中考数学复习指导:相似三角形模型讲解及练习(含答案)
初三数学相似三角形典例及练习(含答案)

初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1。
理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割.2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1。
比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b cdad bc =⇔= ②合比性质:±±a b c d a b b c d d=⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()03。
平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
模型05 相似三角形中的常见五种基本模型(解析版)-中考数学解题大招复习讲义

模型探究相似三角形考查范围广,综合性强,其模型种类多,其中有关一线三垂直模型在前面的专题已经很详细的讲解,这里就不在重复.模型一、A字型相似模型A字型(平行)反A字型(不平行)模型二、8字型与反8字型相似模型模型三、AX型相似模型(A字型及X字型两者相结合)模型四、共边角相似模型(子母型)模型五、手拉手相似模型例题精讲考点一、A字相似模型【例1】.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.变式训练【变式1-1】.如图,在△ABC中,DE∥BC,AH⊥BC于点H,与DE交于点G.若,则=.解:∵,∴,∵DE∥BC,∴△ADE∽△ABC,∴,故答案为.【变式1-2】.如图,在△ABC中,M是AC的中点,E是AB上一点,AE=AB,连接EM并延长,交BC的延长线于D,则=__________.解:如图,过C点作CP∥AB,交DE于P,∵PC∥AE,∴△AEM∽△CPM,∴=,∵M是AC的中点,∴AM=CM,∴PC=AE,∵AE=AB,∴CP=AB,∴CP=BE,∵CP∥BE,∴△DCP∽△DBE,∴==,∴BD=3CD,∴BC=2CD,即=2.【变式1-3】.如图,在△ABC中,点D在边AB上,AD=9,BD=7.AC=12.△ABC的角平分线AE交CD于点F.(1)求证:△ACD∽△ABC;(2)若AF=8,求AE的长度.解:(1)∵AD=9,BD=7,AC=12,∴AB=AD+BD=16,∵==,==,∴=,∵∠BAC=∠CAD,∴△ACD∽△ABC;(2)由(1)可知,△ACD∽△ABC,∴∠ABE=∠ACF,∵AE平分∠BAC,∴∠BAE=∠CAF,∴△ABE∽△ACF,∴=,即=,∴AE==.考点二、8字与反8字相似模型【例2】.如图,AG∥BD,AF:FB=1:2,BC:CD=2:1,求的值解:∵AG∥BD,∴△AFG∽△BFD,∴=,∵,∴CD=BD,∴,∵AG∥BD,∴△AEG∽△CED,∴.变式训练【变式2-1】.如图,AB∥CD,AE∥FD,AE、FD分别交BC于点G、H,则下列结论中错误的是()A.B.C.D.解:A、∵AB∥CD,∴=,故本选项不符合题目要求;B、∵AE∥DF,∴△CEG∞△CDH,∴=,∴=,∵AB∥CD,∴=,∴=,∴=,∴=,故本选项不符合题目要求;∵AB∥CD,AE∥DF,∴四边形AEDF是平行四边形,∴AF=DE,∵AE∥DF,∴,∴=,故本选项不符合题目要求;D、∵AE∥DF,∴△BFH∞△BAG,∴,故本选项符合题目要求;故选:D.【变式2-2】.如图,在平行四边形ABCD中,E为边AD的中点,连接AC,BE交于点F.若△AEF的面积为2,则△ABC的面积为()A.8B.10C.12D.14解:如图,∵四边形ABCD是平行四边形,∵EA∥BC,∴△AEF∽△CBF,∵AE=DE=AD,CB=AD,∴====,∴AF=AC,EF=BF,=S△ABC,∴S△ABF=S△ABF=×S△ABC=S△ABC,∴S△AEF=2,∵S△AEF=6S△AEF=6×2=12,故选:C.∴S△ABC【变式2-3】.如图,锐角三角形ABC中,∠A=60°,BE⊥AC于E,CD⊥AB于D,则DE:BC=1:2.解:如图,∵在△ADC中,∠A=60°,CD⊥AB于点D,∴∠ACD=30°,∴=.又∵在△ABE中,∠A=60°,BE⊥AC于E,∴∠ABE=30°,∴=,∴=.又∵∠A=∠A,∴△ADE∽△ACB,∴DE:BC=AD:AC=1:2.故答案是:1:2.考点三、AX型相似模型(A字型及X字型两者相结合)【例3】.如图,在△ABC中,点D和E分别是边AB和AC的中点,连接DE,DC与BE交于点O,若△DOE的面积为1,则△ABC的面积为()A.6B.9C.12D.13.5解:∵点D和E分别是边AB和AC的中点,∴O点为△ABC的重心,∴OB=2OE,=2S△DOE=2×1=2,∴S△BOD=3,∴S△BDE∵AD=BD,=2S△BDE=6,∴S△ABE∵AE=CE,=2S△ABE=2×6=12.故选C.∴S△ABC变式训练【变式3-1】.如图,DE是△ABC的中位线,F为DE中点,连接AF并延长交BC于点G,=1,则S△ABC=24.若S△EFG解:方法一:∵DE是△ABC的中位线,∴D、E分别为AB、BC的中点,如图过D作DM∥BC交AG于点M,∵DM∥BC,∴∠DMF=∠EGF,∵点F为DE的中点,∴DF=EF,在△DMF和△EGF中,,∴△DMF≌△EGF(AAS),=S△EGF=1,GF=FM,DM=GE,∴S△DMF∵点D为AB的中点,且DM∥BC,∴AM=MG,∴FM=AM,=2S△DMF=2,∴S△ADM∵DM为△ABG的中位线,∴=,=4S△ADM=4×2=8,∴S△ABG=S△ABG﹣S△ADM=8﹣2=6,∴S梯形DMGB=S梯形DMGB=6,∴S△BDE∵DE是△ABC的中位线,=4S△BDE=4×6=24,∴S△ABC方法二:连接AE,∵DE是△ABC的中位线,∴DE∥AC,DE=AC,∵F是DE的中点,∴=,∴==,=1,∵S△EFG=16,∴S△ACG∵EF∥AC,∴==,∴==,=S△ACG=4,∴S△AEG=S△ACG﹣S△AEG=12,∴S△ACE=2S△ACE=24,故答案为:24.