2000年普通高等学校招生全国统一考试(理工农医类)数学

合集下载

(详细解析)2001年普通高等学校招生全国统一考试数学试题及答案(理)

(详细解析)2001年普通高等学校招生全国统一考试数学试题及答案(理)

2001年普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第I 卷(选择题 60分)注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写 在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需 改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一、选择题:本大题共12小题;第每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若0cos sin >θθ,则θ在A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限 【答案】B【解析】0cos sin >θθ,则sin θ与cos θ同号,B 正确.2.过点(1,1)(1,1)A B --,且圆心在直线02=-+y x 上的圆的方程是 A .()()41322=++-y x B .()()41322=-++y xC .()()41122=-+-y x D .()()41122=+++y x【答案】C【解析】显然过A B ,两点的直线与已知直线平行,过A B ,两点分别作,x y 轴的垂线,与已知直线相交于点(1,1)M ,则(1,1)M 为圆心,半径为2,C 正确.3.设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 A .1 B .2 C .4 D .6 【答案】B【解析】由已知得12312313212,48,2a a a a a a a a a ++==+=,解得12a =.4.若定义在区间(10)-,内的函数()2log (1)a f x x =+满足0)(>x f ,则a 的取值范围是 A .1(0,)2 B .1(0,]2C .1(,)2+∞ D .(0,)+∞【答案】A【解析】当(10)x ∈-,,则1(0,1)x +∈,由0)(>x f ,则021a <<,则1(0,)2a ∈.5.极坐标方程)4sin(2πθρ+=的图形是【答案】C【解析】化为直角坐标方程为2222((122x y -+-=,只有C 正确.6.函数)0(1cos ≤≤-+=x x y π的反函数是A .)20)(1arccos(≤≤--=x x yB .)20)(1arccos(≤≤--=x x y πC .)20)(1arccos(≤≤-=x x yD .)20)(1arccos(≤≤-+=x x y π 【答案】A【解析】∵0x π-≤≤,∴02y ≤≤,又0x π≤-≤,∴1cos cos()y x x -==-, ∴cos(1)x arc y -=-,即cos(1)x arc y =--,反函数为)20)(1arccos(≤≤--=x x y .7.若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则其离心率为 A .43 B .32 C .21 D .41 【答案】C【解析】易知椭圆的中心为(2,0),且2,1a c ==,则12c e a ==.8.若0,sin cos ,sin cos 4a b παβααββ<<<+=+=,则A .b a <B .b a >C .1<abD .2>ab 【答案】A【解析】由题设sin(),sin()44a b ππαβ=+=+,又4442ππππαβ<+<+<,所以b a <.9.在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成的角的大小为A .60︒B .90︒C .105︒D .75︒【答案】B则【解析】如图,取11A B 的中点D ,连接1,BD C D ,若12AB BB =,1111,,AB BD AB C D BD C D D ⊥⊥=,∴1AB ⊥平面1C DB ,而1C B ⊂面1C DB ,∴11AB C B ⊥,故答案为90︒.10.设()()f x g x ,都是单调函数,有如下四个命题:①若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增; ②若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增; ③若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减; ④若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减; 其中,正确的命题是A .①③B .①④C .②③D .②④ 【答案】C【解析】若)(x g 单调递减,则()g x -单调递增,所以)()(x g x f -单调递增,②正确;同理③正确.11.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为123P P P ,,.若屋顶斜面与水平面所成的角都是α,则A .123P P P >>B .123P P P =>C .123P P P >=D .123P P P ==【答案】D【解析】本题考查平面图形在另一平面内的射影理解与有关计算,其斜面与房屋的底面所成的角都是α,又有cos S S α=底斜,故有123P P P ==.【编者注】此公式《新课标》不作要求.12.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为A .26B .24C .20D . 19 【答案】D【解析】从A 到B 有四条线路,从上到下记为1234,,,l l l l ,且123412,12l l l l +≤+≤,在单位时间内可以通过的最大信息量分别为3,4,6,6,D 正确.第II 卷(非选择题 90分)注意事项:1. 第II 卷共7页,用钢笔或圆珠笔直接答在试题卷中. 2. 答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上.13.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 . 【答案】2π【解析】由已知可得圆锥的的底面半径和母线长分别为1和2,侧面积为2rl ππ=.14.双曲线116922=-y x 的两个焦点为12F F ,,点P 在双曲线上.若12PF PF ⊥,则点P 到x 轴的距离为 .【答案】516 【解析】方法一:设(,)P x y ,12(5,0)(5,0)F F -,,由12PF PF ⊥得00155y y x x --⋅=-+-,即 2225x y +=,与双曲线方程联立得225625y =,则165y =. 方法二:设12,PF m PF n ==,由抛物线定义和题设222126,100m n m n FF -=+==,可得32mn =,利用面积相等关系12121122P PF PF F F y ⋅=⋅得165y =.15.设{}n a 是公比为q 的等比数列,n S 是它的前n 项和.若{}n S 是等差数列,则=q . 【答案】1【解析】若{}n S 是等差数列,则1322S S S +=,11231223()2()a a a a a a a a +++=+⇒=,所以1q =.16.圆周上有2n 个等分点(1>n ),以其中三个点为顶点的直角三角形的个数为 . 【答案】2(1)n n -【解析】由题意知,只有三角形的一条边过圆心,才能组成直角三角形,∵圆周上有2n 个等分点,∴共有n 条直径,每条直径可以和除去本身的两个定点外的点组成直角三角形, ∴可做22n -个直角三角形,根据分步计数原理知共有(22)2(1)n n n n -=-.三、解答题:本大题共6小题;共74分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)如图,在底面是直角梯形的四棱锥ABCD S -中,∠90=ABC °,SA ⊥面ABCD ,11,2SA AB BC AD ====. (Ⅰ)求四棱锥ABCD S -的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值.【解】本小题考查线面关系和棱锥体积计算,以及空间想象能力和逻辑推理能力.满分12分.(I )直角梯形ABCD 的面积是()110.531224M BC AD AB +=+⋅=⨯=底面, ……2分 ∴四棱推ABCD S -的体积是113113344V SA M =⨯⨯=⨯⨯=底面.……4分(II )延长,BA CD 相交于点E ,连结SE ,则SE 是所求二面角的棱. ……6分∵//,2AD BC BC AD =,∴EA AB SA ==,∴SE SB ⊥. ∵SA ⊥面ABCD ,得面AEB ⊥面EBC ,EB 是交线, 又BC EB ⊥,∴BC ⊥面SEB ,故SB 是CS 在面SEB 上的射影,∴CS SE ⊥,所以BSC ∠是所求二面角的平面角. ……10分222,1,SB SA AB BC BC SB ∴=+==⊥.2tan 2BC BSC SB ∴∠==. 即所求二面角的正切值为22. ……12分18.(本小题满分12分)已知复数31)1(i i z -=. (Ⅰ)求1arg z 及1z ;(Ⅱ)当复数z 满足1=z ,求1z z -的最大值.【解】本小题考查复数的基本性质和基本运算,以及分析问题和解决问题的能力.满分12分.(Ⅰ)31(1)22z i i i =-=-, ……3分将1z 化为三角形式,得⎪⎭⎫⎝⎛+=47sin 47cos 221ππi z ,∴47arg 1π=z ,221=z . ……6分 (Ⅱ)设cos sin z i αα=+,则1(cos 2)(sin 2)z z i αα-=-++,()()22212sin 2cos ++-=-ααz z942sin()4πα=+-, ……9分当sin()14πα+=时,21z z -取得最大值249+.从而得到1z z -的最大值为122+. ……12分19.(本小题满分12分)设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线交抛物线于A B ,两点. 点C 在抛物线的准线上,且//BC x 轴. 证明直线AC 经过原点O .【解】本小题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力.满分12分. 证明一:因为抛物线)0(22>=p px y 的焦点为(,0)2pF ,所以经过 点F 的直线AB 的方程可设为2p my x +=, 代人抛物线方程得2220y pmy p --=,若记1122(,),(,)A x y B x y ,则12,y y 是该方程的两个根,所以212y y p =-.因为BC ∥x 轴,且点C 在准线2p x =-上,所以点C 的坐标为2(,)2py -, 故直线CO 的斜率为111222x y y p p y k ==-=即k 也是直线OA 的斜率,所以直线AC 经过原点O . 证明二:如图,记x 轴与抛物线准线l 的交点为E ,过A 作AD l ⊥,D 是垂足.则////AD FE BC .……2分 连结AC ,与EF 相交手点N ,则||||||||||,||||||||||EN CN BF NF AF AD AC AB BC AB === ……6分根据抛物线的几何性质,||||,||||AF AD BF BC == ……8分||||||||||||||||AD BF AF BC EN NF AB AB ⋅⋅∴===,即点N 是EF 的中点,与抛物线的顶点O 重合,所以直线AC 经过原点O .…12分20.(本小题满分12分)已知n m i ,,是正整数,且n m i <≤<1.(Ⅰ)证明:in i i m i P m P n <; (Ⅱ)证明:mn n m )1()1(+>+.【解】本小题考查排列、组合、二项式定理、不等式的基本知识和逻辑推理能力.满分12分.(Ⅰ)证明:对于1i m <≤有(1)im p m m i =⋅⋅-+,⋅-⋅=m m m m m p i i m 1…mi m 1+-⋅, 同理 11...i n i p n n n i n n n n--+=⋅⋅⋅…, ……4分由于m n <,对整数1,2,,1k i =-,有mkm n k n ->-, 所以 i im i i n mp n p >,即im i i n i p n p m >. ……6分(Ⅱ)证明:由二项式定理有()inni inCm m ∑==+01,()i mmi i mCn n ∑==+01, ……8分由(Ⅰ)知i n i p m >(1)i im n p i m n <≤<,而 !i p C i m im=,!i p C i n in =, ……10分所以,(1)i i i in m m C n C i m n ><≤<.因此,∑∑==>mi im i mi i niC n Cm 22. 又 10000==m n C n C m ,mn nC mC m n ==11,()n i m C m in i ≤<>0.∴∑∑==>mi im i ni i niC n Cm 0. 即(1)(1)nmm n +>+. ……12分21.(本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41.(Ⅰ)设n 年内(本年度为第一年)总投入为n a 万元,旅游业总收入为n b 万元.写出n n b a ,的表达式;(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?【解】本小题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力.满分12分.(I )第1年投入为800万元.第2年投入为1800(1)5⨯-万元,……,第n 年投入为11800(1)5n -⨯-万元.所以,n 年的总收入为111111800800(1)800(1)800(1)555n n k n k a --==+⨯-+⋅⋅⋅+⨯-=⨯-∑44000[1()]5n =⨯-. ……3分第1年旅游业收入为 400万元,第 2年旅游业收入为 1400(1)4⨯+万元,……,第n 年旅游业收人为11400(1)4n -⨯+万元.所以,n 年内的旅游业总收入为111111400400(1)400(1)400(1)444n n k n k b --==+⨯++⋅⋅⋅+⨯+=⨯+∑51600[()1]4n =⨯-. ……6分(Ⅱ))设至少经过年旅游业的总收入才能超过总投入,由此0n n b a ->,即541600[()1]4000[1()]045n n ⨯--⨯-> 化简得455()2()7054n n ⨯+⨯->, ……9分设4()5n x =,代入上式得25720x x -+>,解此不等式,得2,15x x <>(舍去).即 42()55n <,由此得 5n ≥.答:至少经过5年旅游业的总收入才能超过总投入. ……12分22.(本小题满分14分)设)(x f 是定义在R 上的偶函数,其图象关于直线1=x 对称,对任意]21,0[,21∈x x ,都有1212()()()f x x f x f x +=⋅,且0)1(>=a f .(Ⅰ)求)21(f 及)41(f ; (Ⅱ)证明)(x f 是周期函数; (Ⅲ)记)212(nn f a n +=,求)(ln lim n n a ∞→.【解】本小题主要考查函数的概念、图象,函数的奇偶性和周期性以及数列极限等基础知识;考查运算能力和逻辑思维能力,满分14分.(Ⅰ)因为对121,[0,]2x x ∈,都有1212()()()f x x f x f x +=+,所以()()()0,[0,1]22x xf x f f x =⋅≥∈.∵211111(1)()()()[()]22222f f f f f =+=⋅=,2111111()()()()[()]244444f f f f f =+=⋅=. ……3分0)1(>=a f ,∴112411(),()24f a f a ==. ……6分(Ⅱ)证明:依题设()y f x =关于直线1x =对称,故()(11)f x f x =+-,即()(2),f x f x x R =-∈, ……8分 又由()f x 是偶函数知()(),f x f x x R -=∈,∴()(2),f x f x x R -=-∈, 将上式中x -以x 代换,得()(2),f x f x x R =+∈.这表明()f x 是R 上的周期函数,且2是它的一个周期. ……10分 (Ⅲ)由(Ⅰ)知()0,[0,1]f x x ≥∈.∵111111()()((1))()((1))222222f f n f n f f n n n n n n =⋅=+-⋅=⋅-⋅ 111()()()222f f f n n n ==⋅⋅⋅1[()]2n f n=,121()2f a =,资料内容仅供您学习参考,如有不当之处,请联系改正或者删除 ----完整版学习资料分享---- ∴121()2n f a n=. ∵()f x 的一个周期是2, ∴11(2)()22f n f n n+=,因此12n n a a =, ……12分 ∴1lim(ln )lim(ln )02n n n a a n→∞→∞==. ……14分。

