 抛物线的标准方程及其性质【例2】 (1)如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线依次交抛物线及准线于点A ,B ,C ,若|BC |=2|BF |,且|AF |=4,则抛物线的方程为( )A .y 2=8x B .y 2=4x C .y 2=2x D .y 2=x(2)在平面直角坐标系xOy 中,设抛物线y 2=4x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的倾斜角为120°,那么|PF |=________.(1)B (2)4 [(1)如图,分别过点A ,B 作准线的垂线,交准线于点E ,D ,设准线与x 轴交于点G ,设|BF |=a ,则由已知得|BC |=2a ,由定义得|BD |=a ,故∠BCD =30° ,则在R t △ACE中,2|AE |=|AC |,又|AF |=4,∴|AC |=4+3a ,|AE |=4,∴4+3a =8,从而得a =43,∵AE ∥FG , ∴FG AE =CF AC ,即p 4=48,p =2.∴抛物线的方程为y 2=4x .故选B . (2)法一:抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.因为直线AF 的倾斜角为120°,所以∠AFO =60°.又ta n 60°=y A1--,所以y A =2 3.因为PA ⊥l ,所以y P =y A=2 3.将其代入y 2=4x ,得x P =3,所以|PF |=|PA |=3-(-1)=4.法二:抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.因为PA ⊥l ,所以|PA |=|PF |.又因为直线AF 的倾斜角为120°,所以∠AFO =60°,所以∠PAF =60°,所以△PAF 为等边三角形,所以|PF |=|AF |=1--cos∠AFO=4.](1)为坐标原点,为抛物线:=4的焦点,为上一点.若||=4,则△的面积为( )A. 2 B . 3 C .2D .3(2)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则抛物线C 的方程为( )A .y 2=4x 或y 2=8x B .y 2=2x 或y 2=8x C .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x(1)B (2)C [(1)抛物线y 2=4x 的焦点为F (1,0),准线为直线x =-1.设点P (x ,y ),由抛物线的定义,得|PF |=x +1=4,所以x =3.把x =3代入y 2=4x ,得y =±23,故△POF 的面积S =12×|OF |×|y |=12×1×23=3.故选B .(2)如图所示,抛物线y 2=2px 的焦点F 坐标为⎝ ⎛⎭⎪⎫p 2,0,准线方程为l :x =-p2.由|MF |=5,可得点M 到准线的距离为5,则点M 的横坐标为5-p2,可设M ⎝ ⎛⎭⎪⎫5-p2,m ,则MF 中点B 的坐标为B ⎝ ⎛⎭⎪⎫52,m 2,∵以MF 为直径的圆过点A (0,2),∴|AB |=12|MF |=52,则有⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫m 2-22=⎝ ⎛⎭⎪⎫522,解得m =4,由点M 在抛物线上可得m 2=42=2p ⎝ ⎛⎭⎪⎫5-p 2,解得p =2或p =8,∴所求抛物线方程为y 2=4x 或y 2=16x ,故选C.]直线与抛物线的位置关系【例3】 (2018·全国卷Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .[解] (1)当l 与x 轴垂直时,l 的方程为x =2,可得点M 的坐标为(2,2)或(2,-2). 所以直线BM 的方程为y =12x +1或y =-12x -1.(2)证明:当l 与x 轴垂直时,AB 为MN 的垂直平分线, 所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由⎩⎪⎨⎪⎧y =k x -,y 2=2x 得ky 2-2y -4k =0,可知y 1+y 2=2k,y 1y 2=-4.直线BM ,BN 的斜率之和为k BM +k BN =y 1x 1+2+y 2x 2+2=x 2y 1+x 1y 2+y 1+y 2x 1+x 2+.①将x 1=y 1k +2,x 2=y 2k+2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k y 1+y 2k=-8+8k=0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .(1)过点(0,1)作直线,使它与抛物线y =4x 仅有一个公共点,这样的直线有________条.(2)(2019·临沂模拟)已知点A (m,4)(m >0)在抛物线x 2=4y 上,过点A 作倾斜角互补的两条直线l 1和l 2,且l 1,l 2与抛物线的另一个交点分别为B ,C.①求证:直线BC 的斜率为定值;②若抛物线上存在两点关于BC 对称,求|BC |的取值范围.(1)3 [结合图形分析可知(图略),满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).](2)[解] ①证明:∵点A (m,4)在抛物线上, ∴16=m 2,∴m =±4,又m >0,∴m =4. 设B (x 1,y 1),C (x 2,y 2), 则k AB +k AC =x 1+44+x 2+44=x 1+x 2+84=0,∴x 1+x 2=-8.∴k BC =y 2-y 1x 2-x 1=x 22-x 21x 2-x 1=x 1+x 24=-2,∴直线BC 的斜率为定值-2.②设直线BC 的方程为y =-2x +b ,P (x 3,y 3),Q (x 4,y 4) 关于直线BC 对称,设PQ 的中点为M (x 0,y 0),则k PQ =y 4-y 3x 4-x 3=x 3+x 44=x 02=12,∴x 0=1.∴M (1,-2+b ).又点M 在抛物线内部,∴-2+b >14,即b >94.由⎩⎪⎨⎪⎧y =-2x +b ,x 2=4y ,得x 2+8x -4b =0,∴x 3+x 4=-8,x 3x 4=-4b . ∴|BC |=1+4|x 3-x 4|=5·x 3+x 42-4x 3x 4=5×64+16b . 又b >94,∴|BC |>10 5.∴|BC |的取值范围为(105,+∞).1.(2018·全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N两点,则FM →·FN →=( )A .5B .6C .7D .8D [过点(-2,0)且斜率为23的直线的方程为y =23(x +2),由⎩⎪⎨⎪⎧y =23x +,y 2=4x ,得x 2-5x +4=0,解得x =1或x =4,所以⎩⎪⎨⎪⎧x =1,y =2,或⎩⎪⎨⎪⎧x =4,y =4,不妨设M (1,2),N (4,4),易知F (1,0),所以FM →=(0,2),FN →=(3,4),所以FM →·FN →=8.故选D .]2.(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8B [设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5, ∴p =4(负值舍去).∴C 的焦点到准线的距离为4.]3.(2018·全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.2 [由题意知抛物线的焦点为(1,0),则过C 的焦点且斜率为k 的直线方程为y =k (x -1)(k ≠0),由⎩⎪⎨⎪⎧y =k x -,y 2=4x ,消去y ,得k 2(x -1)2=4x ,即k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2,x 1x 2=1.由⎩⎪⎨⎪⎧y =k x -,y 2=4x 消去x 得y 2=4⎝ ⎛⎭⎪⎫1k y +1,即y 2-4k y -4=0,则y 1+y 2=4k,y 1y 2=-4.由∠AMB =90°,得MA →·MB →=(x 1+1,y 1-1)·(x 2+1,y 2-1)=x 1x 2+x 1+x 2+1+y 1y 2-(y 1+y 2)+1=0,将x 1+x 2=2k 2+4k2,x 1x 2=1与y 1+y 2=4k,y 1y 2=-4代入,得k =2.]4.(2018·全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.[解] (1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =k x -,y 2=4x得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去)或k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,x 0+2=y 0-x 0+22+16,解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.。

