2012年普通高等学校招生全国统一考试数学理(北京卷)
2012年北京市高考数学试卷(理科)(含解析版)

第 5页(共 27页)
20.(13 分)设 A 是由 m×n 个实数组成的 m 行 n 列的数表,满足:每个数的绝 对值不大于 1,且所有数的和为零,记 s(m,n)为所有这样的数表构成的集 合.对于 A∈S(m,n),记 ri(A)为 A 的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A) 为 A 的第 j 列各数之和(1≤j≤n);记 K(A)为|r1(A)|,|R2(A)|,…, |Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表 A,求 K(A)的值;
1
1
﹣0.8
0.1
﹣0.3
﹣1
(2)设数表 A∈S(2,3)形如
(1)求证:A1C⊥平面 BCDE; (2)若 M 是 A1D 的中点,求 CM 与平面 A1BE 所成角的大小; (3)线段 BC 上是否存在点 P,使平面 A1DP 与平面 A1BE 垂直?说明理由.
17.(13 分)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃 圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生
A.28+6
B.30+6
C.56+12
D.60+12
8.(5 分)某棵果树前 n 年的总产量 Sn 与 n 之间的关系如图所示.从目前记录的
结果看,前 m 年的年平均产量最高,则 m 的值为( )
A.5
B.7
C.9
第 2页(共 27页)
D.11
二.填空题共 6 小题.每小题 5 分.共 30 分.
点 E.则( )
A.CE•CB=AD•DB
2012年全国高考理科数学试题及答案-北京卷

A.5 B.7 C.9 D.11 【解析】由图可知 6,7,8,9 这几年增长最快,超过平均值,所以应该加入,因此选 C。 【答案】C
第二部分(非选择题共 110 分)
二.填空题共 6 小题。每小题 5 分。共 30 分. 9.直线 ⎨
⎧x = 2 + t ⎧ x = 3 cos α ( t 为参数)与曲线 ⎨ (α 为参数)的交点个数为______。 y = − 1 − t y = 3 sin α ⎩ ⎩
2 2 ) C (- ,3)D (3,+ ∞ ) 3 3
【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。因为
2 利用二次不等式可得 B = {x | x < −1 或 x > 3}画出数轴易得: A = { x ∈ R | 3x + 2 > 0} ⇒ x > − , 3
中国校长网
1 ⎧ ⎧ x1 = 2 m < 1 ⎪m < 此时两个根为 x1 = 2m , x2 = −m − 3 。为保证此条件成立,需要 ⎨ ⇒⎨ 2 , ⎩ x 2 = −m − 3 < 1 ⎪m > −4 ⎩
和大前提 m < 0 取交集结果为 − 4 < m < 0 ;又由于条件 2:要求 x ∈ ( −∞, −4) , f ( x ) g ( x ) < 0 的 限制,可分析得出在 x ∈ (−∞, −4) 时,
⎧ A(3,2 3 ) ⎧ 1 1 ⎪ y = 3x − 3 ⎪ ⇒ ⎨ 1 2 3 ,因此 S∆ OAF = × OF × y A = × 1× 2 3 = 3 . ⎨ 2 2 2 ⎪ ) ⎩ y = 4x ⎪B ( ,− 3 ⎩ 3
【答案】 3 13. 已知正方形 ABCD 的边长为 1, 点 E 是 AB 边上的动点, 则 DE ⋅ CB 的值为________, DE ⋅ DC 的最大值为______。 【解 析】根据 平面向量 的数量积 公式 DE ⋅ CB = DE ⋅ DA = | DE | ⋅ | DA | cos θ ,由 图可知,
2012年普通高等学校招生全国统一考试理科数学及答案

2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第I卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. },B={1,m} ,A B=A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=E为CC1的中点,则直线AC1与平面BED的距离为A 2BCD 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)(7)已知α为第二象限角,sin α+sin βcos2α=(A) -3 (B )-9 (C) 9 (D)3(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。
2012年全国高考北京理科数学试题详细解析

B. 7 A. 5 8.【答案】C
C. 9
D. 11
【解析】若果树前 n 年的总产量 S 与 n 在图中对应 P ( S , n ) 点则前 n 年的年平均产量即为直 线 OP 的斜率由图易得当 n = 9 时,直线 OP 的斜率最大,即前 9 年的年平均产量最高. 【点评】 本题以函数的图象与图象变化为载体考查了斜率的几何意义, 其中正确分析出平均 产量的几何意义是解答本题的关键.