1999年普通高等学校招生全国统一考试数学试题及答案(理)

1999年普通高等学校招生全国统一考试数学试题及答案(理)

1999年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第I 卷(选择题共60分)一、选择题:本大题共14小题;第1~10题每小题4分,第11~14题每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是 ( )(A) (M ∩P )∩S (B) (M ∩P )∪S (C) (M ∩P )∩S(D) (M ∩P )∪S2.已知映射f :B A →,其中,集合{},4,3,2,1,1,2,3---=A 集合B 中的元素都是A 中元素在映射f 下的象,且对任意的,A a ∈在B 中和它对应的元素是a ,则集合B 中元素的个数是( )(A) 4(B) 5(C) 6(D) 73. 若函数()x f y =的反函数是()()0,,≠==ab b a f x g y ,则()b g 等于 ( ) (A) a(B) 1-a(C) b(D) 1-b4.函数()()()0sin >+=ωϕωx M x f 在区间[]b a ,上是增函数,且()(),,M b f M x f =-=则函数()()ϕω+=x M x g cos 在[]b a ,上( )(A) 是增函数(B) 是减函数(C) 可以取得最大值M(D) 可以取得最小值M -5.若()x x f sin 是周期为π的奇函数,则()x f 可以是( )(A) x sin(B) x cos(C) x 2sin (D) x 2cos6.在极坐标系中,曲线⎪⎭⎫⎝⎛-=3sin 4πθρ关于 ( )(A) 直线3πθ=轴对称(B) 直线πθ65=轴对称 (C) 点⎪⎭⎫⎝⎛3,2π中心对称 (D) 极点中心对称7.若干毫升水倒入底面半径为cm 2的圆柱形器皿中,量得水面的高度为cm 6,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( )(A) cm 36 (B) cm 6(C) cm 3182(D) cm 31238.若(),32443322104x a x a x a x a a x ++++=+则()()2312420a a a a a +-++的值为( )(A) 1(B) -1(C) 0(D) 29.直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为( )(A)6π (B)4π (C)3π (D)2π 10.如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF 23=,EF 与面AC 的距离为2,则该多面体的体积为( )(A)29 (B) 5 (C) 6 (D)215 11.若,22sin ⎪⎭⎫ ⎝⎛<<->>παπαααctg tg 则∈α( )(A) ⎪⎭⎫⎝⎛--4,2ππ (B) ⎪⎭⎫⎝⎛-0,4π (C) ⎪⎭⎫⎝⎛4,0π (D) ⎪⎭⎫⎝⎛2,4ππ 12.如果圆台的上底面半径为5,下底面半径为R ,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R =( )(A) 10(B) 15(C) 20(D) 2513.已知两点,45,4,45,1⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛N M 给出下列曲线方程:①0124=-+y x ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是 ( )(A) ①③(B) ②④(C) ①②③(D) ②③④14.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )(A) 5种(B) 6种(C) 7种(D) 8种第II 卷(非选择题共90分)二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上.15.设椭圆()012222>>=+b a by a x 的右焦点为1F ,右准线为1l ,若过1F 且垂直于x 轴的弦长等于点1F 到1l 的距离,则椭圆的率心率是_____16.在一块并排10垄的田地中,选择2垄分别种植A 、B 两种作物,每种作物种植一垄,为有利于作物生长,要求A 、B 两种作物的间隔不小于6垄,则不同的选垄方法共有___________种(用数字作答)17.若正数a 、b 满足,3++=b a ab 则ab 的取值范围是______________18.α、β 是两个不同的平面,m 、n 是平面α及β 之外的两条不同直线,给出四个论断:①m ⊥n②α⊥β③n ⊥β④m ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题:________________________________三、解答题:本大题共6小题;共74分,解答应写出文字说明、证明过程或演算步骤.19.(本小题满分10分)解不等式()1,01log 22log 3≠>-<-a a x x a a20.(本小题满分12分)设复数.sin 2cos 3θθ⋅+=i z 求函数⎪⎭⎫ ⎝⎛<<-=20arg πθθz y 的最大值以及对应的θ值.21.(本小题满分12分)如图,已知正四棱柱1111D C B A ABCD -,点E 在棱D D 1上,截面EAC ∥B D 1,且面EAC 与底面ABCD 所成的角为.,45a AB =Ⅰ.求截面EAC 的面积;Ⅱ.求异面直线11B A 与AC 之间的距离; Ⅲ.求三棱锥EAC B -1的体积. 22.(本小题满分12分)右图为一台冷轧机的示意图.冷轧机由若干对轧辊组成,带钢从一端输入,经过各对轧辊逐步减薄后输出.Ⅰ.输入带钢的厚度为α,输出带钢的厚度为β,若每对轧辊的减薄率不超过0r .问冷轧机至少需要安装多少对轧辊?(一对轧辊减薄率输入该对的带钢厚度从该对输出的带钢厚度输入该对的带钢厚度-=)Ⅱ.已知一台冷轧机共有4对减薄率为20%的轧辊,所有轧辊周长均为1600.mm 若第k 对轧辊有缺陷,每滚动一周在带钢上压出一个疵点,在冷轧机输出的带钢上,疵点的间距为.k L 为了便于检修,请计算1L 、2L 、3L 并填入下表(轧钢过程中,带钢宽度不变,且不考虑损耗).23.(本小题满分14分)已知函数()x f y =的图像是自原点出发的一条折线,当(),2,1,01=+≤≤n n y n时,该图像是斜率为nb 的线段(其中正常数1≠b ),设数列n x 由()(),2,1==n n x f n 定义.Ⅰ.求1x 、2x 和n x 的表达式;Ⅱ.求()x f 的表达式,并写出其定义域;Ⅲ.证明:()x f y =的图像与x y =的图像没有横坐标大于1的交点. 24.(本小题满分14分)如图,给出定点()()00,>a a A 和直线B x l .1:-=是直线l 上的动点,BOA ∠的角平分线交AB 于点C .求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.1999年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答一、选择题(本题考查基础知识和基础运算).1. C2. A3. A4. C5. B6. B7. B8. A9. C10. D 11.B12. D13.D14. C二、填空题(本题考查基本知识和基本运算).15.2116. 12 17. [)+∞,9 18. n m n m ⊥⇒⊥⊥⊥βαβα,,或βαβα⊥⇒⊥⊥⊥n m n m ,,三、解答题19. 本小题主要考查对数函数的性质、对数不等式、无理不等式解法等基础知识,考查分类讨论的思想.解:原不等式等价于① ② ③()⎪⎩⎪⎨⎧>--<-≥-.01log 2,1log 22log 3,02log 32x x x x a a a a 由①得,32log ≥x a 由②得,43log <x a 或1log >x a , 由③得.21log >x a由此得,43log 32<≤x a 或.1log >x a当1>a 时得所求的解是{}a x x a x a x >⎭⎬⎫⎩⎨⎧≤≤||4332 ; 当10<<a 时得所求的解是{}.0||3243a x x a x a x <<⋃⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤< 20.本小题主要考查复数的基本概念、三角公式和不等式等基础知识,考查综合运用所学数学知识解决问题的能力.解:由20πθ<<得.0>θtg由θθsin 2cos 3i z +=得2arg 0π<<z 及().32cos 3sin 2arg θθθtg tg ==z故 ()z y arg -=θtg tgθθθ232132tg tg tg +-= ,231θθtg tg +=因为,6223≥+θθtg tg所以.126231≤+θθtg tg 当且仅当⎪⎭⎫ ⎝⎛<<=2023πθθθtg tg 时,即26=θtg 时,上式取等号. 所以当26arctg=θ时,函数y tg 取得最大值.126 由z y arg -=θ得.2,2⎪⎭⎫ ⎝⎛-∈ππy 由于在⎪⎭⎫⎝⎛-2,2ππ内正切函数是递增函数,函数y也取最大值.126arctg21.本小题主要考查空间线面关系、二面角和距离的概念,逻辑思维能力、空间想象能力及运算能力.Ⅰ. 解:如图,连结BD 交AC 于O ,连结EO 因为底面ABCD 是正方形, 所以DO ⊥AC又因为ED ⊥底面AC , 因为EO ⊥AC所以∠EOD 是面EAC 与底面AC 所成二面角的平面角. 所以, 45=∠EOD.45sec 22,2,22a a EO a AC a DO =⋅===故.222a S EAC =∆ II. 