高中数学_一轮复习:抛物线教学设计学情分析教材分析课后反思

高中数学_一轮复习:抛物线教学设计学情分析教材分析课后反思
二、自主课堂方面
当前教学我们最应注意的问题就是自主课堂中提倡的理念“将课堂还给学生”,课堂上学生是主体,教师是引导者。本节课教学我把学习的主动权交给学生,用多媒体创设情境,围绕例题进行变式训练,师生围绕问题展开讨论,学生在质疑、讨论、总结的过程中,理解了抛物线的定义与标准方程,形成了自己的数学思想方法,更触发了学生积极思考、勤奋探索的动力,开发了学生的智慧源泉,实现了举一反三、触类旁通的效果。虽然在教学中培养学生积极参与的习惯同时也不能忽视学生的发散思维,要恰当引导学生,课堂上突发性的问题,教师要能自如地应对。
3.学生在抽象概括抛物线定义时,容易忽略抛物线定义中“点 不在直线 上”这个条件.为了加深学生对这个条件的理解,教学中通过师生互动来引导学生逐步完善抛物线的定义,并以小组合作交流的方式讨论这个条件的必要性.
另外,在建系、推导抛物线标准方程的过程中,依据学生的认知习惯,同时激励学生主动学习,我采取了以下策略:
4,先让学生独立思考,再组织学生以小组交流的方式进行讨论.以加深学生对抛物线标准方程的理解.
教材分析
本章是选修2-1的第三章《圆锥曲线与方程》,教材内容的顺序是:椭圆—抛物线—双曲线—曲线与方程.我的认识有两点:(1)先学圆锥曲线,再学曲线与方程,这样的顺序更有利于学生的学习,符合学生从特殊到一般,具体到抽象的认知规律.在圆锥曲线的学习过程中,不断的渗透曲线与方程的思想,为学生理解并掌握“曲线与方程”这一概念奠定了基础.(2)椭圆学习后先学抛物线,一方面因为课程标准和考试大纲对椭圆与抛物线的要求都是掌握,而对双曲线的要求是了解.另一方面是因为椭圆与抛物线相比双曲线来说更为常见,更熟悉.
3.抛物线的相关概念:
定点 :抛物线的焦点.定直线 :抛物线的准线.
设 , 焦点到准线的距离.

高考数学一轮复习 抛物线的标准方程和几何性质教学案

高考数学一轮复习 抛物线的标准方程和几何性质教学案

§9抛物线的标准方程和几何性质一、学习目标二、教学目标:了解抛物线的定义、标准方程和几何性质;三、教学重点:抛物线的定义应用、会求标准方程; 难点:几何性质的应用 四、知识导学 1. 抛物线的定义平面内到一个定点F 和一条定直线l (F 不在l 上)的____________点的轨迹叫做抛物线.这个定点叫做抛物线的_______,定直线l 叫做抛物线的_______. 用符号表示为:__________________________ 2. 椭圆、双曲线、抛物线的共同性质:圆锥曲线上的点到一个定点F 的距离和到一条定直线l (F 不在l 上)的距离之比是一个常数e. 当__________时是椭圆;当__________时是双曲线;当__________时是抛物线。

1.抛物线2y ax =的焦点坐标是2.设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是3.设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF 斜率为PF =4.已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为5.动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则P 的轨迹方程为6.已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 四、合作、探究、展示例1.求下列各抛物线的标准方程:(1) 顶点在坐标原点,对称轴为坐标轴,且经过点()2,4M --; (2) 焦点在直线x-2y-4=0上(3) 顶点在坐标原点,焦点在y 轴上,抛物线上一点(),3Q m -到焦点的距离等于5; (4) 顶点在坐标原点,x 轴为对称轴,抛物线上一点R 与焦点F 连线的中点为()5,4M -.例2.过抛物线()220y px p =>的焦点F 作直线l 交抛物线于A 、B 两点,点C 在准线上,且BC ∥x 轴,试证明:直线AC 过原点O例3.已知抛物线C :22(0)y px p =>过点A (1 , -2)。