【解析】当 a = 0 时,如果 b = 0 同时等于零,此时 a + bi = 0 是实数,不是纯虚数,因此不
1
是充分条件;而如果 a + bi 已经为纯虚数,由定义实部为零,虚部不为零可以得到 a = 0 , 因此为必要条件。 【点评】本题考查复数的基本概念,必要条件、充分条件与充要条件的判断,考查基本知识 的掌握程度. 4.执行如图所示的程序框图,输出的 S 值为( )
x
① ∀x ∈ R , f ( x) < 0 或 g ( x) < 0 ; ② ∀x ∈ (−∞,−4) , f ( x) g ( x) < 0 。 则 m 的取值范围是_______。 14.【答案】 m ∈ (−4,−2) 【解析】根据 g ( x) = 2 − 2 < 0 ,可解得 x < 1 。由于题目中第一个条件的限制 ∀x ∈ R ,
A. 28 + 6 5
B. 30 + 6 5
C. 56 + 12 5
D. 60 + 12 5
7.【答案】B 【解析】从所给的三视图可以得到该几何体为三棱锥,如图所示,图中蓝色数字所表示的为 直接从题目所给三视图中读出的长度, 黑色数字代表通过勾股定理的计算得到的边长。 所求 表面积应为三棱锥四个面的面积之和,利用垂直关系和三角形面积公式,
2012年高考理科数学北京卷(含详细答案)

A B=1,0}1,0,1}xy e=关于y轴对称,则()f x=()B.1x e-D.1xe--( )B.y=D.y=l与C所围成的图形的面积等于( )C.83D.表示的平面区域内存在点00(,)P x y,满足( )B.1(,)3-∞D.5(,)3-∞-第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中的横线上.9.在极坐标系中,点π(2,)6到直线sin2ρθ=的距离等于___________.10.若等比数列{}na满足2420a a+=,3540a a+=,则公比q=____;前n项和nS=____.11.如图,AB为圆O的直径,P A为圆O的切线,PB与圆O相交于D.若3PA=,:PD9:16DB=,则PD=___________;AB=___________.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张.如果分给同一人的2张参观券连号,那么不同的分法种数是___________.13.向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则λμ=________.14.如图,在棱长为2的正方体1111ABCD A B C D-中,E为BC的中点,点P在线段1D E上.点P到直线1CC的距离的最小值为___________.4的正方形,平面ABC ⊥平面,并求1BDBC 的值.. 19.(本小题满分14分)已知A ,B ,C 是椭圆22:14x W y +=上的三个点,O 是坐标原点.(Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.20.(本小题满分13分)已知{}n a 是由非负整数组成的无穷数列,该数列前n 项的最大值记为n A ,第n 项之后各项1n a +,2n a +,…的最小值记为n B ,n n n d A B =-.(Ⅰ)若{}n a 为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意*n N ∈,4n n a a +=),写出1d ,2d ,3d ,4d 的值; (Ⅱ)设d 是非负整数,证明:()1,2,3,n d d n =-=的充分必要条件是{}n a 是公差为d 的等差数列;(Ⅲ)证明:若12a =,1(1,2,3,)n d n ==,则{}n a 的项只能是1或者2,且有无穷多项为1.2012年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】2|3A x x ⎧⎫=>-⎨⎬⎩⎭,利用二次不等式的解法可得{|3B x x =>或}1x <-,易得{}|3AB x x =>.【提示】求出集合B ,然后直接求解A B .【考点】集合间的基本运算. 2.【答案】D【解析】题目中0202x y ≤≤⎧⎨≤≤⎩表示的区域表示正方形区域,而动点D 可以存在的位置为正方形面积减去四分之一的圆的面积部分,因此2122π24π4224P ⨯-⨯-==⨯,故选D .【提示】本例的测度即为区域的面积,故只要求出题中两个区域:由不等式组表示的区域和到原点的距离大于2的点构成的区域的面积后再求它们的比值即可. 【考点】不等式组,平面区域与几何概率. 3.【答案】B【解析】当0a =时,如果0b =,此时i 0a b +=是实数,不是纯虚数,因此不是充分条件;而如果i a b +已经是纯虚数,由定义实部为零,虚部不为零可以得到0a =,因此是必要条件,故选B . 【提示】利用前后两者的因果关系,即可判断充要条件. 【考点】复数的概念,充分、必要条件. 4.【答案】C【解析】0,11,12,23,8k s k s k s k s ==⇒==⇒==⇒==,循环结束,输出的s 为8,故选C . 【提示】列出循环过程中s 与k 的数值,不满足判断框的条件即可结束循环. 【考点】循环结构的程序框图. 5.【答案】A【解析】由切割线定理可知2CE CB CD =,在直角ABC △中90,ACB CD AB ∠=⊥,则由射影定理可知2CD AD DB =,所以CE CB AD DB =.数学试卷 第10页(共36页)【提示】由题中三角形和圆的位置关系,通过条件求解即可. 【考点】几何证明选讲. 6.【答案】B【解析】由于题目要求是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析3种选择,之后二位,有2种选择,最后百位2种选择,共12种;如果是第二种情况偶奇奇,分析同理,个位有3种选择,十位有2种选择,百位有一种选择,共6种,因此总共12618+=种,选B .【提示】选择数字进行排列,判断奇偶性即可. 【考点】排列组合. 7.【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,本题所求表面积为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:10,10,10,65S S S S ====后右底左,因此该几何体表面积3065S =+,故选B .【提示】通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可. 【考点】由三视图求几何体的表面积. 8.【答案】C【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C . 【提示】由已知中图像表示某棵果树前n 年的总产量S 与n 之间的关系,结合图像可得答案. 