解:由题设1111D C B A ABCD -是正四棱柱,得A A 1⊥底面AC ,A A 1⊥AC , 又A A 1⊥,11B A所以A A 1是异面直线11B A 与AC 间的公垂线.因为11B D ∥面EAC ,且面BD D 1与面EAC 交线为EO 所以11B D ∥EO 又O 是DB 的中点,所以E 是D D 1的中点,11B D =2EO =2a 所以D D 1.2221a DB B D =-=异面直线11B A 与AC 间的距离为.2a Ⅲ. 解法一:如图,连结11B D 因为D D 1=DB =.2a 所以11B BDD 是正方形,连结D B 1交B D 1于P ,交EO 于Q 因为D B 1⊥B D 1,EO ∥B D 1, 所以D B 1⊥EO 又AC ⊥EO ,AC ⊥ED 所以AC ⊥面11B BDD , 所以D B 1⊥AC , 所以D B 1⊥面EAC .所以Q B 1是三棱锥EAC B -1的高. 由DQ =PQ ,得.234311a D B Q B == 所以.42232231321a a a V EAC B =⋅⋅=- 所以三棱锥EAC B -1的体积是.423a 解法二:连结O B 1,则112EOB A EAC B V V --= 因为AO ⊥面11B BDD ,所以AO 是三棱锥1EOB A -的高,AO .22a =在正方形11B BDD 中,E 、O 分别是D D 1、DB 的中点(如右图),则.4321a S EOB =∆ ∴.422243312321a a a V EAC B =⋅⋅⋅=- 所以三棱锥EAC B -1的体积是.423a 22. 本小题主要考查等比数列、对数计算等基本知识,考查综合运用数学知识和方法解决实际问题的能力.Ⅰ.解:厚度为α的带钢经过减薄率均为0r 的n 对轧辊后厚度为().10nr a -为使输出带钢的厚度不超过β,冷轧机的轧辊数(以对为单位)应满足()β≤-nr a 01即().10ar nβ≤-由于(),0,010>>-ar nβ对比上式两端取对数,得().lg1lg 0ar n β≤-由于(),01lg 0<-r 所以().1lg lg lg 0r an --≥β因此,至少需要安装不小于()01lg lg lg r a--β的整数对轧辊.Ⅱ. 解法一:第k 对轧辊出口处疵点间距离为轧辊周长,在此处出口的两疵点间带钢体积为()⋅-⋅kr a 11600宽度(),%20=r 其中而在冷轧机出口处两疵点间带钢的体积为()⋅-⋅41r a L k 宽度.因宽度相等,且无损耗,由体积相等得()=-⋅kr a 11600()41r a L k -⋅ (),%20=r即.8.016004-⋅=k k L由此得(),20003mm L =(),25002mm L = ()mm L 31251=填表如下 轧锟序号k1 2 3 4 疵点间距k L (单位:mm )3125250020001600解法二:第3对轧辊出口处疵点间距为轧辊周长,在此处出口的两疵点间带钢体积与冷轧机出口处两疵点间带钢体积相等,因宽度不变,有(),2.0116003-⋅=L所以().20008.016003mm L == 同理(),25008.032mm LL ==().31258.021mm LL ==填表如下 轧锟序号k1 2 3 4 疵点间距k L (单位:mm )312525002000160023.本小题主要考查函数的基本概念、等比数列、数列极限的基础知识,考查归纳、推理和综合的能力.Ⅰ.解:依题意()00=f ,又由()11=x f ,当10≤≤y 时,函数()x f y =的图像是斜率为10=b 的线段,故由()()10011=--x f x f得.11=x又由()22=x f ,当21≤≤y 时,函数()x f y =的图像是斜率为b 的线段,故由()()b x x x f x f =--1212,即b x x 112=-得.112bx +=记.00=x 由函数()x f y =图像中第n 段线段的斜率为1-n b ,故得()().111---=--n n n n n b x x x f x f 又()()1,1-==-n x f n x f n n ; 所以 .2,1,111=⎪⎭⎫ ⎝⎛=---n b x x n n n由此知数列{}1--n n x x 为等比数列,其首项为1,公比为.1b因,1≠b 得(),111111111-⎪⎭⎫ ⎝⎛-=+++=-=--=-∑b b b b b x x x n n nk k k n即.111-⎪⎭⎫⎝⎛-=-b b b x n nⅡ. 解:当10≤≤y ,从Ⅰ可知,x y =当10≤≤x 时,().x x f = 当1+≤≤n y n 时,即当1+≤≤n n x x x 时,由Ⅰ可知()()().3,2,1,1 =≤≤-+=+n x x x x x b n x f n n n n为求函数()x f 的定义域,须对() ,3,2,1111=-⎪⎭⎫ ⎝⎛-=-n b b b x n n 进行讨论.当1>b 时,111limlim 1-=-⎪⎭⎫ ⎝⎛-=-∞→∞→b bb b b x n n n n ; 当10<<b 时,n x n ,∞→也趋向于无穷大. 综上,当1>b 时,()x f y =的定义域为⎪⎭⎫⎢⎣⎡-1,0b b ;当10<<b 时,()x f y =的定义域为[)+∞,0. Ⅲ. 证法一:首先证明当1>b ,11-<<b bx 时,恒有()x x f >成立. 用数学归纳法证明:(ⅰ)由Ⅱ知当1=n 时,在(]2,1x 上, ()(),11-+==x b x f y 所以()()()011>--=-b x x x f 成立(ⅱ)假设k n =时在(]1,+k k x x 上恒有()x x f >成立. 可得 (),111++>+=k k x k x f在(]21,++k k x x 上,()().111++-++=k k x x b k x f所以 ()()x x x b k x x f k k --++=-++111()()()011111>-++--=+++k k k x k x x b 也成立.由(ⅰ)与(ⅱ)知,对所有自然数n 在(]1,+n n x x 上都有()x x f >成立. 即 11-<<b bx 时,恒有()x x f >. 其次,当1<b ,仿上述证明,可知当1>x 时,恒有()x x f <成立. 故函数()x f y =的图像与x y =的图像没有横坐标大于1的交点. 证法二:首先证明当1>b ,11-<<b bx 时,恒有()x x f >成立. 对任意的,1,1⎪⎭⎫ ⎝⎛-∈b b x 存在n x ,使1+≤<n n x x x ,此时有 ()()()(),10≥->-=-n x x x x b x f x f n n n所以()().n n x x f x x f ->- 又(),1111n n n x bb n x f =+++>=- 所以()0>-n n x x f ,所以()()0>->-n n x x f x x f , 即有()x x f >成立.其次,当1<b ,仿上述证明,可知当1>x 时,恒有()x x f <成立. 故函数()x f 的图像与x y =的图像没有横坐标大于1的交点.24. 本小题主要考查曲线与方程,直线和圆锥曲线等基础知识,以及求动点轨迹的基本技能和综合运用数学知识解决问题的能力.解法一:依题意,记()(),,1R ∈-b b B 则直线OA 和OB 的方程分别为0=y 和.bx y -=设点()y x C ,,则有a x <≤0,由OC 平分∠AOB ,知点C 到OA 、OB 距离相等.根据点到直线的距离公式得.12bbx y y ++=①依题设,点C 在直线AB 上,故有().1a x aby -+-= 由0≠-a x ,得().1ax y a b -+-= ②将②式代入①式得()()(),11122222⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡-++a x xy a y a x y a y 整理得()()[].0121222=++--y a ax x a y 若0≠y ,则()()()a x y a ax x a <<=++--0012122;若0=y ,则π=∠=AOB b ,0,点C 的坐标为(0,0),满足上式. 综上得点C 的轨迹方程为()()()a x y a ax x a <≤=++--0012122(ⅰ)当1=a 时,轨迹方程化为().102<≤=x x y ③此时,方程③表示抛物线弧段; (ⅱ)当1≠a 时,轨迹方程化为()a x a a y a a a a x <≤=-+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛--0111122222④ 所以,当10<<a 时,方程④表示椭圆弧段; 当1>a 时,方程④表示双曲线一支的弧段.解法二:如图,设D 是l 与x 轴的交点,过点C 作CE ⊥x 轴,E 是垂足. (ⅰ)当| BD |≠0时,设点C (x ,y ),则.0,0≠<<y a x 由CE ∥BD 得().1a xa y EADA CE BD +-=⋅=因为∠COA =∠COB=∠COD -∠BOD =π-∠COA -∠BOD ,所以2∠COA =π-∠BOD 所以(),1222COACOACOA ∠-∠=∠tg tg tg ()BOD BOD ∠-=∠-tg tg π因为,xy COA =∠tg().1a xa y ODBD BOD +-==∠tg所以(),11222a x a y xy x y+--=-⋅整理得()()().0012122a x y a ax x a <<=++--(ⅱ)当| BD | = 0时,∠BOA = π,则点C 的坐标为(0,0),满足上式. 综合(ⅰ),(ⅱ),得点C 的轨迹方程为()()().0012122a x y a ax x a <≤=++--以下同解法一.。