抛物线复习数学教案教学设计

抛物线复习数学教案教学设计

抛物线复习数学教案教学设计【标准格式文本】教案教学设计:抛物线复习数学一、教学目标1. 知识目标:复习抛物线的基本概念、性质和相关公式,巩固学生对抛物线的理解。

2. 能力目标:培养学生观察、分析和解决抛物线相关问题的能力,提高其数学思维和解题能力。

3. 情感目标:激发学生对数学的兴趣,培养学生的数学学习兴趣和自信心。

二、教学重点与难点1. 重点:抛物线的基本概念、性质和相关公式的复习。

2. 难点:运用抛物线的相关知识解决实际问题。

三、教学准备1. 教学工具:投影仪、电脑、教学PPT。

2. 教学素材:抛物线的相关例题和练习题。

四、教学过程1. 导入(5分钟)通过展示一张抛物线的图片,引导学生回顾抛物线的基本形状和特点,并与学生进行简要的讨论。

2. 复习抛物线的基本概念(15分钟)通过教学PPT,复习抛物线的定义、顶点、对称轴、焦点和准线等基本概念,并与学生一起解析相关概念的含义和特点。

3. 复习抛物线的性质(20分钟)a. 复习抛物线的对称性:通过教学PPT,引导学生回顾抛物线的对称性,并通过具体例题进行巩固。

b. 复习抛物线的焦点和准线:通过教学PPT,讲解焦点和准线的定义和性质,并通过实例演示焦点和准线的求解方法。

4. 复习抛物线的相关公式(20分钟)a. 复习抛物线的顶点坐标:通过教学PPT,复习抛物线顶点坐标的计算方法,并通过例题进行巩固。

b. 复习抛物线的焦点坐标:通过教学PPT,讲解焦点坐标的计算方法,并通过实例演示焦点坐标的求解过程。

c. 复习抛物线的准线方程:通过教学PPT,复习准线方程的推导和计算方法,并通过例题进行巩固。

5. 运用抛物线解决实际问题(25分钟)通过教学PPT,给出一些实际问题,引导学生运用抛物线的相关知识进行分析和解决。

教师可以提供一些具体实例,如抛物线的应用于建造设计、物理运动等领域,激发学生的学习兴趣和思量能力。

6. 小结与反思(10分钟)对本节课的内容进行小结,并与学生进行互动交流。

高三数学《抛物线》教案

高三数学《抛物线》教案

高三数学《抛物线》教案一、教学内容本节课选自高三数学教材下册第五章《圆锥曲线与方程》中的抛物线部分。

具体内容包括:抛物线的定义、性质、标准方程及其应用。

二、教学目标1. 理解并掌握抛物线的定义、性质和标准方程。

2. 能够运用抛物线的性质解决实际问题,提高数学应用能力。

3. 培养学生的空间想象能力和逻辑思维能力。

三、教学难点与重点重点:抛物线的定义、性质和标准方程。

难点:抛物线标准方程的推导及其在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、量角器。

五、教学过程1. 导入:通过展示生活中的抛物线实例,如拱桥、篮球抛物线等,引导学生思考抛物线的性质和用途。

2. 基本概念:(1)抛物线的定义:介绍抛物线的起源,引导学生理解抛物线的定义。

(2)抛物线的性质:通过动画演示,让学生观察抛物线的对称性、顶点、焦点等性质。

(3)抛物线的标准方程:引导学生根据性质推导出抛物线的标准方程。

3. 例题讲解:(1)求抛物线的标准方程。

(2)已知抛物线上一点,求该点处的切线方程。

4. 随堂练习:(1)判断下列图形是否为抛物线。

(2)求下列抛物线的标准方程。

5. 应用拓展:(1)抛物线在实际问题中的应用。

(2)抛物线与圆、直线等图形的位置关系。

六、板书设计1. 定义、性质、标准方程。

2. 例题解答步骤。

3. 课后作业及答案。

七、作业设计1. 作业题目:(1)求下列抛物线的标准方程:① y²=4x;② x²=4y;③ y²=8x;④ x²=8y。

(2)已知抛物线y²=4x上一点(1,2),求该点处的切线方程。

2. 答案:(1)① y²=4x,焦点(1,0),顶点(0,0);② x²=4y,焦点(0,1),顶点(0,0);③ y²=8x,焦点(2,0),顶点(0,0);④ x²=8y,焦点(0,2),顶点(0,0)。

届高考数学一轮精品教学案:抛物线

届高考数学一轮精品教学案:抛物线

届高考数学一轮精品教学案:抛物线8.7 抛物线【考纲解读】1.理解抛物线的定义、几何图形和标准方程,知道它的简单几何性质.2.理解数形结合的思想.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.平面解析几何是历年来高考重点内容之一,经常与逻辑、不等式、三角函数等知识结合起来考查,在选择题、填空题与解答题中均有可能出现,在解答题中考查,一般难度较大,与其他知识结合起来考查,在考查平面解析几何基础知识的同时,又考查数形结合思想、转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.20XX年的高考将会继续保持稳定,坚持考查解析几何与其他知识的结合,在选择题、填空题中继续搞创新,命题形式会更加灵活. 【要点梳理】 1. 抛物线的概念平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上)。

定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。

方程y2 2pxp 0 叫做抛物线的标准方程。

p2注意:它表示的抛物线的焦点在x轴的正半轴上,焦点坐标是F(p2,0),它的准线方程是;2.抛物线的性质一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:y 2px,x 2py,x 2py.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下表:y 2px2222y 2px(p 0)2x 2py(p 0)2x 2py(p 0)2标准方程(p 0)l图形焦点坐标(,0)(p2,0)(0,p2)(0,p2)xp2p2yp2y准线方程xp2x 0范围对称性顶点离心率x 0y 0 y轴y 0 y轴x轴(0,0)x轴(0,0)(0,0) (0,0)e 1 e 1 e 1 e 1说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;(3)注意强调p的几何意义:是焦点到准线的距离。