【考点】函数图像的应用.第Ⅱ卷二、填空题 9.【答案】2【解析】直线转化为1x y +=,曲线转化为圆229x y +=,圆心(0,0)到直线1x y +=的距离132d =<,所以有两个交点.【提示】将参数方程化为普通方程,利用圆心到直线的距离与半径比较,即可得到结论. 【考点】直线和圆的位置关系. 10.【答案】1 【解析】23S a =,所以111211212a a d a d d a a d ++=+⇒=⇒=+=.【提示】由{}n a 是等差数列23S a =,解得12d =,由此能求出2a . 【考点】等差数列的通项. 11.【答案】4【解析】在△ABC 中,得用余弦定理22214()()47()cos 2444a c b c b c b c b B ac c c+-++-+-=⇒-==,化简得8740c b -+=,与题目条件7b c +=联立,可解得4,3b c ==,答案为4.【提示】根据27a b c =+=,,1cos 4B =-,利用余弦定理可得,即可求得b 的值 【考点】余弦定理的运用. 12.【答案】3【解析】由24y x =,可求得焦点坐标为(1,0)F ,因为倾斜角为60,所以直线的斜率为tan603k ==,利用点斜式,直线的方程为33y x =-,将直线和曲线方程联立233123(3,23),,334y x A B y x⎧⎛⎫=-⎪⇒- ⎪⎨ ⎪=⎪⎝⎭⎩,因此11123322OAF A S OF y =⨯⨯=⨯⨯=△. 【提示】确定直线l 的方程,代入抛物线方程,确定A 的坐标,从而可求OAF △的面积.. 【考点】抛物线的简单性质,直线与抛物线的位置关系. 13.【答案】1【解析】根据平面向量的点乘公式cos DE CB DE DA DE DA θ==,可知cos DE DA θ=,所以21DE CB DA ==;||||cos ||cos DE DC DE DC DE αα==,又因为cos DE α就是向量DE 在DC 边上的射影,要想让DE DC 最大,即让射影最大,此时E 点与B 点重合,射影为||DC ,所以长度为1. 【提示】直接利用向量转化,求出数量积即可. 【考点】平面向量在平面几何中的运用. 14.【答案】(4,2)--【解析】对于①∵()22xg x =-,当1x <时,()0g x <,又∵①()0x R f x ∀∈<,或()0g x <∴()(2)(3)0f x m x m x m =-++<在1x ≥时恒成立,则由二次函数的性质可知开口只能向下,且二次函数与x 轴交点都在(1,0)的左边,则03121m m m <⎧⎪--<⎨⎪<⎩,∴40m -<<,即①成立的范围为40m -<<,数学试卷 第16页(共36页)又∵②(,4)x ∈∞--,()()0f x g x <, ∴此时()220x g x =-<恒成立∴()(2)(3)0f x m x m x m =-++>在(,4)x ∈-∞-有成立的可能,则只要4-比12x x ,中的较小的根大即可,(i )当10m -<<时,较小的根为3m --,34m --<-不成立, (ii )当1m =-时,两个根同为24->-,不成立,(iii )当41m -<<-时,较小的根为224m m <,-即2m <-成立. 综上可得①②成立时42m -<<-.【提示】①由于()220x g x =->时,1x ≥,根据题意有()(2)(3)0f x m x m x m =-++<在1x >时成立,根据二次函数的性质可求.②由于(,4)x ∈∞--,()()0f x g x <,而()220xg x =-<,则()(2)(3)0f x m x m x m =-++>在(,4)x ∈∞--时成立,结合二次函数的性质可求 【考点】指数函数的性质,二次函数的性质. 三、解答题15.【答案】(Ⅰ){|π,}x x k k ≠∈Z π(Ⅱ)ππ,π8k k k ⎡⎫-+∈⎪⎢⎭⎣Z 和3ππ,π8k k k ⎛⎤+∈ ⎥⎦⎝Z 【解析】(Ⅰ)(sin cos )sin2()sin x x xf x x-=(sin cos )2sin cos sin x x x xx-=2(sin cos )cos x x x =-sin 21cos 2x x =--π2sin 214x ⎛⎫=-- ⎪⎝⎭,{|π}x x k k ≠∈Z ,原函数的定义域为{|π,}x x k k ≠∈Z ,最小正周期为π;(Ⅱ)由πππ2π22π+,242k x k k -≤-≤∈Z . 解得π3πππ,,88k x k k -≤≤+∈Z 又{|π,}x x k k ≠∈Z ,原函数的单调递增区间为ππ,π8k k k ⎡⎫-+∈⎪⎢⎭⎣Z ,3ππ,π8k k k ⎛⎤+∈ ⎥⎦⎝Z . 【提示】(Ⅰ)直接求出函数的定义域和最小正周期.(Ⅱ)利用正弦函数的单调增区间,结合函数的定义域求出函数的单调增区间即可. 【考点】三角函数的定义域,周期,单调性. 16.【答案】(Ⅰ)证明CD DE ⊥,1A D DE ⊥,又1CDA D D =,∴DE ⊥平面1A CD ,又1AC ⊂平面1A CD , ∴1AC ⊥DE ,又1AC CD ⊥,CD DE D =∴1AC ⊥平面BCDE . (Ⅱ)如图建立空间直角坐标系C xyz -,则(2,0,0)D -,1(00,23)A ,,(0,3,0)B ,(2,2,0)E -,(0,0,0)C , ∴1(0,3,23)A B =-,1(2,2,23)A E =--,设平面1A BE 法向量为(,,)n x y z =,则1100A B n A E n ⎧=⎪⎨=⎪⎩∴323022230y z x y z ⎧-=⎪⎨---=⎪⎩∴322z y y x ⎧=⎪⎪⎨⎪=-⎪⎩∴(1,2,3)n =-又∵(1,0,3)M -∴(1,0,3)CM =-∴1342cos 2||||14313222CM n CM n θ+====+++∴CM 与平面1A BE 所成角的大小45数学试卷 第22页(共36页)(Ⅲ)设线段BC 上存在点P ,设P 点坐标为(0,,0)a ,则[0,3]a ∈则1(0,,23)A P a =-,(2,,0)DP a =设平面1A DP 法向量为1111(,,)n x y z =,则111123020ay z x ay ⎧-=⎪⎨+=⎪⎩∴11113612z ay x ay⎧=⎪⎪⎨⎪=-⎪⎩∴1111(,,)(3,6,3)n x y z a a ==-,假设平面1A DP 与平面1A BE 垂直,则10n n =, ∴31230a a ++=,612a =-,2a =- ∵03a ≤≤,∴不存在线段BC 上存在点P ,使平面1A DP 与平面1A BE 垂直.