∴S△ABC【变式3-2】.如图:AD∥EG∥BC,EG交DB于点F,已知AD=6,BC=8,AE=6,EF =2.(1)求EB的长;(2)求FG的长.解:(1)∵EG∥AD,∴△BAD∽△BEF,∴=,即=,∴EB=3.(2)∵EG∥∥BC,∴△AEG∽△ABC,∴=,即=,∴EG=,∴FG=EG﹣EF=.【变式3-3】.如图,已知AB∥CD,AC与BD相交于点E,点F在线段BC上,,.(1)求证:AB∥EF;:S△EBC:S△ECD.(2)求S△ABE(1)证明:∵AB∥CD,∴==,∵,∴=,∴EF∥CD,∴AB∥EF.(2)解:设△ABE的面积为m.∵AB∥CD,∴△ABE∽△CDE,∴=()2=,=4m,∴S△CDE∵==,=2m,∴S△BEC:S△EBC:S△ECD=m:2m:4m=1:2:4.∴S△ABE模型四、子母型相似模型【例4】.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证:(1)△ACP∽△PDB,(2)CD2=AC•BD.证明:(1)∵△PCD是等边三角形,∴∠PCD=∠PDC=∠CPD=60°,∴∠ACP=∠PDB=120°,∵∠APB=120°,∴∠APC+∠BPD=60°,∵∠CAP+∠APC=60°∴∠BPD=∠CAP,∴△ACP∽△PDB;(2)由(1)得△ACP∽△PDB,∴,∵△PCD是等边三角形,∴PC=PD=CD,∴,∴CD2=AC•BD.变式训练【变式4-1】.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.D.解:在△ABP和△ACB中,∠BAP=∠CAB,∴当∠ABP=∠C时,满足两组角对应相等,可判断△ABP∽△ACB,故A正确;当∠APB=∠ABC时,满足两组角对应相等,可判断△ABP∽△ACB,故B正确;当时,满足两边对应成比例且夹角相等,可判断△ABP∽△ACB,故C正确;当时,其夹角不相等,则不能判断△ABP∽△ACB,故D不正确;故选:D.【变式4-2】.如图,在△ABC中,点D在AC边上,连接BD,若∠ABC+∠BDC=180°,AD=2,CD=4,则AB的长为()A.3B.4C.D.2解:∵∠ABC+∠BDC=180°,∠ADB+∠BDC=180°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABC∽△ADB,∴,∵AD=2,CD=4,∴,∴AB2=12,∴AB=2或﹣2(不合题意,舍去),故选:D.【变式4-3】.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则PA+PB的最小值为2.解:设⊙O半径为r,OP=r=BC=2,OB=r=2,取OB的中点I,连接PI,∴OI=IB=,∵,,∴,∠O是公共角,∴△BOP∽△POI,∴,∴PI=PB,∴AP+PB=AP+PI,∴当A、P、I在一条直线上时,AP+PB最小,作IE⊥AB于E,∵∠ABO=45°,∴IE=BE=BI=1,∴AE=AB﹣BE=3,∴AI==,∴AP+PB最小值=AI=,∵PA+PB=(PA+PB),∴PA+PB的最小值是AI==2.故答案是2.模型五、手拉手相似模型【例5】.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为.解:连接OA、OD,∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB=:1,∵∠DOE+∠EOA=∠BOA+∠EOA即∠DOA=∠EOB,∴△DOA∽△EOB,∴OD:OE=OA:OB=AD:BE=:1=,故答案为:.变式训练【变式5-1】.如图,在△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE.求证:(1)△BAC∽△DAE;(2)△BAD∽△CAE.证明:(1)∵∠BAC=∠DAE,∠ABC=∠ADE.∴△BAC∽△DAE;(2)∵△BAC∽△DAE,∴,∴,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD∽△CAE.【变式5-2】.如图,点D是△ABC内一点,且∠BDC=90°,AB=2,AC=,∠BAD=∠CBD=30°,AD=.解:如图,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠MDA,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴=,∵AC=,∴BM=3,在Rt△ABM中,AM===,∴AD=AM=.【变式5-3】.如图,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),则BD的长为.(用含k的式子表示)解:如图中,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=kAB,∴DG=kBC=4k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG==.∴BD=CG=,故答案为:.实战演练1.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.=B.C.D.解:A、∵EF∥AB,∴=,∵DE∥BC,∴=,∴=,故A正确,B、易知△ADE∽△EFC,∴=,∴=,故B正确.C、∵△CEF∽△CAB,∴=,∴=,故C正确.D、∵DE∥BC,∴=,显然DE≠CF,故D错误.故选:D.2.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()A.2:3B.2:5C.4:9D.:解:∵AD∥BC,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA∽△ACD===,∵=()2=∴△ABC与△DCA的面积比为4:9.故选:C.3.