高三数学《抛物线》教案

高三数学《抛物线》教案教学文档一、教学内容本节课选自高中数学教材选修21第三章《圆锥曲线与方程》中的第四节《抛物线》。

详细内容包括抛物线的定义、标准方程、几何性质以及应用。

二、教学目标1. 理解抛物线的定义,掌握抛物线的标准方程和简单性质。

2. 能够运用抛物线知识解决实际问题和相关数学问题。

3. 培养学生的空间想象能力和逻辑推理能力。

三、教学难点与重点教学难点:抛物线标准方程的推导和应用。

教学重点:抛物线的定义、标准方程及几何性质。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、计算器。

五、教学过程1. 实践情景引入利用多媒体展示生活中的抛物线实例,如抛物线运动、拱桥等,引导学生思考抛物线的特点。

2. 知识讲解(1)抛物线的定义(2)抛物线的标准方程(3)抛物线的几何性质3. 例题讲解(1)求抛物线y^2=4x的焦点坐标和准线方程。

(2)已知抛物线y^2=2px(p>0)的焦点为F(p/2,0),求抛物线上一点M到焦点F的距离与到准线的距离之和。

4. 随堂练习(1)求抛物线x^2=4y的焦点坐标和准线方程。

(2)已知抛物线x^2=8y的焦点为F(0,2),求抛物线上一点M 到焦点F的距离与到准线的距离之和。

5. 小结六、板书设计1. 黑板左侧:抛物线的定义、标准方程、几何性质。

2. 黑板右侧:例题及解答、随堂练习。

七、作业设计1. 作业题目(1)求抛物线y^2=8x的焦点坐标和准线方程。

(2)已知抛物线y^2=12x的焦点为F(3,0),求抛物线上一点M到焦点F的距离与到准线的距离之和。

2. 答案八、课后反思及拓展延伸1. 反思:本节课学生对抛物线的定义、标准方程和几何性质掌握程度,以及对例题和随堂练习的完成情况。

2. 拓展延伸:引导学生思考抛物线在实际生活中的应用,如建筑设计、体育竞技等,激发学生的学习兴趣。

重点和难点解析1. 抛物线标准方程的推导过程。

2. 例题的选取和讲解,尤其是涉及抛物线性质的应用。

高考数学第一轮基础知识点抛物线复习教案【推荐下载】

书山有路勤为径;学海无涯苦作舟
届高考数学第一轮基础知识点抛物线复习教案
§8.3抛物线
班级姓名学号
例1:一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上载有一
宽4米,高6米的大木箱,问能否安全通过?
例2:已知A(4,2),在焦点F的抛物线y2=4x上求一点M,使
|MA|+|MF|为最小,并加以证明。

例3:经过抛物线y2=2px的焦点F作倾角为θ的直线,若该直线与抛
物线交于P1、P2两点,(1)求|P1P2|,(2)当θ变化时,求|P1P2|的最小值。

例4:抛物线以y轴为准线,且过点M(a, b)(a≠0),证明不论M点位置如何变化,抛物线顶点的轨迹的离心率是定值。

【备用题】
如图,直线L1和L2相交于点M,L1⊥L2,若N∈L1,以
A、B为端点的曲线C上的任一点到L2的距离与到点N的距
离相等,若△A M N为锐角三角形,|AM|= ,|AN|=3, 且|BN|
=6,建立适当的坐标系,求曲线的方程。

【基础训练】
1、抛物线y=ax2(a;0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则等于:()
A、2a
B、
C、4a
D、
5、抛物线y= 的准线方程是。

6、经过P(-2,4)的抛物线的标准方程是。

专注下一代成长,为了孩子。

高三数学一轮复习抛物线PPT学习教案

解:设 A(x1,y1),B(x2,y2),由yy2==k8xx,+2, 得 k2x2+(4k2-8)x+4k2=0,所以 x1+x2=k82-4, x1x2=4. 又由抛物线的定义可知|FA|=x1+2,|FB|=x2+2, 所以 x1+2=2(x2+2),即 x1=2(x2+1),代入 x1x2=4 得 2(x2+1)x2=4,解得 x2=1(x2=-2 舍去), 将 x2=1,x1=4 代入 x1+x1=k82-4 得 k2=89,由已知 k>0, 所以 k=232.
第30页/共41页
3.在解决以圆锥曲线为背景的创新交汇问题时,应 注意以下两点
(1)注意解实际应用问题的四个解题步骤,同时对有 关圆锥曲线的基本知识必须要熟练掌握,以便能及时提 取运用.
(2)注意观察实际生活中一些形状与圆锥曲线的形状 接近的事物,如截面为抛物线形的拱桥、探照灯,截面 为双曲线形的烟筒,斜截圆柱得椭圆形状的截面等.
第25页/共41页
4 个结论——直线与抛物线相交的四个结论
已知抛物线y2=2px(p>0),过其焦点的直线交抛物线 于A,B两点,设A(x1,y1),B(x2,y2),则有以下结论:
(1)|AB|=x1+x2+p 或|AB|=si2np2α(α 为 AB 所在直线的 倾斜角);
(2)x1x2=p42; (3)y1y2=-p2; (4)过抛物线焦点且与对称轴垂直的弦称为抛物线的 通径,抛物线的通径长为2p.
第16页/共41页
抛物线的标准方程与性质 [例2] (1)抛物线y2=24ax(a>0)上有一点M,它的横 坐标是3,它到焦点的距离是5,则抛物线的方程为____. (2)设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若 线段FA的中点B在抛物线上,则B到该抛物线准线的距离 为________.