【提示】(Ⅰ)证明1A C ⊥平面BCDE ,因为1A C CD ⊥,只需证明1AC DE ⊥,即证明DE ⊥平面1A CD . (Ⅱ)建立空间直角坐标系,用坐标表示点与向量,求出平面1A BE 法向量(1,2,3)n =-,(1,0,3)CM =-,利用向量的夹角公式,即可求得CM 与平面1A BE 所成角的大小;(Ⅲ)设线段BC 上存在点P ,设P 点坐标为(0,,0)a ,则[0,3]a ∈,求出平面1A DP 法向量为1(3,6,3)n a a =-, 假设平面1A DP 与平面1A BE 垂直,则10n n =,可求得03a ≤≤,从而可得结论.. 【考点】平面图形的折叠问题,立体几何.17.【答案】(Ⅰ)由题意可知,厨余垃圾600吨,投放到“厨余垃圾”箱400吨, 故生活垃圾投放错误的概率为:40026003= (Ⅱ)由题意可知,生活垃圾投放错误有200602020300+++=, 故生活垃圾投放错误的概率:20060403100010++=(Ⅲ)由题意可知:600a b c ++=,,,a b c 的平均数为200,222222211[(200)(200)(200)](120000)33S a b c a b c =-+-+-=++-,因此有当600a =,0b =,0c =时有280000S =.【提示】(Ⅰ)厨余垃圾600吨,投放到“厨余垃圾”箱400吨,故可求厨余垃圾投放正确的概率. (Ⅱ)生活垃圾投放错误有2006040300++=,故可求生活垃圾投放错误的概率.(Ⅲ)计算方差可得22221(120000)3S a b c =++-,因此有当600a =,0b =,0c =时,有280000S =. 【考点】概率,方差18.【答案】(Ⅰ)33a b =⎧⎨=⎩(Ⅱ)12a h ⎛⎫-= ⎪⎝⎭【解析】(Ⅰ)由(1,)c 为公共切点可得:2()1(0)f x ax a =+>,则()2f x ax '=,12k a =,3()g x x bx =+,则2()=3g x x b '+,23k b =+,∴23a b =+①又(1)1f a =+,(1)1g b =+,∴11a b +=+,即a b =,代入①式可得:33a b =⎧⎨=⎩.(Ⅱ)24a b =,∴设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12a x =-,26ax =-;0a >,∴26a a-<-,∴原函数在2a ⎛⎫-∞- ⎪⎝⎭,单调递增,在26a a ⎛⎫-- ⎪⎝⎭,单调递减,在6a ⎛⎫-+∞ ⎪⎝⎭,上单调递增 ①若12a -≤-,即2a ≤时,最大值为2(1)4a h a =-;②若126aa -<-<-,即26a <<时,最大值为12a h ⎛⎫-= ⎪⎝⎭③若16a -≥-时,即6a ≥时,最大值为12a h ⎛⎫-= ⎪⎝⎭. 综上所述:当(02]a ∈,时,最大值为2(1)4a h a =-; 当(2,)a ∈+∞时,最大值为12a h ⎛⎫-= ⎪⎝⎭.【提示】(Ⅰ)根据曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,故可求a b ,的值.(Ⅱ)根据24a b =,构建函数3221()()()14h x f x g x x ax a x =+=+++,求导函数,利用导数的正负,可确数学试卷 第28页(共36页)定函数的单调区间,进而分类讨论,确定函数在区间(,1)-∞-上的最大值. 【考点】利用导数求函数单调区间及最值.19.【答案】(Ⅰ)原曲线方程可化简得:2218852x y m m +=--, 由题意可得:8852805802m m mm ⎧>⎪--⎪⎪>⎨-⎪⎪>⎪-⎩,解得:75.2m <<(Ⅱ)证明:由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)0k ∆->,解得:232k >.由韦达定理得:21621M N k x x k +=-+①,22421M Nx x k =+,② 设(,4)N N N x k x +,(,4)M M M x kx +,(,1)G G x 则MB 方程为:62M Mkx y x x +=-,则3,16M M x G kx ⎛⎫ ⎪+⎝⎭, ∴316M M x AG x k ⎛⎫=- ⎪+⎝⎭,,(),2N N AN x x k =+,欲证A G N ,,三点共线,只需证AG ,AN 共线 即3(2)6MN N M x x k x x k +=-+成立,化简得:(3)6()M N M N k k x x x x +=-+ 将①②代入易知等式成立,则A G N ,,三点共线得证. 【提示】(Ⅰ)原曲线方程,化为标准方程,利用C 是焦点在x 轴点上的椭圆可得不等式组,即可求得m 的取值范围.(Ⅱ)由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)0k ∆->,解得232k >设(,4)N N N x k x +,(,4)M M M x kx +,(,1)G G x ,则MB 方程为:62M Mkx y x x +=-,则3,16M M x G kx ⎛⎫⎪+⎝⎭, 从而可得316M M x AG x k ⎛⎫=- ⎪+⎝⎭,,(),2N N AN x x k =+,欲证A G N ,,三点共线,只需证AG ,AN 共线,利用韦达定理,可以证明.【考点】椭圆的性质,直线与椭圆的位置关系.11 / 1220.【答案】(Ⅰ)0.7(Ⅱ)1(Ⅲ)212t t ++ 【解析】(Ⅰ)由题意可知1() 1.2r A =,2() 1.2r A =-,1() 1.1c A =,2()0.7c A =,3() 1.8c A =-∴()0.7k A =(Ⅱ)先用反证法证明()1k A ≤:若()1k A >,则1|()||1|11c A a a =+=+>,∴0a >同理可知0b >,∴0a b +>,由题目所有数和为0,即1a b c ++=-,∴11c a b =---<-与题目条件矛盾∴()1k A ≤.易知当0a b ==时,()1k A =存在∴()k A 的最大值为1.(Ⅲ)()k A 的最大值为212t t ++. 首先构造满足21()2t k A t +=+的,{}(1,2,1,2,...,21)i j A a i j t ===+: 1,11,21,1,11,21,211...1,...2t t t t t a a a a a a t +++-========-+,22,12,22,2,12,22,211...,...1(2)t t t t t t a a a a a a t t +++++========-+. 经计算知,A 中每个元素的绝对值都小于1,所有元素之和为0,且1221|()||()|2t r A r A t +==+,2121121|()||()|...|()|11(2)22t t t t t c A c A c A t t t t ++++====+>+>+++,1221121|()||()|...|()|122t t t t t c A c A c A t t +++-+====+=++. 下面证明212t t ++是最大值. 若不然,则存在一个数表(2,21)A S t ∈+,使得21()2t k A x t +=>+. 