如图,菱形ABCD中,E点在BC上,F点在CD上,G点、H点在AD上,且AE∥HC ∥GF.若AH=8,HG=5,GD=4,则下列选项中的线段,何者长度最长?()A.CF B.FD C.BE D.EC解:∵AH=8,HG=5,GD=4,∴AD=8+5+4=17,∵四边形ABCD为菱形,∴BC=CD=AD=17,∵AE∥HC,AD∥BC,∴四边形AECH为平行四边形,∴CE=AH=8,∴BE=BC﹣CE=17﹣8=9,∵HC∥GF,∴=,即=,解得:DF=,∴FC=17﹣=,∵>9>8>,∴CF长度最长,故选:A.4.如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF上,BP 交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为()A.6B.9C.12D.18解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴=2,∴EM=2BC=2×6=12,即EP+BP=12.故选:C.5.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′等于()A.B.2C.D.解:过D作DE⊥BC于E,则BE=AD=2,DE=2,设B′C=BC=x,则DC=x,∴DC2=DE2+EC2,即2x2=28+(x﹣2)2,解得:x=4(负值舍去),∴BC=4,AC=,∵将△ABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴∴△A′CA∽△B′CB,∴,即∴AA′=,故选:A.6.如图,已知,△ABC中边AB上一点P,且∠ACP=∠B,AC=4,AP=2,则BP=6.解:∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,∴AC2=AP•AB,即AB=AC2÷AP=16÷2=8,∴BP=AB﹣AP=6.7.如图,在▱ABCD中,AC、BD相交于点O,点E是OA的中点,联结BE并延长交AD 于点F,如果△AEF的面积是4,那么△BCE的面积是36.解:∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴==,=4,=()2=,∵S△AEF=36,故答案为36.∴S△BCE8.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8.解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.9.如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则sin∠ABE=.解:∵将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,∴BD=AB,BC=BE,∠ABD=∠CBE,∠DEB=∠ACB,∴∠D=∠BAC=∠BAD=(180°﹣∠ABD),∴∠BEC=(180°﹣∠CBE),∴∠D=∠BEC,∵∠ABC=∠DBE=90°,∴∠DEB+∠BEC=90°,∴∠AEC=90°,∵∠AGB=∠EGC,∴∠ACE=∠ABE,∵在Rt△ABC中,AB=3,BC=4,∴AC=DE=5,过B作BH⊥DE于H,则DH=AH,BD2=DH•DE,∴DH==,∴AD=,∴AE=DE﹣AD=,∴sin∠ABE=sin∠ACE===,故答案为:.10.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交边BC于点D,过点D作CA的平行线,交边AB于点E.(1)求线段DE的长;(2)取线段AD的中点M,联结BM,交线段DE于点F,延长线段BM交边AC于点G,求的值.解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC=30°,在Rt△ACD中,∠ACD=90°,∠DAC=30°,AC=6,∴CD=2,在Rt△ACB中,∠ACB=90°,∠BAC=60°,AC=6,∴BC=6,∴BD=BC﹣CD=4,∵DE∥CA,∴,∴DE=4;(2)如图,∵点M是线段AD的中点,∴DM=AM,∵DE∥CA,∴,∴DF=AG,∵DE∥CA,∴,∴,∵BD=4,BC=6,DF=AG,∴.11.如图,在菱形ABCD中,∠ADE、∠CDF分别交BC、AB于点E、F,DF交对角线AC 于点M,且∠ADE=∠CDF.(1)求证:CE=AF;(2)连接ME,若=,AF=2,求ME的长.解:(1)∵四边形ABCD是菱形,∴AD=CD,∠DAF=∠DCE,又∵∠ADE=∠CDF,∴∠ADE﹣∠EDF=∠CDF﹣∠EDF,∴∠ADF=∠CDE,在△ADF和△CDE中,,∴△ADF≌△CDE,∴CE=AF.(2)∵四边形ABCD是菱形,∴AB=BC,由(1)得:CE=AF=2,∴BE=BF,设BE=BF=x,∵=,AF=2,∴,解得x=,∴BE=BF=,∵=,且CE=AF,∴==,∵∠CMD=∠AMF,∠DCM=∠AMF,∴△AMF∽△CMD,∴,∴=,且∠ACB=∠ACB∴△ABC∽△MEC∴∠CAB=∠CME=∠ACB∴ME=CE=212.[问题背景](1)如图①,已知△ABC∽△ADE,求证:△ABD∽△ACE.[尝试应用](2)如图②,在△ABC和△ADE中,∠BAC=∠DAE=90°∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,①填空:=1;②求的值.(1)证明:如图①,∵△ABC∽△ADE,∴∠BAC=∠DAE,=,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,=,∴∠BAD=∠CAE,∴△ABD∽△ACE.(2)解:①如图②,∵∠DAE=90°,∠ADE=30°,∴DE=2AE,∴AD===AE,∵=,∴AD=BD,∴AE=BD,∴=1,故答案为:1.