江苏省响水中学2014届高考数学一轮复习 第43-44课时 抛物线学案 文

江苏省响水中学2014届高考数学一轮复习 第43-44课时 抛物线学案文新人教A 版一、复习目标:1、了解并重视抛物线定义在解题中的应用,掌握抛物线标准方程的四种形式, 能用待定系数法求抛物线标准方程。

2、掌握抛物线的标准方程和几何性质,会用抛物线的标准方程和几何性质解决简单的实际问题。

二、知识梳理:1、定义:2、标准方程:3、几何性质:4、焦点弦长:过抛物线22y px =(0)p >焦点F 的弦AB ,若1122(,),(,)A x y B x y ,则||AF = ,||AB = ,12x x = ,12y y = .5、抛物线22x py =(0)p >的焦点为F ,AB 是过焦点F 且倾斜角为α的弦,若1122(,),(,)A x y B x y ,则12x x = ;12y y = ;||AB = .三、基础训练:1、(1)抛物线24y x =的焦点坐标为______________(2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是2、已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A,B 两点,|AB|=12, P 为C 的准线上一点,则ABP ∆的面积为________.3、经过点(4,2)P -的抛物线的标准方程为_________________4、若AB 为经过抛物线24y x =焦点的弦,且4AB =,O 为坐标原点, 则AOB ∆的面积等于_____________5、 已知以F 为焦点的抛物线y 2=4x 上的两点A 、B 满足AF →=3FB →,则弦AB 的中点到准线的距离为__________.6、对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号)7、将两个顶点在抛物线22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则_______8、已知直线1l :4360x y -+=和直线2l :1x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛_物_线[知识能否忆起]1.抛物线定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程与几何性质[小题能否全取]1.(教材习题改编)已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是( ) A .x 2=-12y B .x 2=12y C .y 2=-12xD .y 2=12x解析:选A ∵p2=3,∴p =6,∴x 2=-12y .2.(教材习题改编)抛物线y =ax 2的准线方程是y =2,则a 的值是( ) A.18 B .-18C .8D .-8解析:选B 抛物线的标准方程为x 2=1ay .则a <0且2=-14a ,得a =-18.3.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB 的长为( )A .4B .6C .10D .16解析:选D 设点A (x 1,y 1),B (x 2,y 2),则依题意得焦点F (0,1),准线方程是y =-1,直线l :y =3x +1,由⎩⎨⎧y =3x +1,x 2=4y ,消去x 得y 2-14y +1=0,y 1+y 2=14,|AB |=|AF |+|BF |=(y 1+1)+(y 2+1)=(y 1+y 2)+2=16.4.(2012·郑州模拟)已知斜率为2的直线l 过抛物线y 2=ax (a >0)的焦点F ,且与y 轴相交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为________.解析:依题意得,|OF |=a 4,又直线l 的斜率为2,可知|AO |=2|OF |=a2,△AOF 的面积等于12·|AO |·|OF |=a 216=4,则a 2=64.又a >0,所以a =8,该抛物线的方程是y 2=8x .答案:y 2=8x5.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________. 解析:其准线方程为x =-2,又由点P 到y 轴的距离为4,则P 点横坐标x P =4,由定义知|PF |=x P +p2=6.答案:61.抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,p2等于焦点到抛物线顶点的距离,记牢对解题非常有帮助.2.用抛物线定义解决问题,体现了等价转换思想的应用.3.由y 2=mx (m ≠0)或x 2=my (m ≠0)求焦点坐标时,只需将x 或y 的系数除以4,再确定焦点位置即可.典题导入[例1] (1)(2011·辽宁高考)已知F 是拋物线y 2=x 的焦点,A ,B 是该拋物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34 B .1 C.54D.74(2)(2012·曲阜师大附中质检)在抛物线C :y =2x 2上有一点P ,若它到点A (1,3)的距离与它到抛物线C 的焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)[自主解答] (1)如图,由抛物线的定义知,|AM |+|BN |=|AF |+|BF |=3,|CD |=32,所以中点C 的横坐标为32-14=54.(2)由题知点A 在抛物线内部,根据抛物线定义,问题等价于求抛物线上一点P ,使得该点到点A 与到抛物线的准线的距离之和最小,显然点P 是直线x =1与抛物线的交点,故所求P 点的坐标是(1,2).[答案] (1)C (2)B由题悟法涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解.以题试法1.(2012·安徽高考)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点.若|AF |=3,则|BF |=________.解析:由题意知,抛物线的焦点F 的坐标为(1,0),又∵|AF |=3,由抛物线定义知,点A 到准线x =-1的距离为3,∴点A 的横坐标为2.将x =2代入y 2=4x 得y 2=8,由图知,y =22, ∴A (2,22),∴直线AF 的方程为y =22(x -1).又⎩⎨⎧y =22x -,y 2=4x ,解得⎩⎪⎨⎪⎧x =12,y =-2,或⎩⎨⎧x =2,y =2 2.由图知,点B 的坐标为⎝ ⎛⎭⎪⎫12,-2, ∴|BF |=12-(-1)=32.