2003年普通高等学校招生全国统一考试(江苏卷)数学(理)及答案

2003年普通高等学校招生全国统一考试(江苏卷)数学(理)及答案

2003年普通高等学校招生全国统一考试(江苏卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分1至2页,第Ⅱ卷3至10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)如果函数2y ax bx a =++的图象与x 轴有两个交点,则点(,)a b aOb 在平面上的区域(不包含边界)为( )(2)抛物线2ax y =的准线方程是2=y ,则a 的值为 ( )(A )81 (B )-81 (C )8 (D )-8 (3)已知==-∈x tg x x 2,54cos ),0,2(则π( )(A )247 (B )-247 (C )724 (D )-724 (4)设函数0021,1)(0,,0,12)(x x f x x x x f x 则若>⎪⎩⎪⎨⎧>≤-=-的取值范围是( ) (A )(-1,1) (B )(1,)-+∞(C )(-∞,-2)∪(0,+∞) (D )(-∞,-1)∪(1,+∞)(5)O 是平面上一定点,A B C 、、是平面上不共线的三个点,动点P 满足[)(),0,,AB AC OP OA P ABACλλ=++∈+∞则的轨迹一定通过ABC 的(A )外心(B )内心(C )重心(D )垂心(6)函数1ln,(1,)1x y x x +=∈+∞-的反函数为( )a (A)(B) (C) (D)(A )1,(0,)1x x e y x e -=∈+∞+ (B )1,(0,)1x xe y x e +=∈+∞- (C )1,(,0)1x x e y x e -=∈-∞+ (D )1,(,0)1x xe y x e +=∈-∞- (7)棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为( )(A )33a (B )34a (C )36a (D )312a(8)设20,()a f x ax bx c >=++,曲线()y f x =在点00(,())P x f x 处切线的倾斜角的取值范围为0,,4P π⎡⎤⎢⎥⎣⎦则到曲线()y f x =对称轴距离的取值范围为 ( ) (A )10,a ⎡⎤⎢⎥⎣⎦ (B )10,2a ⎡⎤⎢⎥⎣⎦ (C )0,2b a ⎡⎤⎢⎥⎣⎦(D )10,2b a ⎡-⎤⎢⎥⎣⎦ (9)已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )83(10)已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x (11)已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)(12)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )(A )π3(B )4π(C )π33(D )π62003年普通高等学校招生全国统一考试(江苏卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上(13)92)21(xx -的展开式中9x 系数是(14)某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取___________,__________,___________辆(15)某城市在中心广场建造一个花圃,花圃分为6个部分(如图)现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有___________________种(以数字作答) (16)对于四面体ABCD ,给出下列四个命题①,,AB AC BD CD BC AD ==⊥若则②,,AB CD AC BD BC AD ==⊥若则③,,AB AC BD CD BC AD ⊥⊥⊥若则④,,AB CD AC BD BC AD ⊥⊥⊥若则 其中真命题的序号是__________________.(写出所有真命题的序号)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤(17)(本小题满分12分)(Ⅰ)求恰有一件不合格的概率; (Ⅱ)求至少有两件不合格的概率 (18)(本小题满分12分)已知函数()sin()(0,0)f x x R ωϕωϕπ=+>≤≤是上的偶函数,其图象关于点3(,0)4M π对称,且在区间0,2π⎡⎤⎢⎥⎣⎦上是单调函数ωϕ和的值(19)(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G (Ⅰ)求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示) (Ⅱ)求点1A 到平面AED 的距离 (20)(本小题满分12分)已知常数0,(0,),a c a i >==向量经过原点O 以c i λ+为方向向量的直线与经过定点(0,)2A a i c λ-以为方向向量的直线相交于P ,其中R λ∈试问:是否存在两个定点E 、F ,使得PE PF +为定值若存在,求出E 、F 的坐标;若不存在,说明理由(21)(本小题满分12分)已知0,a n >为正整数(Ⅰ)设()n y x a =-,证明1'()n y n x a -=-;(Ⅱ)设()()n nn f x x x a =--,对任意n a ≥,证明1'(1)(1)'(n n f n n f n ++>+(22)(本小题满分14分)设0a >,如图,已知直线:l y ax =及曲线2:,C y x C =上的点1Q 的横坐标为11(0).(1)n a a a C Q n <<≥从上的点作直线平行于x 轴,交直线11n n l P P ++于点,再从点作直线平行于y 轴,交曲线1.(1,2,3,n n C Q Q n +=于点 …)的横坐标构成数列{}n a(Ⅰ)试求1n n a a +与的关系,并求{}n a 的通项公式; (Ⅱ)当111,2a a =≤时,证明1211()32n k k k k a a a ++=-<∑ (Ⅲ)当1a =时,证明1211()3nk k k k a a a ++=-<∑ 2003数 学 试 题一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分. 1.C 2.B 3.D 4.D 5.B 6.B 7.C 8.B 9.C 10.D 11.C 12.A二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分. 13.221- 14.6,30,10 15.120 16.①④三、解答题17.本小题要主考查相互独立事件概率的计算,运用数学知识解决问题的能力,满分12分. 解:设三种产品各抽取一件,抽到合格产品的事件分别为A 、B 和C. (Ⅰ)95.0)()(,90.0)(===C P B P A P , .50.0)()(,10.0)(===C P B P A P因为事件A ,B ,C 相互独立,恰有一件不合格的概率为 答:恰有一件不合格的概率为 解法一:至少有两件不合格的概率为 解法二:三件产品都合格的概率为由(Ⅰ)知,恰有一件不合格的概率为,所以至有两件不合格的概率为 答:至少有两件不合的概率为(18)在小题主要考查三角函数的图象和单调性、奇偶性等基本知识,以及分析问题和推理计算能力,满12分分。

2003年高考.全国卷.理科数学试题及答案

2003年高考.全国卷.理科数学试题及答案

2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1。

答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A)247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A)2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D)2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A)(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+)4.函数)cos (sin sin 2x x x y +=的最大值为 ( )(A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D)223R π 7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D)838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D(0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C)(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C)61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二。