②如图②,连接CE,∵∠BAC=∠DAE=90°,∠ABC=∠ADE,∴△BAC∽△CAE,∴=,∴=,∵∠BAD=∠CAE=90°﹣∠CAD,∴△BAD∽△CAE,∴∠ABC=∠ACE,∴∠ADE=∠ACE,∵∠AFD=∠EFC,∴△AFD∽△EFC,∴=,由①得AD=AE,AD=BD,∴==,∴BD=CE,∴AD=×CE=3CE,∴=3,∴=3,∴的值是3.13.如图,在正方形ABCD中,AB=4,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于点M、N,连接EN、EF.(1)求证:△ABN∽△MBE;(2)求证:BM2+ND2=MN2;(3)①求△CEF的周长;②若点G、F分别是EF、CD的中点,连接NG,则NG的长为.(1)证明:如图1,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=90°,∴∠ABD=∠ADB=45°,∴∠ABN=∠MBE=45°,∠BME=∠ABD+∠BAM=45°+∠BAM,∵∠EAF=45°,∴∠BAN=∠EAF+∠BAM=45°+∠BAM,∴∠BAN=∠BME,∴△ABN∽△MBE.(2)证明:如图1,将△ADN绕点A顺时针旋转90°得到△ABH,连接MH,∴∠BAH=∠DAN,AH=AN,HB=ND,∵∠MAN=∠EAF=45°,∴∠MAH=∠BAH+∠BAM=∠DAN+∠BAM=45°,∴∠MAH=∠MAN,∵AM=AM,∴△MAH≌△MAN(SAS),∴MH=MN,∵∠ABH=∠ADN=45°,∴∠MBH=∠ABD+∠ABH=90°,∴BM2+HB2=MH2,∴BM2+ND2=MN2.(3)解:①如图2,将△ADF绕点A顺时针旋转90°得到△ABK,∴AK=AF,∠BAK=∠DAF,BK=DF,∠ABK=∠ADF=90°,∴∠ABK+∠ABE=180°,∴点K、点B、点E在同一条直线上,∵∠EAK=∠BAE+∠BAK=∠BAE+∠DAF=45°,∴∠EAK=∠EAFM,∵AE=AE,∴△EAK≌△EAF(SAS),∴EK=EF,∴BE+DF=BE+BK=EK=EF,∵CB=CD=AB=4,∴CE+EF+CF=CE+BE+DF+CF=CB+CD=4+4=8,∴△CEF的周长是8.②如图2,∵F是CD的中点,∴CF=DF=CD=2,∵∠C=90°,∴CF2+EF2=CE2,∵EF=BE+DF=BE+2,CE=CB﹣BE=4﹣BE,∴22+(4﹣BE)2=(BE+2)2,解得BE=,∴EF=+2=,∵∠MBE=∠MAN=45°,∠BME=∠AMN,∴△BME∽△AMN,∴=,∴=,∴∠AMB=∠NME,∴△AMB∽△NME,∴∠NEM=∠ABM=45°,∴∠ENF=∠MAN+∠NEM=90°,∵G是EF的中点,∴NG=EF=×=,故答案为:.14.问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB =4,AC=2,直接写出AD的长.问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠MDA,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴在Rt△ABM中,AM===2,∴AD=.15.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的数量关系BG=DE及所在直线的位置关系BG⊥DE;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4﹣6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),则线段BG、线段DE的数量关系=及所在直线的位置关系BG ⊥DE;(3)在第(2)题图5中,连接DG、BE,且a=4,b=3,k=,直接写出BE2+DG2的值为.解:(1)①猜想:BG ⊥DE ,BG =DE ;故答案为:BG =DE ,BG ⊥DE ;②结论成立.理由:如图2中,∵四边形ABCD 和四边形CEFG 是正方形,∴BC =DC ,CG =CE ,∠BCD =∠ECG =90°,∴∠BCG =∠DCE ,∴△BCG ≌△DCE (SAS ),∴BG =DE ,∠CBG =∠CDE ,又∵∠CBG +∠BHC =90°,∴∠CDE +∠DHG =90°,∴BG ⊥DE .(2)∵AB =a ,BC =b ,CE =ka ,CG =kb ,∴==,又∵∠BCG =∠DCE ,∴△BCG ∽△DCE ,∴∠CBG =∠CDE ,==,又∵∠CBG +∠BHC =90°,∴∠CDE +∠DHG =90°,∴BG⊥DE.故答案为:=,BG⊥DE.(3)连接BE、DG.根据题意,得AB=4,BC=3,CE=2,CG=1.5,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+16+2.25+4=.。
中考复习专题1:相似三角形中的旋转问题配有辅导训练资料含试题解析与参考答案教师版

中考专题:相似三角形与旋转1. 已知,如图1,已知Rt △ABC 中,∠ACB =90°,D 、E 分别是AC 、BC 上的点,连DE ,且3AC BCDC EC==,2tan 2B =; (1)如图2,将△CDE 绕C 点旋转,连AD 、BE 交于H ,求证:AD ⊥BE ;(2)如图3,当△CDE 绕C 点旋转过程中,当5CH =时,求2A H ﹣BH 的值;(3)若CD =1,当△CDE 绕C 点旋转过程中,直接写出AH 的最大值是 .2. 在△ABC 中,CA =CB ,∠ACB =α(0°<α<180°).点P 是平面内不与A ,C 重合的任意一点,连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,CP .点M 是AB 的中点,点N 是AD 的中点.(1)如图1,当α=60°时,PCMN的值是 ,直线MN 与直线PC 相交所成的较小角的度数是 .(2)如图2,当α=120°时,请写出的PCMN 值及直线MN 与直线PC 相交所成的较小角的度数,并就图2的情形说明理由. (3)如图3,当α=90°时,若点E 是CB 的中点,点P 在直线ME 上,请直接写出点B ,P ,D 在同一条直线上时MN PD的值.3. 