答案:32典题导入[例2] (1)(2012·山东高考)已知双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y(2)(2012·四川高考)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM |=( )A .2 2B .2 3C .4D .2 5[自主解答] (1)∵双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,∴c a =a 2+b 2a=2,∴b =3a ,∴双曲线的渐近线方程为3x ±y =0,∴抛物线C 2:x 2=2py (p >0)的焦点⎝ ⎛⎭⎪⎫0,p 2到双曲线的渐近线的距离为⎪⎪⎪⎪⎪⎪3×0±p 22=2,∴p =8.∴所求的抛物线方程为x 2=16y .(2)依题意,设抛物线方程是y 2=2px (p >0),则有2+p2=3,得p =2,故抛物线方程是y2=4x ,点M 的坐标是(2,±22),|OM |=22+8=2 3.[答案] (1)D (2)B由题悟法1.求抛物线的方程一般是利用待定系数法,即求p 但要注意判断标准方程的形式.2.研究抛物线的几何性质时,一是注意定义转化应用;二是要结合图形分析,同时注意平面几何性质的应用.以题试法2.(2012·南京模拟)已知抛物线x 2=4y 的焦点为F ,准线与y 轴的交点为M ,N 为抛物线上的一点,且|NF |=32|MN |,则∠NMF =________.( )解析:过N 作准线的垂线,垂足为H ,则|NF |=|NH |=32|MN |,如图.∴cos ∠MNH =32, ∴∠MNH =π6,∴∠NMF =π6.答案:π6典题导入[例3] (2012·福建高考)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上.(1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q .证明以PQ 为直径的圆恒过y 轴上某定点.[自主解答] (1)依题意,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12. 因为点B (43,12)在x 2=2py 上,所以(43)2=2p ×12,解得p =2. 故抛物线E 的方程为x 2=4y . (2)证明:由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1,得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1.设M (0,y 1),令MP ·MQ =0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP =(x 0,y 0-y 1),MQ =⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1,由MP ·MQ =0,得x 20-42-y 0-y 0y 1+y 1+y 21=0,即(y 21+y 1-2)+(1-y 1)y 0=0.(*)由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立,所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).由题悟法1.设抛物线方程为y 2=2px (p >0),直线Ax +By +C =0,将直线方程与抛物线方程联立,消去x 得到关于y 的方程my 2+ny +q =0.(1)若m ≠0,当Δ>0时,直线与抛物线有两个公共点; 当Δ=0时,直线与抛物线只有一个公共点; 当Δ<0时,直线与抛物线没有公共点.(2)若m =0,直线与抛物线只有一个公共点,此时直线与抛物线的对称轴平行.2.与焦点弦有关的常用结论.(以右图为依据)(1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角).(3)S △AOB =p 22sin θ(θ为AB 的倾斜角).(4)1|AF |+1|BF |为定值2p. (5)以AB 为直径的圆与准线相切. (6)以AF 或BF 为直径的圆与y 轴相切. (7)∠CFD =90°.以题试法3.(2012·泉州模拟)如图,点O 为坐标原点,直线l 经过抛物线C :y 2=4x 的焦点F .(1)若点O 到直线l 的距离为12,求直线l 的方程;(2)设点A 是直线l 与抛物线C 在第一象限的交点.点B 是以点F 为圆心,|FA |为半径的圆与x 轴的交点,试判断AB 与抛物线C 的位置关系,并给出证明.解:(1)抛物线的焦点F (1,0),当直线l 的斜率不存在时,即x =1不符合题意.当直线l 的斜率存在时,设直线l 的方程为:y =k (x -1),即kx -y -k =0. 所以,|-k |1+k 2=12,解得k =±33.故直线l 的方程为:y =±33(x -1),即x ±3y -1=0. (2)直线AB 与抛物线相切,证明如下: 设A (x 0,y 0),则y 20=4x 0.因为|BF |=|AF |=x 0+1,所以B (-x 0,0). 所以直线AB 的方程为:y =y 02x 0(x +x 0), 整理得:x =2x 0yy 0-x 0①把方程①代入y 2=4x 得:y 0y 2-8x 0y +4x 0y 0=0, Δ=64x 20-16x 0y 20=64x 20-64x 20=0, 所以直线AB 与抛物线相切.1.(2012·济南模拟)抛物线的焦点为椭圆x 24+y 29=1的下焦点,顶点在椭圆中心,则抛物线方程为( )A .x 2=-45y B .y 2=-45x C .x 2=-413yD .y 2=-413x解析:选A 由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2= 5.∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .2.(2012·东北三校联考)若抛物线y 2=2px (p >0)上一点P 到焦点和抛物线的对称轴的距离分别为10和6,则p 的值为( )A .2B .18C .2或18D .4或16解析:选C 设P (x 0,y 0),则⎩⎪⎨⎪⎧x 0+p2=10,|y 0|=6,y 2=2px 0,∴36=2p ⎝⎛⎭⎪⎫10-p 2,即p 2-20p +36=0,解得p =2或18.3.(2013·大同模拟)已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-6x -7=0相切,则p 的值为( )A .2B .1 C.12D.14解析:选A 注意到抛物线y 2=2px 的准线方程是x =-p2,曲线x 2+y 2-6x -7=0,即(x-3)2+y 2=16是圆心为(3,0),半径为4的圆.于是依题意有⎪⎪⎪⎪⎪⎪p 2+3=4.又p >0,因此有p2+3=4,解得p =2.4.(2012·郑州模拟)已知过抛物线y 2=6x 焦点的弦长为12,则此弦所在直线的倾斜角是( )A.