2000年全国高考理科数学试题及其解析范文

2000年全国高考理科数学试题及其解析范文

2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1. 设集合A 和B 都是自然数集合N ,映射B A f →:把集合A 中的元素n 映射到 集合B 中的元素n n +2,则在映射f 下,象20的原象是 ( ) A .2B .3C . 4D . 52. 在复平面内,把复数i 33-对应的向量按顺时针方向旋转3π,所得向量对应的 复数是 ( ) A .23B .i 32-C .i 33-D .3i 3+3. 一个长方体共一顶点的三个面的面积分别是2、3、6,这个长方体对角 线的长是 ( ) A .23B .32C . 6D .64.已知βαsin sin >,那么下列命题成立的是 ( )A .若α、β是第一象限角,则βαcos cos >B .若α、β是第二象限角,则βαtg tg >C .若α、β是第三象限角,则βαcos cos >D .若α、β是第四象限角,则βαtg tg >5.函数x x y cos -=的部分图像是 ( )6.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表分段累进计算:某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于 ( ) A .800~900元B .900~1200元C .1200~1500元D .1500~2800元7.若1>>b a ,P=b a lg lg ⋅,Q=()b a lg lg 21+,R=⎪⎭⎫ ⎝⎛+2lg b a ,则 ( )A .R <P <QB .P <Q <RC . Q <P <RD . P <R <Q 8.以极坐标系中的点()1 , 1为圆心,1为半径的圆的方程是( )A .⎪⎭⎫ ⎝⎛-=4cos 2πθρB .⎪⎭⎫ ⎝⎛-=4sin 2πθρC . ()1cos 2-=θρD . ()1sin 2-=θρ9.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ( )A .ππ221+ B .ππ441+ C .ππ21+ D .ππ241+ 10.过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直线的方程是( )A .x y 3=B .x y 3-=C . x y 33=D . x y 33-= 11.过抛物线()02>=a ax y 的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与 FQ 的长分别是p 、q ,则qp 11+等于 ( )A .a 2B .a 21C . a 4D .a412.如图,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为 ( ) A .321arccosB .21arccosC . 21arccos D . 421arccos第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.13. 乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_____种(用数字作答)14. 椭圆14922=+y x 的焦点为1F 、2F ,点P 为其上的动点,当21PF F ∠为钝角时,点P横坐标的取值范围是________15. 设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =_______16. 如图,E 、F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是_______.(要求:把可能的图的序号都.填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分12分)已知函数1cos sin 23cos 212++=x x x y ,R ∈x . (I) 当函数y 取得最大值时,求自变量x 的集合;(II) 该函数的图像可由()R ∈=x x y sin 的图像经过怎样的平移和伸缩变换得到?18. (本小题满分12分)如图,已知平行六面体ABCD-1111D C B A 的底面ABCD 是菱形,且CB C 1∠=CD C 1∠=BCD ∠= 60.(I) 证明:C C 1⊥BD ; (II) 假定CD=2,1CC =23,记面BD C 1为α,面CBD 为β,求二面角 βα--BD 的平面角的余弦值; (III) 当1CC CD的值为多少时,能使⊥C A 1平面BD C 1?请给出证明.19. (本小题满分12分)设函数()ax x x f -+=12,其中0>a . (I) 解不等式()1≤x f ;(II) 求a 的取值范围,使函数()x f 在区间[)+∞,0上是单调函数.20. (本小题满分12分)(I) 已知数列{}n c ,其中n n n c 32+=,且数列{}n n pc c -+1为等比数列,求常数p ;(II) 设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列.21. (本小题满分12分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(Ⅰ) 写出图一表示的市场售价与时间的函数关系式P=()t f ;写出图二表示的种植成本与时间的函数关系式Q=()t g ;(Ⅱ) 认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/210kg ,时间单位:天)22. (本小题满分14分)如图,已知梯形ABCD 中CD AB 2=,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点.当4332≤≤λ时,求双曲线离心率e 的取值范围.2000年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准一.选择题:本题考查基本知识和基本运算,每小题5分,满分60分.(1)C (2)B (3)D (4)D (5)D (6)C (7)B (8)C (9)A (10)C (11)C (12)D 二.填空题:本题考查基本知识和基本运算,每小题4分,满分16分.(13)252 (14)-5353<<x (15)n1(16)②③ 三.解答题(17)本小题主要考查三角函数的图像和性质,考查利用三角公式进行恒等变形的技能以及运算能力.满分12分.解:(Ⅰ) y=21cos 2x +23sinxcosx +1=41(2cos 2x -1)+41+43(2sinxcosx)+1=41cos2x +43sin2x +45=21(cos2x·sin 6π+sin2x·cos 6π)+45=21sin(2x +6π)+45 ——6分 y 取得最大值必须且只需2x +6π=2π+2k π,k ∈Z , 即 x=6π+k π,k ∈Z .所以当函数y 取得最大值时,自变量x 的集合为 {x|x=6π+kπ,k ∈Z } ——8分 (Ⅱ)将函数y=sinx 依次进行如下变换: (i)把函数y=sinx 的图像向左平移6π,得到函数y=sin(x +6π)的图像;(ii)把得到的图像上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数y=sin(2x +6π)的图像;(iii)把得到的图像上各点纵坐标缩短到原来的21倍(纵坐标不变),得到函数y=21sin(2x +6π)的图像; (iv)把得到的图像向上平移45个单位长度,得到函数y=21sin(2x +6π)+45的图像;综上得到函数y=21cos 2x +23sinxcosx +1的图像. ——12分(18)本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力,满分12分. (Ⅰ)证明:连结A 1C 1、AC 、AC 和BD 交于O ,连结C 1O .∵ 四边形ABCD 是菱形, ∴ AC ⊥BD ,BD=CD .又∵∠BCC 1=∠DCC 1,C 1C= C 1C , ∴ △C 1BC ≌△C 1DC ∴ C 1B=C 1D , ∵ DO=OB∴ C 1O ⊥BD , ——2分 但AC ⊥BD ,AC∩C 1O=O , ∴ BD ⊥平面AC 1, 又C 1C ⊂平面AC 1∴ C 1C ⊥BD . ——4分 (Ⅱ)解:由(Ⅰ)知AC ⊥BD ,C 1O ⊥BD , ∴ ∠C 1OC 是二面角α—BD —β的平面角.在△C 1BC 中,BC=2,C 1C=23,∠BCC 1=60º, ∴ C 1B 2=22+(23)2-2×2×23×cos60º=413——6分∵ ∠OCB=30º, ∴ OB=21BC=1. OHGC 1CDA BD 1B 1A 1∴C 1O 2= C 1B 2-OB 2=491413=-, ∴ C 1O=23即C 1O= C 1C . 作 C 1H ⊥OC ,垂足为H . ∴ 点H 是OC 的中点,且OH=23, 所以cos ∠C 1OC=O C OH 1=33. ——8分 (Ⅲ)当1CC CD=1时,能使A 1C ⊥平面C 1BD 证明一: ∵1CC CD=1, ∴ BC=CD= C 1C ,又∠BCD=∠C 1CB=∠C 1CD , 由此可推得BD= C 1B = C 1D .∴ 三棱锥C -C 1BD 是正三棱锥. ——10分 设A 1C 与C 1O 相交于G .∵ A 1 C 1∥AC ,且A 1 C 1∶OC=2∶1, ∴ C 1G ∶GO=2∶1.又C 1O 是正三角形C 1BD 的BD 边上的高和中线, ∴ 点G 是正三角形C 1BD 的中心, ∴ CG ⊥平面C 1BD .即A 1C ⊥平面C 1BD . ——12分 证明二:由(Ⅰ)知,BD ⊥平面AC 1,∵ A 1 C ⊂平面AC 1,∴BD ⊥A 1 C . ——10分 当1CC CD=1时,平行六面体的六个面是全等的菱形, 同BD ⊥A 1 C 的证法可得BC 1⊥A 1C ,OHGC 1CDA BD 1B 1A 1又BD ⊥BC 1=B ,∴ A 1C ⊥平面C 1BD . ——12分 (19)本小题主要考查不等式的解法、函数的单调性等基本知识,分类讨论的数学思想方法和运算、推理能力.满分12分.解:(Ⅰ)不等式f(x) ≤1即12+x ≤1+ax ,由此得1≤1+ax ,即ax ≥0,其中常数a >0. 所以,原不等式等价于⎩⎨⎧≥+≤+.0,)1(122x ax x 即⎩⎨⎧≥+-≥.02)1(,02a x a x ——3分 所以,当0<a <1时,所给不等式的解集为{x|0212aax -≤≤}; 当a ≥1时,所给不等式的解集为{x|x ≥0}. ——6分 (Ⅱ)在区间[0,+∞]上任取x 1、x 2,使得x 1<x 2. f(x 1)-f(x 2)=121+x -122+x -a(x 1-x 2) =1122212221+++-x x x x -a(x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a). ——8分(ⅰ)当a ≥1时 ∵11222121++++x x x x <1∴11222121++++x x x x -a<0,又x 1-x 2<0, ∴ f(x 1)-f(x 2)>0, 即f(x 1)>f(x 2).所以,当a ≥1时,函数f(x)在区间),0[+∞上是单调递减函数. ——10分 (ii)当0<a<1时,在区间),0[+∞上存在两点x 1=0,x 2=212aa-,满足f(x 1)=1,f(x 2)=1,即f(x 1)=f(x 2),所以函数f(x)在区间),0[+∞上不是单调函数.综上,当且仅当a ≥1时,函数f(x)在区间),0[+∞上是单调函数. ——12分 (20)本小题主要考查等比数列的概念和基本性质,推理和运算能力,满分12分. 解:(Ⅰ)因为{c n+1-pc n }是等比数列,故有 (c n+1-pc n )2=( c n+2-pc n+1)(c n -pc n -1), 将c n =2n +3n 代入上式,得 [2n +1+3n +1-p(2n +3n )]2=[2n +2+3n +2-p(2n+1+3n+1)]·[2n +3n -p(2n -1+3n -1)], ——3分 即[(2-p)2n +(3-p)3n ]2=[(2-p)2n+1+(3-p)3n+1][ (2-p)2n -1+(3-p)3n -1], 整理得61(2-p)(3-p)·2n ·3n =0, 解得p=2或p=3. ——6分 (Ⅱ)设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n . 为证{c n }不是等比数列只需证22c ≠c 1·c 3.事实上,22c =(a 1p +b 1q)2=21a p 2+21b q 2+2a 1b 1pq , c 1·c 3=(a 1+b 1)(a 1 p 2+b 1q 2)= 21a p 2+21b q 2+a 1b 1(p 2+q 2). 由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零,因此≠22c c 1·c 3,故{c n }不是等比数列. ——12分 (21)本小题主要考查由函数图像建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力,满分12分.解:(Ⅰ)由图一可得市场售价与时间的函数关系为f(t)=⎩⎨⎧≤<-≤≤-;300200,3002,2000300t t t t , ——2分由图二可得种植成本与时间的函数关系为g(t)=2001(t -150)2+100,0≤t ≤300. ——4分 (Ⅱ)设t 时刻的纯收益为h(t),则由题意得h(t)=f(t)-g(t)即h(t)=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-300200210252720012000217521200122t t t t t t ,, ——6分 当0≤t ≤200时,配方整理得h(t)=-2001(t -50)2+100, 所以,当t=50时,h(t)取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得h(t)=-2001(t -350)2+100 所以,当t=300时,h(t)取得区间[200,300]上的最大值87.5. ——10分 综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大. ——12分(22)本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合应用数学知识解决问题的能力,满分14分.解:如图,以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系xoy ,则CD ⊥y 轴.因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于x 轴对称. ——2分依题意,记A(-c ,0),C(h c ,h),E(x 0, y 0),其中c=21|AB|为双曲线的半焦距,h 是梯形的高.由定比分点坐标公式得 x 0=λλ++-12c c = )1(2)2(+-λλc , λλ+=10h y .设双曲线的方程为12222=-b y a x ,则离心率ac e =. 由点C 、E 在双曲线上,将点C 、E 的坐标和ac e =代入双曲线方程得 14222=-b h e , ①1112422222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-b he λλλλ. ②——7分 由①式得 14222-=e b h , ③将③式代入②式,整理得()λλ214442+=-e ,故 2312+-=e λ.——10分 由题设4332≤≤λ得,43231322≤+-≤e . 解得107≤≤e . 所以双曲线的离心率的取值范围为]107[,. ——14分。