由()k A 的定义知A 的每一列两个数之和的绝对值都不小于x ,而两个绝对值不超过1的数的和,其绝对值不超过2,故A 的每一列两个数之和的绝对值都在区间[,2]x 中. 由于1x >,故A 的每一列两个数符号均与列和的符号相同,且绝对值均不小于1x -.设A 中有g 列的列和为正,有h 列的列和为负,由对称性不妨设g h <,则1g t h t ≤≥+,. 另外,由对称数学试卷 第34页(共36页)数学试卷 第35页(共36页) 数学试卷 第36页(共36页) 性不妨设A 的第一行行和为正,第二行行和为负.考虑A 的第一行,由前面结论知A 的第一行有不超过t 个正数和不少于1t +个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于1x -(即每个负数均不超过1x -). 因此11|()|()1(1)(1)21(1)[21(2)]r A r A t t x t t x x t t x x =≤++-=+-+=++-+<,故A 的第一行行和的绝对值小于x ,与假设矛盾.因此()k A 的最大值为212t t ++ 【提示】(Ⅰ)由题意可知1() 1.2r A =,2() 1.2r A =-,1() 1.1c A =,2()0.7c A =,3() 1.8c A =-,其中的最小值,即可求出所求.(Ⅱ)先用反证法证明()1k A ≤,然后证明()1k A =存在即可.(Ⅲ)首先构造满足21()2t k A t +=+的,{}(1,2,1,2,...,21)i j A a i j t ===+,然后证明212t t ++是最大值即可. 【考点】合情推理.。
2012年全国高考理科数学试题及答案-北京卷

2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题。
每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B=A (-∞,-1)B (-1,-23) C (-23,3)D (3,+∞) 【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。
因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .故选D .【答案】D 2.设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(A )4π (B )22π- (C )6π (D )44π-【解析】题目中⎩⎨⎧≤≤≤≤2020y x 表示的区域如图正方形所示,而动点D 可以存在的位置为正方形面积减去四分之一圆的面积部分,因此4422241222ππ-=⨯⋅-⨯=P ,故选D 。
【答案】D3.设a ,b∈R。
“a=0”是“复数a+bi 是纯虚数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【解析】当0=a 时,如果0=b 同时等于零,此时0=+bi a 是实数,不是纯虚数,因此不是充分条件;而如果bi a +已经为纯虚数,由定义实部为零,虚部不为零可以得到0=a ,因此想必要条件,故选B 。
【答案】B4.执行如图所示的程序框图,输出的S 值为( )A. 2 B .4 C.8 D. 16【解析】0=k ,11=⇒=k s ,21=⇒=k s ,22=⇒=k s ,8=s ,循环结束,输出的s 为8,故选C 。
2012年普通高等学校招生全国统一考试(全国卷) [理科数学](新课标)含答案
2012年普通高等学校招生全国统一考试(全国卷) [理科数学](新课标)含答案一.选择题:本大题共12小题:每小题5分。
1.已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 102.将2名教师:4名学生分成2个小组:分别安排到甲、乙两地参加社会实践活动:每个小组由1名教师和2名学生组成:不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种3.下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 344.设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点:P 为直线32a x =上一点:∆21F P F 是底角为30 的等腰三角形:则E的离心率为( )()A 12()B23()C 34()D 455.已知{}n a 为等比数列:472a a +=:568a a =-: 则110a a +=( )()A 7 ()B 5 ()C -5 ()D -76.如果执行右边的程序框图:输入正整数(2)N N ≥和实数12,,...,n a a a :输出,A B :则( )()A A B +为12,,...,n a a a 的和()B2A B +为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数7.如图:网格纸上小正方形的边长为1:粗线画出的是某几何体的三视图:则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 188.等轴双曲线C 的中心在原点:焦点在x 轴上:C 与抛物线x y 162=的准线交于,A B 两点:AB =C 的实轴长为( )()A ()B()C 4 ()D 89.已知0ω>:函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年北京高考数学真题及答案(理科)
绝密★使用完毕前2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{A x=∈R|320}x+>,{B x=∈R|(1)(3)0}x x+->,则A B=I(A)(,1)-∞-(B)2(1,)3--(C)2(,3)3-(D)(3,)+∞(2)设不等式组2,2xy⎧⎨⎩≤≤≤≤表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是(A)π4(B)π22-(C)π6(D)4π4-(3)设,a b∈R.“0a=”是“复数ia b+是纯虚数”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(4)执行如图所示的程序框图,输出的S值为(A)2(B)4(C)8(D)16数学(理)(北京卷)第1 页(共11 页)(5)如图,90ACB∠=︒,CD AB⊥于点D,以BD为直径的圆与BC交于点E.则(A)CE CB AD DB⋅=⋅(B)CE CB AD AB⋅=⋅(C)2AD AB CD⋅=(D)2CE EB CD⋅=(6)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为(A)24(B)18(C)12(D)6(7)某三棱锥的三视图如图所示,该三棱锥的表面积是(A)28+(B)30+(C)56+(D)60+(8)某棵果树前n年的总产量nS与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高,m的值为(A)5(B)7(C)9(D)11BA DCE正(主)视图侧(左)视图俯视图42 3 4数学(理)(北京卷)第2 页(共11 页)数学(理)(北京卷) 第 3 页(共 11 页)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2012年普通高等学校招生全国统一考试(北京卷)数学(理科)