π6或5π6B.π4或3π4C.π3或2π3D.π2解析:选B 由焦点弦长公式|AB |=2p sin 2θ得6sin 2θ=12,所以sin θ=22,所以θ=π4或3π4. 5.(2012·唐山模拟)抛物线y 2=2px 的焦点为F ,点A 、B 、C 在此抛物线上,点A 坐标为(1,2).若点F 恰为△ABC 的重心,则直线BC 的方程为( )A .x +y =0B .x -y =0C .2x +y -1=0D .2x -y -1=0解析:选C ∵点A 在抛物线上,∴4=2p ,p =2,抛物线方程为y 2=4x ,焦点F (1,0) 设点B (x 1,y 1),点C (x 2,y 2),则有y 21=4x 1,①y 22=4x 2,②由①-②得(y 1-y 2)(y 1+y 2)=4(x 1-x 2) 得k BC =y 1-y 2x 1-x 2=4y 1+y 2. 又∵y 1+y 2+23=0,∴y 1+y 2=-2,∴k BC =-2. 又∵x 1+x 2+13=1,∴x 1+x 2=2,∴BC 中点为(1,-1),则BC 所在直线方程为y +1=-2(x -1),即2x +y -1=0.6.(2013·湖北模拟)已知直线y =k (x -m )与抛物线y 2=2px (p >0)交于A 、B 两点,且OA ⊥OB ,OD ⊥AB 于D .若动点D 的坐标满足方程x 2+y 2-4x =0,则m =( )A .1B .2C .3D .4解析:选D 设点D (a ,b ),则由OD ⊥AB 于D ,得⎩⎪⎨⎪⎧b a =-1k ,b =k a -m ,则b =-km1+k2,a =-bk ;又动点D 的坐标满足方程x 2+y 2-4x =0,即a 2+b 2-4a =0,将a =-bk 代入上式,得b 2k 2+b 2+4bk =0,即bk 2+b +4k =0,-k 3m 1+k 2-km 1+k2+4k =0,又k ≠0,则(1+k 2)(4-m )=0,因此m =4.7.(2012·乌鲁木齐模拟)过抛物线y 2=4x 的焦点F 的直线交y 轴于点A ,抛物线上有一点B 满足OB ,=OA ,+OF , (O 为坐标原点),则△BOF 的面积是________.解析:由题可知F (1,0),可设过焦点F 的直线方程为y =k (x -1)(可知k 存在),则A (0,-k ),∴B (1,-k ),由点B 在抛物线上,得k 2=4,k =±2,即B (1,±2),S △BOF =12·|OF |·|y B |=12×1×2=1.答案:18.(2012·渭南模拟)已知抛物线C :y =14x 2,则过抛物线焦点F 且斜率为12的直线l 被抛物线截得的线段长为________.解析:由题意得l 的方程为y =12x +1,即x =2(y -1).代入抛物线方程得y =(y -1)2,即y 2-3y +1=0.设线段端点坐标为(x 1,y 1),(x 2,y 2),则线段长度为y 1+y 2+p =5.答案:59.(2012·广州模拟)已知直线y =k (x -2)(k >0)与抛物线y 2=8x 相交于A ,B 两点,F 为抛物线的焦点,若|FA |=2|FB |,则k 的值为________.解析:直线y =k (x -2)恰好经过抛物线y 2=8x 的焦点F (2,0),由⎩⎪⎨⎪⎧y 2=8x ,y =k x -可得ky 2-8y -16k =0,因为|FA |=2|FB |,所以y A =-2y B ,则y A +y B =-2y B +y B =8k ,所以y B =-8k ,y A ·y B =-16,所以-2y 2B =-16,即y B =±22,又k >0,故k =2 2.答案:2 210.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 1)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC =OA +λOB ,求λ的值. 解:(1)直线AB 的方程是y =22⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p 4.由抛物线定义得|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC =(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22), 又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1), 即(2λ-1)2=4λ+1,解得λ=0或λ=2.11.如图,过抛物线y 2=4px (p >0)上一定点M (x 0,y 0)(y 0>0)作两条直线,分别交抛物线于A (x 1,y 1),B (x 2,y 2).(1)求该抛物线上纵坐标为4p 的点到点(p,0)的距离; (2)当MA 与MB 的斜率都存在,且y 1+y 2y 0=-2时,求MA 与MB 的斜率之和; (3)证明:直线AB 不可能平行于x 轴.解:(1)当y =4p 时,x =4p ,抛物线的准线方程为x =-p ,焦点为(p,0),抛物线上纵坐标为4p 的点到点(p,0)的距离,就是该点到焦点的距离,由抛物线的定义得,所求距离为4p -(-p )=5p .(2)设直线MA 的斜率为k MA ,MB 的斜率为k MB , 由y 21=4px 1,y 20=4px 0,得k MA =y 1-y 0x 1-x 0=4py 1+y 0, 同理k MB =4py 2+y 0, 又y 1+y 2y 0=-2,所以y 1+y 2=-2y 0,因为k MA +k MB =4p y 1+y 0+4p y 2+y 0=4p y 1+y 2+2y 0y 1+y 0y 2+y 0=0,所以k MA +k MB =0,故MA 与MB 的斜率之和为0.(3)证明:设直线AB 的斜率为k AB ,则k AB =y 2-y 1x 2-x 1=y 2-y 1y 224p -y 214p =4py 1+y 2,由(2)知y 1+y 2=-2y 0,所以k AB =-2p y 0,由于M (x 0,y 0)为定点,所以-2p y 0为定值且-2py 0≠0,故直线AB 不可能平行于x 轴.12.(2012·安徽模拟)已知椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率为32,抛物线C 2:x 2=2py (p >0)的焦点是椭圆的顶点.(1)求抛物线C 2的方程;(2)过点M (-1,0)的直线l 与抛物线C 2交于E ,F 两点,过E ,F 作抛物线C 2的切线l 1,l 2,当l 1⊥l 2时,求直线l 的方程.解:(1)∵椭圆C 1的长半轴长a =2,半焦距c =4-b 2.由e =c a =4-b 22=32得b 2=1,∴椭圆C 1的上顶点为(0,1),即抛物线C 2的焦点为(0,1), 故抛物线C 2的方程为x 2=4y .