2000年高考数学试题(新课程全国理)

2000年高考数学试题(新课程全国理)

2000年全国普通高等学校招生统一考试(新课程卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设集合A 和B 都是坐标平面上的点集(){}R R ∈∈y x y x ,|,,映射B A f →:把集合A 中的元素()y x ,映射成集合B 中的元素()y x y x -+ ,,则在映射f 下,象()1,2的原象是( )(A) ()1 ,3(B) ⎪⎭⎫⎝⎛21 ,23(C) ⎪⎭⎫ ⎝⎛-21 ,23(D) ()3 ,1(2) 在复平面内,把复数i 33-对应的向量按顺时针方向旋转3π,所得向量对应的复数是( )(A) 23(B) i 32-(C)i 33- (D) 3i 3+(3) 一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是( )(A) 23(B) 32(C)6(D) 6(4) 设a 、b 、c 是任意的非零平面向量,且相互不共线,则 ①()()0=⋅-⋅b a c c b a ②b a b a -<-③()()b a c a c b ⋅-⋅不与c 垂直 ④()()22492323b a b a b a -=-⋅+中,是真命题的有 ( )(A) ①②(B) ②③(C) ③④(D) ②④(5) 函数x x y cos -=的部分图像是 ( )(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表分段累进计算:全月应纳税所得额 税率 不超过500元的部分 5% 超过500元至2000元的部分 10% 超过2000元至5000元的部分 15% ……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于 ( )(A) 800~900元(B) 900~1200元(C) 1200~1500元(D) 1500~2800元(7) 若1>>b a ,P =b a lg lg ⋅,Q =()b a lg lg 21+,R =⎪⎭⎫ ⎝⎛+2lg b a ,则( )(A) R <P <Q (B) P <Q <R(C) Q <P <R(D) P <R <Q(8) 右图中阴影部分的面积是 ( )(A) 32 (B) 329-(C)332(D) 335(9) 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ( ) (A)ππ221+ (B)ππ441+ (C)ππ21+ (D)ππ241+ (10) 过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直线的方程是( )(A) x y 3= (B) x y 3-=(C) x y 33=(D) x y 33-= (11) 过抛物线()02>=a ax y 的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于 ( )(A) a 2(B)a 21 (C) a 4(D)a4 (12) 如图,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角的余弦值为( )(A)321(B)a21 (C) 21 (D)421第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.(13)某厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出2件,其中次品数ξ的概率分布是ξ 0 1 2 p(14)椭圆14922=+y x 的焦点为1F 、2F ,点P 为其上的动点,当21PF F ∠为钝角时,点P 横坐标的取值范围是________.(15)设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.(16)如图,E 、F 分别为正方体的面11A ADD 、面11B BC C 的中心,则四边形E BFD 1在该正方体的面上的射影可能是_______.(要求:把可能的图的序号都.填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分10分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个.甲、乙二人依次各抽一题.(I)甲抽到选择题、乙抽到判断题的概率是多少?(II)甲、乙二人中至少有一人抽到选择题的概率是多少?注意:考生在(18甲)、(18乙)两题中选一题作答,如果两题都答,只以(18甲)计分. (18甲)(本小题满分12分)如图,直三棱柱ABC -111C B A ,底面ΔABC 中,CA =CB =1,∠BCA = 90,棱1AA =2,M 、N 分别是11B A 、A A 1的中点.(I)求BN 的长;(II)求1cos BA <,1CB >的值; (III)求证M C B A 11⊥. (18乙)(本小题满分12分)如图,已知平行六面体ABCD -1111D C B A 的底面ABCD 是菱形,且CB C 1∠=CD C 1∠=BCD ∠= 60.(I)证明:C C 1⊥BD ;(II)假定CD=2,C C 1=23,记面BD C 1为α,面CBD 为β,求二面角 βα--BD 的平面角的余弦值; (III)当1CC CD的值为多少时,能使⊥C A 1平面BD C 1?请给出证明.(19)(本小题满分12分)设函数()ax x x f -+=12,其中0>a .(I)解不等式()1≤x f ;(II)求a 的取值范围,使函数()x f 在区间[)+∞,0上是单调函数. (20)(本小题满分12分)用总长14.8m 的钢条制成一个长方体容器的框架,如果所制做容器的底面的一边比另一边长0.5m ,那么高为多少时容器的容积最大?并求出它的最大容积.(21)(本小题满分14分)(I)已知数列{}n c ,其中n n n c 32+=,且数列{}n n pc c -+1为等比数列,求常数p . (II)设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列.(22)(本小题满分14分)如图,已知梯形ABCD 中CD AB 2=,点E 满足AE =EC λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点.当4332≤≤λ时,求双曲线离心率e 的取值范围.。