2012年普通高等学校招生全国统一考试(北京卷)数学(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共40.0分)1.已知集合A={ x∈R|3 x+2>0},B={ x∈R|( x+1)( x-3)>0},则A∩B=()A.(-∞,-1)B.{-1,}C.(,3)D.(3,+∞)2.在复平面内,复数对应的点的坐标为()A.(1,3)B.(3,1)C.(-1,3)D.(3,-1)3.设a,b∈R,“a=0”是“复数a+ bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S值为()A.2B.4C.8D.165.如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E,则()A. CE·CB=AD·DBB. CE·CB=AD·ABC. AD·AB=CD2D. CE·EB=CD26.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.67.某三棱锥的三视图如图所示,该三棱锥的表面积是()A. B. C. D.8.某棵果树前n年的总产量S n与n之间的关系如图所示,从目前记录的结果看,前m年的年平均产量最高,m的值为()A.5B.7C.9D.11二、填空题(本大题共6小题,共30.0分)9.直线( t为参数)与曲线( α为参数)的交点个数为________.10.已知{ a n}为等差数列,S n为其前n项和.若,S2=a3,则a2=________,S n =________.11.在△ABC中,若a=2,b+ c=7,,则b=________.12.在直角坐标系x O y中,直线l过抛物线y2=4 x的焦点F,且与该抛物线相交于A,B两点,其中点A在x轴上方.若直线l的倾斜角为60°,则△OAF的面积为________.13.已知正方形ABCD的边长为1,点E是AB边上的动点,则的值为________,的最大值为________.14.已知f( x)=m( x-2 m)( x+ m+3),g( x)=2 x-2.若同时满足条件:①x∈R,f( x)<0或g( x)<0;②x∈(-∞,-4),f( x) g( x)<0.则m的取值范围是________.三、解答题(本大题共6小题,共80.0分)15.已知函数.(1).求f( x)的定义域及最小正周期;(2).求f( x)的单调递增区间.16.如图1,在R t△ABC中,∠C=90°,BC=3,AC=6.D,E分别是AC,AB 上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.图1图2(1).求证:A1C⊥平面BCDE;(2).若M是A1D的中点,求CM与平面A1BE所成角的大小;(3).线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.17.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾.数据统计如下(单位:吨):(1).试估计厨余垃圾投放正确的概率;(2).试估计生活垃圾投放错误的概率;(3).假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+ b+ c=600,当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.(求:s 2=[( x1-)2+( x2-)2+…+( x n-)2],其中为数据x1,x2,…,x n的平均数)18.已知函数f( x)=ax2+1( a>0),g( x)=x3+ bx.(1).若曲线y=f( x)与曲线y=g( x)在它们的交点(1,c)处具有公共切线,求a,b 的值;(2).当a2=4 b时,求函数f( x)+ g( x)的单调区间,并求其在区间(-∞,-1]上的最大值.19.已知曲线C:(5-m) x2+( m-2) y2=8( m∈R).(1).若曲线C是焦点在x轴上的椭圆,求m的取值范围;(2).设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.20.设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记S( m,n)为所有这样的数表构成的集合.对于A∈S( m,n),记r i( A)为A的第i行各数之和(1≤i≤m),c j( A)为A的第j 列各数之和(1≤j≤n);记k( A)为| r1( A)|,| r2( A)|,…,| r m( A)|,| c1( A)|,| c2( A)|,…,| c n( A)|中的最小值.)的值;形如求k( A)的最大值;(3).给定正整数t,对于所有的A∈S(2,2 t+1),求k( A)的最大值.。
2012年普通高等学校招生全国统一考试理数北京卷pdf版含答案
( )
∴= A1B 0 ,3,− 2 3 , A1E =(−2 ,−1,0)
设平面 A1BE 法向量为 n = ( x ,y ,z)
则
A1B
⋅
n
=0
A1E ⋅ n =0
∴
3
y
−
2
3z
= 0 ∴
z
=
3y 2
−2x − y =0
x
=
−y 2
( )
∴ n = −1,2 , 3
( ) 又∵ M −1,0 , 3
( ) ( ) ( ) (求: s2=
1 n
2
x1 − x +
2
x2 − x + +
xn
−
x
2
,其中
x
为数据
x1
,
x2
,…,
xn
的平均数)
18.(本小题共 13 分)
已知函数 f ( x) = ax2 + 1(a > 0) , g ( x=) x3 + bx . (1)若曲线 y = f ( x) 与曲线 y = g ( x) 在它们的交点 (1,c) 处具有公共切线,求 a ,b 的值;
4
5
6
7
8
答案
D
D
B
C
A
B
B
C
二、填空题
题号 答案
9
10
11
n2 + n
2
1;
4
4
12
13
14
3
1;1
(−4 ,− 2)
三、解答题 15.