(2)由已知可得直线l 的斜率必存在,设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2).由x 2=4y 得y =14x 2,∴y ′=12x .∴切线l 1,l 2的斜率分别为12x 1,12x 2.当l 1⊥l 2时,12x 1·12x 2=-1,即x 1x 2=-4.由⎩⎪⎨⎪⎧y =k x+x 2=4y 得x 2-4kx -4k =0,∴Δ=(4k )2-4×(-4k )>0,解得k <-1或k>0.①且x 1x 2=-4k =-4,即k =1,满足①式,∴直线l 的方程为x -y +1=0.1.(2013·郑州模拟)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A .y 2=9x B .y 2=6x C .y 2=3xD .y 2=3x解析:选C 过点B 作准线的垂线,垂足为B 1,记准线与x 轴的交点为F 1,则依题意得|BB 1||FF 1|=|BC ||CF |=23,所以|BB 1|=23|FF 1|=2p3,由抛物线的定义得|BF |=|BB 1|=2p3.过A ,B 作x 轴的垂线,垂足分别为D ,E ,由△BEF ∽△ADF 得23p 3=p -2p 33-p ,解得p =32.所以此抛物线的方程是y 2=3x .2.(2012·安徽高考)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( )A.22B. 2C.322D .2 2解析:选C 由题意,抛物线y 2=4x 的焦点为F (1,0),准线方程为l :x =-1,可得A 点的横坐标为2,代入y 2=4x 得y 2=8,不妨设A (2,22),则直线AB 的方程为y=22(x -1),与y 2=4x 联立得2x 2-5x +2=0,可得B ⎝ ⎛⎭⎪⎫12,-2,所以S △AOB =S △AOF +S △BOF =12×1×|y A-y B |=322.3.(2012·浙江高考)如图,在直角坐标系xOy 中,点P ⎝ ⎛⎭⎪⎫1,12到抛物线C :y 2=2px (p >0)的准线的距离为54.点M (t,1)是C 上的定点,A ,B 是C上的两动点,且线段AB 被直线OM 平分.(1)求p ,t 的值;(2)求△ABP 面积的最大值. 解:(1)由题意知⎩⎪⎨⎪⎧2pt =1,1+p 2=54,得⎩⎪⎨⎪⎧p =12,t =1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为Q (m ,m ),设直线AB 的斜率为k (k ≠0).由⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2,得(y 1-y 2)(y 1+y 2)=x 1-x 2, 故k ·2m =1,所以直线AB 的方程为y -m =12m (x -m ),即x -2my +2m 2-m =0.由⎩⎪⎨⎪⎧x -2my +2m 2-m =0,y 2=x ,消去x ,整理得y 2-2my +2m 2-m =0,所以Δ=4m -4m 2>0,y 1+y 2=2m ,y 1·y 2=2m 2-m .从而|AB |= 1+1k2·|y 1-y 2|=1+4m 2·4m -4m 2.设点P 到直线AB 的距离为d ,则d =|1-2m +2m 2|1+4m 2,设△ABP 的面积为S , 则S =12|AB |·d =|1-2(m -m 2)|·m -m 2.由Δ=4m -4m 2>0,得0<m <1.令u =m -m 2,0<u ≤12,则S =u -2u 3,S ′(u )=1-6u 2.由S ′(u )=0,得u =66∈⎝ ⎛⎦⎥⎤0,12, 所以S (u )max =S ⎝⎛⎭⎪⎫66=69. 故△ABP 面积的最大值为69.1.(2012·北京高考)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:直线l 的方程为y =3(x -1),即x =33y +1,代入抛物线方程得y 2-433y -4=0,解得y A =433+ 163+162=23(y B <0,舍去),故△OAF 的面积为12×1×23= 3.答案: 32.(2012·东城模拟)已知顶点在坐标原点,焦点在x 轴正半轴的抛物线上有一点A ⎝ ⎛⎭⎪⎫12,m ,A 点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设M (x 0,y 0)为抛物线上的一个定点,过M 作抛物线的两条相互垂直的弦MP ,MQ ,求证:PQ 恒过定点(x 0+2,-y 0);(3)直线x +my +1=0与抛物线交于E ,F 两点,问在抛物线上是否存在点N ,使得△NEF 为以EF 为斜边的直角三角形?若有,求出该点存在时需满足的条件;若无,请说明理由.解:(1)由题意可设抛物线的方程为y 2=2px (p >0),则由抛物线的定义可得p 2+12=1,即p =1,所以该抛物线的方程为y 2=2x .(2)由题意知直线PQ 与x 轴不平行,设直线PQ 的方程为x =my +n ,代入y 2=2x 得y 2-2my -2n =0.所以y 1+y 2=2m ,y 1y 2=-2n ,其中y 1,y 2分别是P ,Q 的纵坐标,x 1,x 2分别是P ,Q 的横坐标.因为MP ⊥MQ ,所以k MP ·k MQ =-1.即y 1-y 0x 1-x 0·y 2-y 0x 2-x 0=-1, 又由x 1=y 212,x 2=y 222,x 0=y 202,代入上式得2y 1+y 0·2y 2+y 0=-1,所以(y 1+y 0)(y 2+y 0)=-4. 即y 1y 2+(y 1+y 2)y 0+y 20+4=0,所以(-2n )+2my 0+2x 0+4=0,即n =my 0+x 0+2. 所以直线PQ 的方程为x =my +my 0+x 0+2, 所以直线PQ 恒过定点(x 0+2,-y 0).(3)假设存在点N (x 0,y 0),设E (x 1,y 1),F (x 2,y 2).由⎩⎪⎨⎪⎧y 2=2x ,x +my +1=0,消去x 得y 2+2my +2=0,则y 1+y 2=-2m ,y 1y 2=2,且(2m )2-8>0,即m 2>2.由于NE ⊥NF ,所以y 1-y 0x 1-x 0·y 2-y 0x 2-x 0=-1,又点E ,F ,N 在抛物线上,所以x 1=y 212,x 2=y 222,x 0=y 202,代入y 1-y 0x 1-x 0·y 2-y 0x 2-x 0=-1,得2y 1+y 0·2y 2+y 0=-1,即(y 1+y 0)(y 2+y 0)=-4,即y 1y 2+y 0(y 1+y 2)+y 20+4=0,将y 1+y 2=-2m ,y 1y 2=2代入并整理得y 20-2my 0+6=0,只要4m 2-24>0,即m 2>6,该方程即有实数解.所以只要m 2>6就存在满足条件的点N ,当m 2≤6时不存在满足条件的点N .。

相关文档
最新文档