在△ABC 中,∠ABC =120°,线段AC 绕点C 顺时针旋转60°得到线段CD ,连接BD .(1)如图1,若AB =BC ,求证:BD 平分∠ABC ;(2)如图2,若AB =2BC ,①求ACBD 的值;②连接AD ,当S △ABC =23时,直接写出四边形ABCD 的面积为 .4. (1)如图1,在Rt △ABC 中,∠C =90°,AC =BC ,AP 、BP 分别平分∠CAB 、∠CBA ,过点P作DE ∥AB 交AC 于点D ,交BC 于点E .①求证:点P 是线段DE 的中点; ②求证:BP 2=BE •BA .(2)如图2,在Rt △ABC 中,∠C =90°,AB =13,BC =12,BP 平分∠ABC ,过点P 作DE ∥AB 交AC 于点D ,交BC 于点E ,若点P 为线段DE 的中点,求AD 的长度.5.在△ABC中,AB=AC,点D在底边BC上,∠EDF的两边分别交AB、AC所在直线于E,F两点,∠EDF=2∠ABC,BD=nCD.(1)如图1,若∠ABC=45°,n=1,求证:DE=DF;(2)如图2,求DEDF的值(含n的式子表示):(3)如图3,连接EF,若tan∠B=1,EF∥BC,且58EFBC=,直接写出n的值为.6.已知:在▱ABCD中,点E,F分别在AB,AD边上,且∠ECF=∠B=α(0°<α<90°)(1)如图1,若CF⊥AD,求证:CE CB CF CD=;(2)如图2,若α=60°,∠AEF=∠ECB,求证:四边形ABCD是菱形;(3)如图3,若α=45°,AC⊥EF,EH⊥BC于点H,34CEAD=,直接写出AECH的值.中考专题:相似(一)1. 已知,如图1,已知Rt △ABC 中,∠ACB =90°,D 、E 分别是AC 、BC 上的点,连DE ,且3AC BCDC EC==,2tan 2B =; (1)如图2,将△CDE 绕C 点旋转,连AD 、BE 交于H ,求证:AD ⊥BE ;(2)如图3,当△CDE 绕C 点旋转过程中,当5CH =时,求2A H ﹣BH 的值; (3)若CD =1,当△CDE 绕C 点旋转过程中,直接写出AH 的最大值是 .【解答】(1)证明:如图2中,设BE 交AC 于O .∵∠ACB =∠DCE =90°,∴∠ACD =∠ECB , AC BCDC EC =,∴AC CDBC CE =,∴△ACD ∽△BCE , ∴∠DAC =∠EBC ,∵∠AOH =∠BOC ,∴∠AHO =∠BCO =90°,∴AD ⊥BE . (2)解:如图2中,在HB 上取一点T ,使得HT =AH ,连接AT .在Rt △AHT 中,2tan AH ATH HT ∠==, 2tan ABC ∠=,∴∠ATH =∠ABC , ∵∠ATH +∠HAT =90°,∠ABC +∠CAB =90°,∴∠HAT =∠CAB ,∴∠CAH =∠BAT ,∴△AHT ∽△ACB ,∴AT AH AB AC =,∴AH AC AT AB =,∴△CAH ∽△BAT ,∴CH AHBT AT=,2HT AH =,设AH m =,则2HT m =,3AT m , ∴53m =15BT ∴ (3)解:如图3中,在Rt △AHB 中,∵AH =AB •sin ∠ABH ,∴当∠ABH 最大时,AH 的值最大,此时CE ⊥BE , ∵∠DCE =∠CEH =∠EHD =90°, ∴此时四边形ECDH 是矩形,∴DH =EC ,∠ADC =∠CDH =90°, 由题意CD =1,,2EC 3AC =, 2DH CE ∴==在Rt ACD ∆中,22312AD AC CD =-=-= 2222AH AD DH ∴=+= 的最大值为2. 在△ABC 中,CA =CB ,∠ACB =α(0°<α<180°).点P 是平面内不与A ,C 重合的任意一点,连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,CP .点M 是AB 的中点,点N 是AD 的中点.(1)如图1,当α=60°时,PCMN的值是 ,直线MN 与直线PC 相交所成的较小角的度数是 .(2)如图2,当α=120°时,请写出的PCMN 值及直线MN 与直线PC 相交所成的较小角的度数,并就图2的情形说明理由. (3)如图3,当α=90°时,若点E 是CB 的中点,点P 在直线ME 上,请直接写出点B ,P ,D 在同一条直线上时MN PD的值.【解答】(1)如图1中,连接PC ,BD ,延长BD 交PC 于K ,交AC 于G . ∵CA =CB ,∠ACB =60°,∴△ABC 是等边三角形,∴∠CAB =∠PAD =60°,AC =AB ,∴∠PAC =∠DAB ,∵AP =AD ,∴△PAC ≌△DAB (SAS ),∴PC =BD ,∠ACP =∠ABD , ∵AN =ND ,AM =BM ,∴BD =2MN ,∴PCMN=21.∵∠CGK =∠BGA ,∠GCK =∠GBA ,∴∠CKG =∠BAG =60°,∴BK 与PC 的较小的夹角为60°, ∵MN ∥BK ,∴MN 与PC 较小的夹角为60°. (2)如图设MN 交AC 于F ,延长MN 交PC 于E .∵CA =CB ,PA =PD ,∠APD =∠ACB =120°,∴△PAD ∽△CAB ,∴ABADAC AP =,∵AM =MB ,AN =ND ,∴AMANAC AP =,∴△ACP ∽△AMN ,∴∠ACP =∠AMN ,PCMN =23=AC AM∵∠CFE =∠AFM ,∴∠FEC =∠FAM =30°. (3)设MN =a ,∵PCMN=22=AC AM ,∴PC =2a ,∵ME 是△ABC 的中位线,∠ACB =90°,∴ME 是线段BC 的中垂线, ∴PB =PC =2a ,∵MN 是△ADB 的中位线,∴DB =2MN =2a ,如图3﹣1中,当点P 在线段BD 上时,PD =DB ﹣PB =(2﹣2)a ,∴MN PD=2﹣2.如图3﹣2中,PD =DB +PB =(2+2)a ,∴MN PD=2+2.3. 在△ABC 中,∠ABC =120°,线段AC 绕点C 顺时针旋转60°得到线段CD ,连接BD .(1)如图1,若AB =BC ,求证:BD 平分∠ABC ;(2)如图2,若AB =2BC ,①求ACBD 的值;②连接AD ,当S △ABC =23时,直接写出四边形ABCD 的面积为 .