解:
= f (x) (sin x − cos x)s= in 2x (sin x − cos x)2sin x= cos x 2(sin x − cos x) cos x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试(北京卷)数学(理科)本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题 共8小题.每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项. 1.已知集合A ={x ∈R |3x +2>0}B ={x ∈R |(x +1)(x -3)>0}则A ∩B = A .(-∞,-1)B .(-1,-23) C .(-23,3) D .(3,+∞)2.设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是A .4π B .22π- C .6πD .44π-3.设a ,b ∈R .“a =0”是“复数a +bi 是纯虚数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 4.执行如图所示的程序框图,输出的S 值为( ) A .2 B .4 C .8 D .16 5.如图.∠ACB =90º,CD ⊥AB 于点D ,以BD 为直径的圆与BC 交于点E .则( ) A .CE ·CB =AD ·DB B .CE ·CB =AD ·AB C .AD ·AB =CD ² D .CE ·EB =CD ²6.从0,2中选一个数字.从1,3,5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( ) A .24 B .18 C .12 D .6 7.某三棱锥的三视图如图所示,该三梭锥的表面积是( )A .28+65B .30+65C .56+ 125D .60+1258.某棵果树前n 前的总产量S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高.m值为( )A .5B .7C .9D .11第Ⅱ卷(非选择题 共110分)二、填空题 共6小题.每小题5分.共30分. 9.直线t t y t x (12⎩⎨⎧--=+=为参数)与曲线ααα(sin 3cos 3⎩⎨⎧==y x 为参数)的交点个数为______.10.已知}{n a 等差数列n S 为其前n 项和.若211=a ,32a S =,则2a =_______. 11.在△ABC 中,若a =2,b +c =7,cos B =41-,则b =_______. 12.在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F .且与该撇物线相交于A 、B 两点.其中点A 在x 轴上方.若直线l 的倾斜角为60º.则△OAF 的面积为 13.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则CB DE ⋅的值为________,DC DE ⋅的最大值为______.14.已知)3)(2()(++-=m x m x m x f ,22)(-=x x g ,若同时满足条件:①R x ∈∀,0)(<x f 或0)(<x g ; ②)4,(--∞∈∀x ,)(x f 0)(<x g . 则m 的取值范围是_______.三、解答题 公6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数xxx x x f sin 2sin )cos (sin )(-=.(1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间.16.(本小题共14分)如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.(Ⅰ)求证:A 1C ⊥平面BCDE ;(Ⅱ)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(Ⅲ)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由17.(本小题共13分)近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):(Ⅰ)试估计厨余垃圾投放正确的概率; (Ⅱ)试估计生活垃圾投放错误额概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为c b a ,,其中a >0,c b a ++=600.当数据c b a ,,的方差2s 最大时,写出c b a ,,的值(结论不要求证明),并求此时2s 的值. (注:])()()[(1222212x x x x x x ns n -++-+-=,其中x 为数据n x x x ,,,21 的平均数)18.(本小题共13分)已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间,并求其在区间(-∞,-1]上的最大值.19.(本小题共14分)已知曲线C :(5-m )x 2+(m -2)y 2=8(m ∈R )(1)若曲线C 是焦点在x 轴上的椭圆,求m 的取值范围;(2)设m =4,曲线C 与y 轴的交点为A ,B (点A 位于点B 的上方),直线y =kx +4与曲线C 交于不同的两点M ,N ,直线y =1与直线BM 交于点G .求证:A ,G ,N 三点共线.20.(本小题共13分)设A 是由m ×n 个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记S (m ,n )为所有这样的数表构成的集合. 对于A ∈S (m ,n ),记r i (A )为A 的第i 行各数之和(1≤i ≤m ),c j (A )为A 的第j 列各数之和(1≤j ≤n );记k (A )为|r 1(A )|,|r 2(A )|,…,|r m (A )|,|c 1(A )|,|c 2(A )|,…,|c n (A )|中的最小值.(2)设数表A ∈S (2,3)形如求k (A )的最大值;(3)给定正整数t ,对于所有的A ∈S (2,2t +1).求k (A )的最大值.参考答案1.D 2.D 3.B 4.C 5.A 6.B 7.B 8.C 9.2 10.12=a ,n n S n 41412+=11.4 12.3 13.1,1 14.)2,4(--∈m 15.解(Ⅰ)由sin x ≠0得x ≠k π(k ∈Z ),故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }.因为xxx x x f sin 2sin )cos (sin )(-==2cos x (sin x -cos x ) =sin 2x -cos 2x -11)4π2sin(2--=x .所以f (x )的最小正周期π2π2==T . (Ⅱ)函数y =sin x 的单调递减区间为]2ππ2,2ππ2[+k -k (k ∈Z ). 