(详细解析)2000年高考数学试题(全国旧课程)理科

(详细解析)2000年高考数学试题(全国旧课程)理科

(详细解析)2000年高考数学试题(全国旧课程)理科2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合A和B都是自然数集合N,映射B:把f→A 集合A中的元素n映射到集合B中的元素2n n+,则在映射f下,象20的原象是A.2 B.3 C.4 D.5 【答案】C【解析】220n n+=,解得4n=.2.在复平面内,把复数3对应的向量按顺时π,所得向量对应的复数是针方向旋转3A .B .-C .3iD .3 【答案】B【解析】所求复数为1(3)[cos()sin()](3)()3322i ππ-+-=-=-.3.一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是A .B .C .6D .6【答案】D【解析】设长、宽和高分别为,,a b c,则ab bc ac ===,∴abc =∴1,a b c ===l ==4.已知βαsin sin >,那么下列命题成立的是A .若,αβ是第一象限角,则βαcos cos >B .若,αβ是第二象限角,则tan tan αβ>C .若,αβ是第三象限角,则βαcos cos >D .若,αβ是第四象限角,则tan tan αβ> 【答案】DA .800~900元B .900~1200元C .1200~1500元D .1500~2800元 【答案】C【解析】当月工资为1300元时,所得税为25元;1500元时,所得税为252045+=元,所以选C .7.若1a b >>,()1lg lg ,lg 22a b P Q a b R +⎛⎫==+= ⎪⎝⎭,则A .R P Q <<B .P Q R <<C .Q P R <<D .P R Q << 【答案】B【解析】方法一:()11lg lg 22a b +>=;lg 2a b +⎛⎫>=⎪⎝⎭()1lg lg 2a b +,所以B 正确.方法二:特殊值法:取100,10a b ==,即可得答案.8.以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是A .2cos 4πρθ⎛⎫=- ⎪⎝⎭B .2sin 4πρθ⎛⎫=- ⎪⎝⎭C .()2cos 1ρθ=-D .()2sin 1ρθ=-【答案】C【解析】设圆上任意一点(,)M ρθ,直径为2,则2cos(1)θρ-=,即()2cos 1ρθ=-.9.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是A .122ππ+B .144ππ+C .12ππ+ D .142ππ+ 【答案】A【解析】设圆柱的半径为r ,则高2h r π=,2222(2)12(2)2S r r S r πππππ++==全侧.10.过原点的直线与圆22430xy x +++=相切,若切点在第三象限,则该直线的方程是A.y = B.y = C .x y 33=D .x y 33-=【答案】C【解析】圆的标准方程为22(2)1x y ++=,设直线的方程为0kx y -=,由题设条件可得2211k k-=+,解得3k =±,由于切点在第三象限,所以33k =,所求切线x y 33=.11.过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于,P Q 两点,若线段PF 与FQ 的长分别是,p q ,则qp 11+等于 A .2a B .12a C .4a D .4a【答案】C【解析】特殊值法.作PQ y ⊥轴,即将14y a =代入抛物线方程得12x a =±,∴114a p q+=. 【编者注】此题用一般方法比较复杂,并要注意原方程不是标准方程.12.如图,OA 是圆锥底面中心A 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为A .B .1arccos 2C .D .【答案】D【解析】设圆锥的底面半径为r ,高为h ,上半部分由共底的两个圆锥构成,过A 向轴作垂线AC ,垂足为C ,2cos ,cos cos OA r CA OA r θθθ===,∴2211(cos )3V r h πθ=,原圆锥的体积为2241122cos 33V r h V r h ππθ===,解得cos θ=,∴θ=第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.13.乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有 种(用数字作答).【答案】252【解析】不同的出场安排共有3237252A A=.14.椭圆22194x y +=的焦点为12,F F ,点P 为其上的动点,当12F PF ∠为钝角时,点P 横坐标的取值范围是 . 【答案】(【解析】方法一:(向量法)设(,)P x y ,由题设120PF PF ⋅<,即(,)(,)0x c y x c y +⋅-<,222xc y -+<,又由22194x y +=得22449x y =-,代入2220xc y -+<并化简得225419x c <-=,解得x <<.方法二:(圆锥曲线性质)设(,)P x y ,∵3,2a b ==,∴c =,又133PFx =+,23PF x =,当12F PF ∠为钝角时,2221212PFPF F F +<,解得x <<.15.设{}n a 是首项为1的正项数列,且2211(1)0(1,2,3,...)n n n n n a na a a n +++-+==,则它的通项公式是n a =.【答案】n1【解析】条件化为11()[(1)]0n n n n aa n a na ++++-=,∵0na>∴1(1)0n n n a na ++-=,即11n na nan +=+,累成得1nan=.16.如图,,E F 分别为正方体的面11ADD A 、面11BCC B 的中心,则四边形1BFD E 在该正方体的面上的射影可能是 .(要求:把可能的图的序号都.填上)【答案】②③【解析】投到前后和上下两个面上的射影是图形②;投到左右两个面上的射影是图形③.三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数21cos cos 1,22y x x x x =++∈R .(I )当函数y 取得最大值时,求自变量x 的集合;(II )该函数的图像可由sin ()y x x =∈R 的图像经过怎样的平移和伸缩变换得到?【解】本小题主要考查三角函数的图像和性质,考查利用三角公式进行恒等变形的技能以及运算能力.满分12分.(Ⅰ)22111cos cos 1(2cos 1)cos )1244y x x x x x x =++=-+++1515cos 2sin 2(cos 2sin sin 2cos )4442664x x x x ππ=++=⋅+⋅+15sin(2)264x π=++.——6分y取得最大值必须且只需22,62x k k Z πππ+=+∈,即,6x k k Zππ=+∈.所以当函数y 取得最大值时,自变量x 的集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭| ——8分(Ⅱ)将函数sin y x =依次进行如下变换: (i )把函数sin y x =的图像向左平移6π,得到函数sin()6y x π=+的图像; (ii )把得到的图像上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数 sin(2)6y x π=+的图像;(iii )把得到的图像上各点纵坐标缩短到原来的21倍(横纵坐标不变),得到函数 1sin(2)26y x π=+的图像;(iv )把得到的图像向上平移45个单位长度,得到函数15sin(2)264x π=++的图像;综上得到函数21cos cos 122y x x x =++的图像. ——12分18.(本小题满分12分)如图,已知平行六面体1111ABCD A B C D -的底面ABCD是菱形,且1C CB ∠=160C CD BCD ∠=∠=︒.(I )证明:1C C BD ⊥; (II )假定132,2CD CC==,记面1C BD为α,面CBD 为β,求二面角BD αβ--的平面角的余弦值;(Ⅲ)当1CDCC 的值为多少时,能使1A C ⊥平面1C BD?请给出证明.【解】本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力,满分12分. (Ⅰ)证明:连结11,A C AC ,AC 和BD交于O ,连结1C O .∵ 四边形ABCD是菱形,∴,AC BD BD CD ⊥=.又∵1111,BCCDCC C C C C∠=∠=,∴11C BC C DC ∆≅∆,∴11C B CD =, ∵ DO OB=,∴1C O BD⊥,——2分但1,AC BD AC C O O⊥=,∴BD ⊥平面1AC ,又1CC ⊂平面1AC ,∴1CC BD⊥. ——4分(Ⅱ)由(Ⅰ)知1,AC BD C O BD ⊥⊥,∴1C OC ∠是二面角BD αβ--的平面角.在1C BC ∆中,1132,,602BC C C BCC ==∠=︒, ∴222133132()22cos60224C B =+-⨯⨯⨯︒=.——6分∵30OCB ∠=︒,∴112OB BC ==. ∴22211139144C OC B OB =-=-=,∴132C O =,即11C O C C =. 作1O H OC ⊥,垂足为H .∴ 点H 是OC 的中点,且2OH =,所以11cos 3OH C OC C O ∠==.——8分(Ⅲ)当11CDCC=时,能使1A C ⊥平面1C BD 证明一:∵11CDCC =,∴1BC CD C C ==,又11BCD C CB C CD ∠=∠=∠,由此可推得11BD C B C D ==. ∴ 三棱锥1C C BD-是正三棱锥. ——10分设1A C 与1C O 相交于G .∵11//A C AC ,且11:2:1AC OC =,∴1:2:1C G GO =.又1C O 是正三角形1C BD 的BD 边上的高和中线,∴ 点G 是正三角形1C BD 的中心,∴CG ⊥平面1C BD.即1A C ⊥平面1C BD.——12分证明二:由(Ⅰ)知,BD ⊥平面1AC ,∵1AC ⊂平面1AC ,∴1BD A C ⊥. ——10分当11CDCC=时,平行六面体的六个面是全等的菱形,同1BD A C ⊥的证法可得11BCA C⊥,又1BDBC B=,∴1A C ⊥平面1C BD. ——12分19.(本小题满分12分) 设函数()f x ax=,其中0>a .(I )解不等式()1f x ≤;(II )求a 的取值范围,使函数()f x 在区间[0,)+∞上是单调函数.【解】本小题主要考查不等式的解法、函数的单调性等基本知识,分类讨论的数学思想方法和运算、推理能力.满分12分. (Ⅰ)不等式()1f x ≤1ax≤+,由此得11ax ≤+,即0ax ≥,其中常数0>a . 所以,原不等式等价于⎩⎨⎧≥+≤+.0,)1(122x ax x 即⎩⎨⎧≥+-≥.02)1(,02a x a x ——3分所以,当01a <<时,所给不等式的解集为2201a x x a ⎧⎫≤≤⎨⎬-⎩⎭|;当1a ≥时,所给不等式的解集为{}0x x ≥|. ——6分(Ⅱ)在区间),0[+∞上任取12,x x ,使得12x x <.22121212()()()()f x f x a x x a x x -=-=-12()x x a =--. ——8分(ⅰ)当1a ≥时,1<,0a -<,又12x x <,∴12()()0f x f x ->,即12()()f x f x >. 所以,当1a ≥时,函数()f x 在区间),0[+∞上是单调递减函数. ——10分 (ii )当01a <<时,在区间),0[+∞上存在两点12220,1ax x a ==-,满足1()1f x =,2()1f x =,即12()()f x f x =,所以函数()f x 在区间),0[+∞上不是单调函数. 综上,当且仅当1a ≥时,函数()f x 在区间),0[+∞上是单调函数. ——12分20.(本小题满分12分)(I )已知数列{}nc ,其中23n nnc=+,且数列{}1n n c pc +-为等比数列,求常数p ;(II )设{}{},nna b 是公比不相等的两个等比数列,nn nca b =+,证明数列{}nc 不是等比数列.【解】本小题主要考查等比数列的概念和基本性质,推理和运算能力,满分12分. (Ⅰ)因为{}1n n cpc +-是等比数列,故有21211()()()n n n n n n c pc c pc c pc +++--=--,将23n nnc=+代入上式,得112[23(23)]n n nnp +++-+221111[23(23)][(23(23)]n n n n n n n n p p ++++--=+-++-+,——3分 即21111[(2)2(3)3][(2)2(3)3][(2)2(3)3]n n n n n n p p p p p p ++---+-=-+-⋅-+-,整理得1(2)(3)2306nn p p --⋅⋅=,解得2p =或3p =.——6分(Ⅱ)设{}{},nna b 的公比分别为,,p q p q ≠,nn nca b =+.为证{}nc 不是等比数列,只需证2213cc c ≠⋅.事实上,2222222111111()2c a p b q a p b q a b pq=+=++,222222221311111111()()()c c a b a p b q a p b q a b p q ⋅=++=+++.由于22,2p q pq pq≠+>,又11,a b 不为零,因此2213c c c ≠⋅,故{}nc 不是等比数列. ——12分21.(本小题满分12分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(Ⅰ)写出图一表示的市场售价与时间的函数关系式()P f t =;写出图二表示的种植 成本与时间的函数关系式()Q g t =;(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/210kg ,时间单位:天)【解】本小题主要考查由函数图像建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力,满分12分.(Ⅰ)由图一可得市场售价与时间的函数关系为3000200,()2300,200300;t t f t t t -≤≤⎧=⎨-<≤⎩,——2分由图二可得种植成本与时间的函数关系为21()(150)100,0300200g t t t =-+≤≤.——4分(Ⅱ)设t 时刻的纯收益为()h t ,则由题意得()()()h t f t g t =- 即2211175020020022()17102520030020022t t t h t t t t ⎧-++≤≤⎪⎪=⎨⎪-+-<≤⎪⎩,,——6分当0200t ≤≤时,配方整理得21()(50)100200h t t =--+,所以,当50t =时,()h t 取得区间[0,200]上的最大值100;当200300t <≤时,配方整理得21()(350)100200h t t =--+所以,当300t =时,()h t 取得区间[200,300]上的最大值87.5. ——10分综上,由10087.5>可知,()h t 在区间[0,300]上可以取得最大值100,此时50t =,即从二月一日开始的第50天时,上市的西红柿纯收益最大. ——12分22.(本小题满分14分)如图,已知梯形ABCD 中2AB CD =,点E 分有向线段AC 所成的比为λ,双曲线过,,C D E 三点,且以,A B 为焦点.当2334λ≤≤时,求双曲线离心率e 的取值范围.【解】本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合应用数学知识解决问题的能力,满分14分.如图,以AB 的垂直平分线为y 轴,直线AB 为x轴,建立直角坐标系xOy ,则CD y ⊥轴.因为双曲线经过点,C D ,且以,A B 为焦点,由双曲线的对称性知,C D关于y轴对称.——2分依题意,记0(,0),(,),(,)2cA c C h E x y -,其中12c AB =为双曲线的半焦距,h 是梯形的高. 由定比分点坐标公式得00(2)2,12(1)1cc c h x y λλλλλλ-+-===+++.设双曲线的方程为12222=-by a x ,则离心率a ce =.由点,C E 在双曲线上,将点,C E 的坐标和a ce =代入双曲线方程得14222=-bh e ,①1112422222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-bh e λλλλ. ②——7分由①式得14222-=e b h ,③将③式代入②式,整理得()λλ214442+=-e ,故2312+-=e λ.——10分由题设4332≤≤λ得,43231322≤+-≤e .解得107≤≤e .所以双曲线的离心率的取值范围为. ——14分。