【解答】(1)证明:连接AD ,由题意知,∠ACD =60°,CA =CD ,∴△ACD 是等边三角形,∴CD =AD ,又∵AB =CB ,BD =BD ,∴△ABD ≌△CBD (SSS ),∴∠CBD =∠ABD ,∴BD 平分∠ABC ; (2)解:①连接AD ,作等边三角形ACD 的外接圆⊙O , ∵∠ADC =60°,∠ABC =120°,∴∠ADC +∠ABC =180°,∴点B 在⊙O 上,∵AD =CD ,∴⁔AB =⁔CD ,∴∠CBD =∠CAD =60°, 在BD 上截取BM ,使BM =BC ,则△BCM 为等边三角形,∴∠CMB =60°,∴∠CMD =120°=∠CBA ,又∵CB =CM ,∠BAC =∠BDC ,∴△CBA ≌△CMD (AAS ),∴MD =AB ,设BC =BM =1,则AB =MD =2,∴BD =3,过点C 作CN ⊥BD 于N , 在Rt △BCN 中,∠CBN =60°,∴∠BCN =30°, ∴BN =21BC =21,CN =23BC =23,∴ND =BD ﹣BN =25, 在Rt △CND 中,CD =722=+DN CD ,∴AC =7,∴773=ACBD ;②如图3,分别过点B ,D 作AC 的垂线,垂足分别为H ,Q , 设CB =1,AB =2,CH =x ,则由①知,AC =7,AH =7﹣x , 在Rt △BCH 与Rt △BAH 中,BC 2﹣CH 2=AB 2﹣AH 2,即1﹣x 2=22﹣(7﹣x )2,解得,x =772,∴BH =721,在Rt △ADQ 中,DQ =23AD =23×7=221,∴72=DQ BH∵AC 为△ABC 与△ACD 的公共底,∴72==∆∆DQ BH S SACDABC ,∵S △ABC =23,∴S △ACD =437,∴S 四边形ABCD =23+437=439,4. (1)如图1,在Rt △ABC 中,∠C =90°,AC =BC ,AP 、BP 分别平分∠CAB 、∠CBA ,过点P 作DE ∥AB 交AC 于点D ,交BC 于点E .①求证:点P 是线段DE 的中点; ②求证:BP 2=BE •BA .(2)如图2,在Rt △ABC 中,∠C =90°,AB =13,BC =12,BP 平分∠ABC ,过点P 作DE ∥AB 交AC 于点D ,交BC 于点E ,若点P 为线段DE 的中点,求AD 的长度.【解答】(1)①证明:∵BP 平分∠ABC ,∴∠ABP =∠CBP ,∵DE ∥AB ,∴∠ABP =∠EPB ,∴∠CBP =∠EPB ,∴BE =PE , 同理可证:DP =DA ,∵DE ∥AB ,∴CE CDCB CA=, ∵CA =CB ,∴CE =CD ,∴BE =AD ,∴PE =PD ,∴点P 是DE 的中点. ②证明:由①得∠ABP =∠EBP =∠EPB =21∠CBA , ∵AP 平分∠CAB ,∴∠P AB =21∠CAB , ∵CA =CB ,∴∠CBA =∠CAB ,∴∠ABP =∠EBP =∠EPB =∠P AB ,∴△ABP ∽△PBE ,∴BP BEBA BP=,∴BP 2=BA •BE . (2)过点P 作FG ∥AC 交BC 于F ,交AB 于G .在Rt △ACB 中,222213125AC AB BC =-=-=,∵FG ∥AC ,∴∠PFE =∠C =90°,∵PD ∥AG ,∴四边形AGPD 是平行四边形,∴PG =AD , ∵PE =PD ,PF ∥CD ,∴EF =FC ,∴PF =21CD ,由(1)可知BE =EP ,设AD =PG =x ,则CD =5﹣x ,PF =21(5﹣x ),∵DE ∥AB ,∴CD CE CA CB =,∴512CD CA CE CB ==, 125CE CD ∴=,12(5)5x =-,则6(5)5EF x =-,1212120(5)55BE EP x x ∴==-=,在Rt EFP ∆中,6(5)125sin sin sin 1213(5)5x EF EPF EDC BAC EP x -∠===∠=∠=-,解得6537x =,6537AD ∴=.5.在△ABC中,AB=AC,点D在底边BC上,∠EDF的两边分别交AB、AC所在直线于E,F两点,∠EDF =2∠ABC,BD=nCD.(1)如图1,若∠ABC=45°,n=1,求证:DE=DF;(2)如图2,求DEDF的值(含n的式子表示):(3)如图3,连接EF,若tan∠B=1,EF∥BC,且58EFBC=,直接写出n的值为.【解答】(1)证明:如图1中,连接AD.∵AB=AC,∴∠ABC=∠C=45°,∵BD=nCD,n=1,∴BD=CD,∴AD⊥BC,∠DAC=∠DAB=45°,AD=DB=DC,∵∠EDF=2∠ABC=90°,∴∠BDA=∠EDF=90°,∴∠BDE=∠ADF,∵∠B=∠DAF,BD=AD,∴△BDE≌△ADF(SAS),∴DE=DF.(2)解:在射线B上取一点T,使得DB=DT.∵DB=DT,∴∠B=∠T,∴∠TDC=∠B+∠T=2∠B,∵∠EDF=2∠B,∴∠EDF=∠TDC,∴∠EDT=∠DFC,∵∠BAC+2∠B=180°,∴∠BAC+∠DEF=180°,∴∠TED+∠AFD=180°,∵∠DFC+∠AFD=180°,∴∠TED=∠DFC,∴△TED∽△FDC,∴DE DT DBn DF DC CD===.(3)如图3中,作ET⊥BC于E,FH⊥BC于H.∵EF∥BC,ET∥FH,∴四边形EFHT是平行四边形,∵∠ETH=90°,∴四边形EFHT是矩形,∴ET=FH,EF=TH,∵EF:BC=5:8,设EF=5k,BC=8k,则TH=5k,∵tan B=1,∴∠B=∠C=45°,∵∠ETB=∠FHC=90°,∴ET=BT=FH=CH=1.5k,设DT=x,则DH=5K﹣x,∵∠EDF=2∠B=90°,∠ETD=∠FHD=90°,∴∠EDT+∠FDH=90°,∠TED+∠EDT=90°,∴∠TED=∠FDH,∴△ETD∽△DHF,∴ET DTDH FH=,∴1.55 1.5k xk x k=-,∴x2﹣5kx+2.25k2,解得x=0.5k或4.5k,∴BD=2k或6k,∴BD:DC=2k:6k=1:3或BD:DC=6k:2k=3:1.