由πππ2π22π242k x k -+≤-≤+,x ≠k π(k ∈Z ), 得8π3π8ππ+≤≤-k x k ,x ≠k π(k ∈Z ).所以f (x )的单调递减区间为]π,8ππ[k k -和]83πππ[+k k ,(k ∈Z ) 16.解:(1)CD DE ⊥,1A E DE ⊥∴DE ⊥平面1A CD ,又1AC ⊂平面1A CD , ∴1AC ⊥DE 又1A C CD ⊥, ∴1AC ⊥平面BCDE . (2)如图建系C xyz -,则()200D -,,,(00A ,,,()030B ,,,()220E -,,∴(103A B =-,,,()1210A E =--,, 设平面1A BE 法向量为()n x y z =,, 则1100A B n A E n ⎧⋅=⎪⎨⋅=⎪⎩∴3020y x y ⎧-=⎪⎨--=⎪⎩∴2z y y x ⎧=⎪⎪⎨⎪=-⎪⎩∴(12n =-,又∵(10M -,∴(10CM =-,∴cos ||||1CM n CM n θ⋅====⋅,∴CM 与平面1A BE 所成角的大小45︒.(3)设线段BC 上存在点P ,设P 点坐标为()00a ,,,则[]03a ∈, 则(10A P a =-,,,()20DP a =,, 设平面1A DP 法向量为()1111n x y z =,,,则1111020ay x ay ⎧-=⎪⎨+=⎪⎩∴111112z x ay ⎧=⎪⎪⎨⎪=-⎪⎩∴()136n a =-,.假设平面1A DP 与平面1A BE 垂直,则10n n ⋅=, ∴31230a a ++=,612a =-,2a =-, ∵03a <<,∴不存在线段BC 上存在点P ,使平面1A DP 与平面1A BE 垂直.17.解:(Ⅰ)由题意可知:4002=6003. (Ⅱ)由题意可知:200+60+403=100010.(Ⅲ)由题意可知:22221(120000)3s a b c =++-,因此有当600a =,0b =,0c =时,有280000s =.18.解:(1)由()1c ,为公共切点可得:2()1(0)f x ax a =+>,则()2f x ax '=,12k a =, 3()g x x bx =+,则2()=3f x x b '+,23k b =+,∴23a b =+①又(1)1f a =+,(1)1g b =+,∴11a b +=+,即a b =,代入①式可得:33a b =⎧⎨=⎩. (2)24a b =,∴设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12a x =-,26ax =-;0a >,∴26a a -<-, ∴原函数在2a ⎛⎫-∞- ⎪⎝⎭,单调递增,在26a a ⎛⎫-- ⎪⎝⎭,单调递减,在6a ⎛⎫-+∞ ⎪⎝⎭,上单调递增①若12a--≤,即2a ≤时,最大值为2(1)4a h a =-;②若126a a -<-<-,即26a <<时,最大值为12a h ⎛⎫-= ⎪⎝⎭③若16a --≥时,即6a ≥时,最大值为12a h ⎛⎫-= ⎪⎝⎭. 综上所述:当(]02a ∈,时,最大值为2(1)4a h a =-;当()2,a ∈+∞时,最大值为12a h ⎛⎫-= ⎪⎝⎭.19.解:(1)原曲线方程可化简得:2218852x y m m +=--由题意可得:8852805802m m mm ⎧>⎪--⎪⎪>⎨-⎪⎪>⎪-⎩,解得:752m <<(2)由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)k ∆-,解得:232k >由韦达定理得: 21621M N k x x k +=+①,22421M Nx x k =+,② 设(,4)N N N x k x +,(,4)M M M x kx +,(1)G G x ,MB 方程为:62M Mkx y x x +=-,则316M M x G kx ⎛⎫ ⎪+⎝⎭,, ∴316M M x AG x k ⎛⎫=-⎪+⎝⎭,,()2N N AN x x k =+,,欲证A G N ,,三点共线,只需证AG ,AN 共线 即3(2)6MN N M x x k x x k +=-+成立,化简得:(3)6()M N M N k k x x x x +=-+将①②代入易知等式成立,则A G N ,,三点共线得证. 20.解:(1)由题意可知()1 1.2r A =,()2 1.2r A =-,()1 1.1c A =,()20.7c A =,()3 1.8c A =- ∴()0.7k A =(2)先用反证法证明()1k A ≤: 若()1k A >则()1|||1|11c A a a =+=+>,∴0a > 同理可知0b >,∴0a b +>由题目所有数和为0 即1a b c ++=- ∴11c a b =---<- 与题目条件矛盾 ∴()1k A ≤.易知当0a b ==时,()1k A =存在 ∴()k A 的最大值为1 (3)()k A 的最大值为212t t ++. 首先构造满足21()2t k A t +=+的,{}(1,2,1,2,...,21)i j A a i j t ===+:1,11,21,1,11,21,211...1, (2)t t t t t a a a a a a t +++-========-+,22,12,22,2,12,22,211...,...1(2)t t t t t t a a a a a a t t +++++========-+.经计算知,A 中每个元素的绝对值都小于1,所有元素之和为0, 且1221|()||()|2t r A r A t +==+, 2121121|()||()|...|()|11(2)22t t t t t c A c A c A t t t t ++++====+>+>+++,1221121|()||()|...|()|122t t t t t c A c A c A t t +++-+====+=++. 下面证明212t t ++是最大值.若不然,则存在一个数表(2,21)A S t ∈+,使得21()2t k A x t +=>+. 由()k A 的定义知A 的每一列两个数之和的绝对值都不小于x ,而两个绝对值不超过1的数的和,其绝对值不超过2,故A 的每一列两个数之和的绝对值都在区间[,2]x 中.由于1x >,故A 的每一列两个数符号均与列和的符号相同,且绝对值均不小于1x -.设A 中有g 列的列和为正,有h 列的列和为负,由对称性不妨设g h <,则,1g t h t ≤≥+.另外,由对称性不妨设A 的第一行行和为正,第二行行和为负.考虑A 的第一行,由前面结论知A 的第一行有不超过t 个正数和不少于1t +个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于1x -(即每个负数均不超过1x -). 因此()11|()|()1(1)(1)21(1)21(2)r A r A t t x t t x x t t x x =≤⋅++-=+-+=++-+<,故A 的第一行行和的绝对值小于x ,与假设矛盾. 因此()k A 的最大值为212++t t .。