2000年高考.全国卷.理科数学试题及答案

2000年高考.全国卷.理科数学试题及答案

2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

第I卷1至2页。

第II卷3至9页。

共150分。

考试时间120分钟。

第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。

全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q(B)P<Q<R(C)Q<P<R(D)P<R<Q (8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ 的长分别是p、q,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3至9页。

共150分。

考试时间120分钟。

第I 卷(选择题60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos ()()[]βαβαβα-++=cos cos 21cos cos ()()[]βαβαβα--+-=cos cos 21sin sin 正棱台、圆台的侧面积公式()lc c S +'=21台侧其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长台体的体积公式()hS S S S V +'+'=31台体其中S '、S 分别表示上、下底面积,h 表示高一、选择题:本大题共12小题;第每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合A 和B 都是自然数集合N ,映射B A f →:把集合A 中的元素n 映射到集合B 中的元素n n +2,则在映射f 下,象20的原象是(A )2(B )3(C )4(D )5(2)在复平面内,把复数i 33-对应的向量按顺时针方向旋转3π,所得向量对应的复数是(A )23(B )i 32-(C )i 33-(D )3i3+(3)一个长方体共一项点的三个面的面积分别是2,3,6,这个长方体对角线的长是(A )23(B )32(C )6(D )6(4)已知βαsin sin >,那么下列命题成立的是(A )若α、β是第一象限角,则βαcos cos >(B )若α、β是第二象限角,则βαtg tg >(C )若α、β是第三象限角,则βαcos cos >(D )若α、β是第四象限角,则βαtg tg >(5)函数x x y cos -=的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额。

此项税款按下表分段累进计算:全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A )800~900元(B )900~1200元(C )1200~1500元(D )1500~2800元(7)若1>>b a ,P=b a lg lg ⋅,Q=()b a lg lg 21+,R=⎪⎭⎫ ⎝⎛+2lg b a ,则(A )R <P <Q (B )P <Q <R (C )Q <P <R(D )P <R <Q(8)以极坐标系中的点()1 , 1为圆心,1为半径的圆的方程是(A )⎪⎭⎫⎝⎛-=4cos 2πθρ(B )⎪⎭⎫⎝⎛-=4sin 2πθρ(C )()1cos 2-=θρ(D )()1sin 2-=θρ(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A )ππ221+(B )ππ441+(C )ππ21+(D )ππ241+(10)过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直线的方程是(A )xy 3=(B )xy 3-=(C )x 33(D )x 33-(11)过抛物线()02>=a ax y 的焦点F 作一条直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于(A )a2(B )a21(C )a 4(D )a4(12)如图,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A )321arccos (B )21arccos(C )21arccos(D )421arccos 1999年普通高等学校招生全国统一考试数学(理工农医类)第II 卷(非选择题90分)注意事项:1.第II 卷共7页,用钢笔或圆珠笔直接答在试题卷中。

2.答卷前将密封线内的项目填写清楚。

二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上。

(13)乒乓球队的10名队员中有3名主力队员,派5名参加比赛。

3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_____种(用数字作答)。

(14)椭圆14922=+y x 的焦点为1F 、2F ,点P 为其上的动点,当21PF F ∠为钝角时,点P 横坐标的取值范围是________。

(15)设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a na na a n (n =1,2,3,…),则它的通项公式是n a =________。

(16)如图,E 、F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是_______。

(要求:把可能的图的序号都填上)三、解答题:本大题共6小题;共74分,解答应写出文字说明、证明过程或演算步骤。

(17)(本小题满分12分)已知函数1cos sin 23cos 212++=x x x y ,R x ∈。

(I )当函数y 取得最大值时,求自变量x 的集合;(II )该函数的图象可由()R x x y ∈=sin 的图象经过怎样的平移和伸缩变换得到?(18)(本小题满分12分)如图,已知平行六面体ABCD-1111D C B A 的底面ABCD 是菱形,且CB C 1∠=BCD ∠= 60。

(I )证明:C C 1⊥BD ;(II )假定CD=2,C C 1=23,记面BD C 1为α,面CBD 为β,求二面角βα--BD 的平面角的余弦值;(III )当1CC CD的值为多少时,能使⊥C A 1平面BD C 1?请给出证明。

(19)(本小题满分12分)设函数()ax x x f -+=12,其中0>a 。

(I )解不等式()1≤x f ;(II )求a 的取值范围,使函数()x f 在区间[)+∞,0上是单调函数。

(20)(本小题满分12分)(I )已知数列{}n c ,其中n n n c 32+=,且数列{}n n pc c -+1为等比数列,求常数p 。

(II )设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列。

(21)(本小题满分12分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。

(I )写出图一表示的市场售价与时间的函数关系式P=()t f ;写出图二表示的种植成本与时间的函数关系式Q=()t g ;(II )认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/210kg ,时间单位:天)(22)(本小题满分14分)如图,已知梯形ABCD 中CD AB 2=,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点。

当4332≤≤λ时,求双曲线离心率e 的取值范围。

2000年普通高等学校招生全国统一考试数学试题(理工农医类)参考答案说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。

二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。

三、解答右端所注分数,表示考生正确做到这一步应得的累加分数。

四、只给整数分数。

选择题和填空题不给中间分。

一、选择题:本题考查基本知识和基本运算。

每小题5分,满分60分。

(1)C (2)B (3)D (4)D (5)D (6)C (7)B (8)C(9)A(10)C(11)C(12)D二、填空题:本题考查基本知识和基本运算。

每小题4分,满分16分。

(13)252(14)5353<<-x (15)n1(16)②③三、解答题(17)本小题主要考查三角函数的图象和性质,考查利用三角公式进行恒等变形的技能以及运算能力。

满分12分。

解:(I )1cos sin 23cos 212++=x x x y ()()1cos sin 243411cos 2412+++-=x x x 456cos 2sin 6sin 2cos 21452sin 432cos 41+⎪⎭⎫ ⎝⎛⋅+⋅=++=ππx x x x 4562sin 21+⎪⎭⎫ ⎝⎛+=πx ,——6分y 取得最大值必须且只需πππk x 2262+=+,Z k ∈,ππk x +=6,Z k ∈。

所以当函数y 取得最大值时,自变量x 的集合为{}|,6|Z k k x x ∈+=ππ。

——8分(II )将函数x y sin =依次进行如下变换:(i )把函数x y sin =的图象向左平移6π,得到函数⎪⎭⎫⎝⎛+=6sin πx y 的图象;(ii )把得到的图象上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数⎪⎭⎫⎝⎛+=62sin πx y 的图象;(iii )把得到的图象上各点纵坐标缩短到原来的21倍(横坐标不变),得到函数⎪⎭⎫⎝⎛+=62sin 21πx y 的图象;(iv )把得到的图象向上平移45个单位长度,得到函数⎪⎭⎫ ⎝⎛+=62sin 21πx y +45的图象;综上得到函数1cos sin 23cos 212++=x x x y 的图象。

——12分(18)本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力。

满分12分。

(I )证明:连结11C A 、AC ,AC 和BD 交于O ,连结O C 1。

∵四边形ABCD 是菱形,∴AC ⊥BD ,BC=CD 。

又∵C C C C DCC BCC 1111 , =∠=∠,∴DC C BC C 11∆≅∆,∴D C B C 11=,∵DO=OB ,∴⊥O C 1BD ,——2分但AC ⊥BD ,AC ∩O C 1=O ,∴BD ⊥平面1AC 。

相关文档
最新文档