∴n=3或.6. 已知:在▱ABCD 中,点E ,F 分别在AB ,AD 边上,且∠ECF =∠B =α(0°<α<90°)(1)如图1,若CF ⊥AD ,求证:CE CBCF CD=; (2)如图2,若α=60°,∠AEF =∠ECB ,求证:四边形ABCD 是菱形;(3)如图3,若α=45°,AC ⊥EF ,EH ⊥BC 于点H ,34CE AD =,直接写出AECH 的值. 【解答】(1)证明:如图1中,∵在▱ABCD 中,∠B =∠D ,∵∠ECF =∠B =α,∴∠D =∠ECF =α,∵CF ⊥AD ,∴∠D +∠DCF =90°,∴∠ECF +∠DCF =90°,∴EC ⊥CD , ∵AB ∥CD ,∴CE ⊥AB ,∴∠BEC =∠CFD =90°,∴∠BCE ∽△DCF ,∴CE CBCF CD=; (2)证明:如图2中,连接AC ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠B =60°,∴∠BAC =120°,∵∠ECF =60°,∴∠EAF +∠ECF =180°,∴A ,E ,C ,F 四点共圆,∴∠AEF =∠ACF , ∵∠AEF =∠BCE ,∴∠ACF =∠BCE ,∴∠ACB =∠ECF =60°,∴△ABC 是等边三角形, ∴AB =BC ,∴四边形ABCD 是菱形;(3)解:∵∠ECF =∠B =45°,∵34CE AD =,∴设CE =3m ,BC =AD =4m , 过C 作CI ⊥BC 交BA 的延长线于I ,交AD 于K ,交EF 于J ,延长HE 交DA 的延长线于L , 则CI =BC =4m ,作JM ⊥LH 于M ,交BI 于R ,连接AJ ,∵∠ECF =∠B =45°,∴∠EAF =135°,∴C ,E ,A ,F 四点共圆,∴∠CEF =∠F AC , ∵AC ⊥EF ,∴∠EJC =∠CAF ,∴∠CEJ =∠EJC ,∴CE =CJ ,∴AC 垂直平分EJ ,∴AE =AJ , 设BH =EH =n ,CH =4m ﹣n ,在Rt △CHE 中,EH 2+CH 2=CE 2, ∴n 2+(4m ﹣n )2=(3m )2,解得42n ±=,(取42n -=时,结论一样), 424KL CH m n -∴==-=,42223ME MH HE CJ EH m +-=-=-=-=,2LE LA =,2222KJ LM ME -===,422AK LK AL -=-=-, 2222224222(()22AE AJ AK JK --∴==+=+, 解得:3(21)32AE -=-,∴3(21)3322742AE CH --==-。
(完整word版)九年级数学相似三角形知识点及习题

相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。
相似三角形的判定及习题精讲(含答案)

14.75或27, 提示:当小多边形的周长为45时,大多边形的周长为 ×45=75;当大多边形的周长为45时,小多边形的周长为 ×45=27。 15.100cm和40cm
(二)选择题: 1. D 2.A 。 提示:过E作EG//AD交BD于G,则 = = ,设BG=2k, GD=3k, 则BD=5k, CD=15k,
A、 B、 C、 D、
6.正方形ABCD中,E是AD中点,BM⊥CE于M,AB=6cm, 则BM的长为 ( )。
A、12 cm B、
cm C、3 cm D、 cm 7.要把一个三角形的面积扩大到原来面积的8倍,而它的形状不变, 那么它的边长要增大到原来的( )倍。
A、2 B、4 C、2 D、64 8.梯形ABCD中,AD//BC,AC、BD交于E点,SΔADE∶SΔADC=1∶3, 则SΔADE∶SΔDBC=( )。 A、1∶3 B、1∶4 C、1∶5 D、1∶6 (三)已知:如图,在ΔABC中,AD为中线,E在AB上,AE=AC,CE交 AD于F,EF∶FC=3∶5,
(五)略 (六)提示:过点D作DM//AC交BC于M,证ΔBDM∽ΔBAC及 ΔQDM∽ΔQBD,通过等比代换可得。
(七)本题由正方形在三角形中的位置不同引起分类讨论。提示如 下: 解:直角三角形内接正方形有两种不同的位置。 如下图:
(1)如图(1),作CP⊥AB于P,交GF于H,则CH⊥GF, ∵ GF//AB, ∴ ΔCGF∽ΔCAB, ∴ = , ∵ ∠ACB=90°,AC=8,BC=6由勾股定理得AB=10, ∵ AC·BC=AB·CP, ∴ CP= = = , 设GF=x, 则CH=
∵ EG//PD,∴ = = =
3.C 4. A 5.D
6.B。 提示:如图,易证ΔBMC∽ΔCDE, ∵ ED=
初三数学相似三角形典例及练习题含答案

初三数学相似三角形典例及练习题含答案典例典例1已知三角形ABC中,∠B=90°,AC=6cm,BD垂直AC于D点,BD=3cm,求BC的长度。
解析:根据勾股定理可得:BC^2 = AB^2 + AC^2 = BD^2 + AD^2 + AC^2因为∆ABC与∆ABD相似,所以可以得到:\frac{AD}{AB}=\frac{AB}{AC}即:AD = \frac{AB^2}{AC}将公式代入原式中,得到:BC^2 = BD^2 + \frac{AB^4}{AC^2} + AC^2因为AC=6,BD=3,所以代入可得:BC^2 = 3^2 + \frac{AB^4}{6^2} + 6^2化简得:BC^2 = AB^4 \cdot \frac{1}{36} + 45AB^4 = 36(BC^2 - 45)因此,我们可以得到:AB = \sqrt[4]{36(BC^2 - 45)}典例2已知两个三角形ABC和DEF,且它们相似,已知AC=20cm,EF=12cm,AB=15cm,计算DE的长度。
解析:由于两个三角形相似,所以可以得到:\frac{AB}{DE}=\frac{AC}{EF}将已知条件带入即可得到:\frac{15}{DE}=\frac{20}{12}解得:DE = \frac{36}{4} = 9因此,DE的长度为9cm。
典例3已知三角形ABC和DEF相似,且AB=5cm,DE=2.5cm,BC=6cm,计算EF的长度。
解析:由于两个三角形相似,所以可以得到:\frac{AB}{DE}=\frac{BC}{EF}将已知条件带入即可得到:\frac{5}{2.5}=\frac{6}{EF}解得:EF = 12因此,EF的长度为12cm。
练习题练习题1已知三角形ABC中,∠B=90°,AB=3cm,AC=4cm,D、E、F分别是BC、AC、AB上的点,且∆DEF与∆ABC相似。
相似三角形习题精讲及答案(最新整理)

每个学生都应该用的“超级学习笔记”相似三角形习题精讲及答案相似三角形是初中几何的重要内容,包括相似三角形的性质、判定定理及其应用,是中考必考内容,以相似三角形为背景的综合题是常见的热点题型,所以掌握好相似三角形的基础知识至关重要,本讲就如何判定三角形相似,以及应用相似三角形的判定、性质来解决与比例线段有关的计算和证明的问题进行探索。
一、如何证明三角形相似例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。
分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。
本例除公共角∠G 外,由BC ∥AD 可得∠1=∠2,所以△AGD ∽△EGC 。
再∠1=∠2(对顶角),由AB ∥DG 可得∠4=∠G ,所以△EGC ∽△EAB 。
评注:(1)证明三角形相似的首选方法是“两个角对应相等的两个三角形相似”。
(2)找到两个三角形中有两对角对应相等,便可按对应顶点的顺序准确地把这一对相似三角形记下来。
例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD分析:证明相似三角形应先找相等的角,显然∠C 是公共角,而另一组相等的角则可以通过计算来求得。
借助于计算也是一种常用的方法。
证明:∵∠A=36°,△ABC 是等腰三角形,∴∠ABC=∠C=72°又BD 平分∠ABC ,则∠DBC=36°在△ABC 和△BCD 中,∠C 为公共角,∠A=∠DBC=36°∴△ABC ∽△BCD例3:已知,如图,D 为△ABC 内一点连结ED 、A D ,以BC 为边在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD 求证:△DBE ∽△ABCཁB ཁཁཁཁG ཁཁཁཁཁཁཁཁ每个学生都应该用的“超级学习笔记”分析: 由已知条件∠ABD=∠CBE ,∠DBC 公用。
中考数学专题训练:相似三角形模型的运用(附参考答案)

中考数学专题训练:相似三角形模型的运用(附参考答案)1.如图,在△ECD中,∠C=90°,AB⊥EC于点B,AB=1.2,EB=1.6,BC=12.4,则CD的长是( )A.14 B.12.4C.10.5 D.9.32.如图,把△ABC绕点A旋转得到△ADE,当点D刚好落在边BC上时,连接CE,设AC,DE相交于点F,则图中相似三角形的对数是( )A.3对B.4对 C.5对D.6对3.如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使边AD与对角线BD 重合,折痕为DG,记与点A重合的点为A′,则△A′BG的面积与该矩形的面积比为( )A.112B.19C.18D.164.如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC,GA,交于点O,GA与BC交于点P,连接OD,OB,则下列结论一定正确的是( )①EC⊥AG;②△OBP∽△CAP;③BO平分∠CBG;④∠AOD=45°.A.①③ B.①②③C.②③ D.①②④5.如图,BD,CE为△ABC的高,且BD与CE交于点O.(1)求证:△AEC∽△ADB;(2)若∠A=40°,求∠BOC的度数.的值.6.)如图,AG∥BD,AF∶FB=1∶2,BC∶CD=2∶1,求GEED7.如图,在正方形ABCD中,点E为对角线AC,BD的交点,AF平分∠DAC交BD 于点G,交DC于点F.(1)求证:△AEG∽△ADF;(2)判断△DGF的形状并说明理由;(3)若AG=1,求GF的长.8.如图,等边三角形ABC的边长为3,点P为边BC上的一点,点D为边AC上的一点,连接AP,PD,∠APD=60°.(1)求证:①△ABP∽△PCD;②AP2=AD·AC.(2)若PC=2,求CD和AP的长.9.如图,点P是正方形ABCD边AB上一点(点P不与点A,B重合),连接PD,将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.(1)求∠PBE的度数;的值.(2)若△PFD∽△BFP,求APAB10.如图,四边形ABCD和四边形AEFG都是正方形,C,F,G三点在同一条直线上,连接AF并延长交边CD于点M.(1)求证:△MFC∽△MCA;(2)求证:△ACF∽△ABE;(3)若DM=1,CM=2,求正方形AEFG的边长.参考答案1.C 2.B 3.C 4.D5.(1)证明略(2)∠BOC=140°6.GEED =327.(1)证明略(2)△DGF是等腰三角形,理由略(3)GF=√2-1 8.(1)①证明略②证明略(2)CD=23AP=√79.(1)∠PBE=135°(2)APAB 的值为1210.(1)证明略(2)证明略(3)正方形AEFG的边长为3√55。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.如图,已知△ABC 是等边三角形,点 D、B、C、E 在同一条直线上,且∠DAE=120°. (1)图中有哪几对三角形相似?请证明其中的一对三角形相似; (2)若 DB=2,CE=6,求 BC 的长.
11.(1)在△ABC 中,AB=AC=5,BC=8,点 P、Q 分别在射线 CB、AC 上(点 P 不与点 C、点 B 重合), 且保持∠APQ=∠ABC. ①若点 P 在线段 CB 上(如图),且 BP=6,求线段 CQ 的长;
②若 BP=x,CQ域; (2)正方形 ABCD 的边长为 5(如图),点 P、Q 分别在直线 CB、DC 上(点 P 不与点 C、点 B 重合),且 保持∠APQ=90 度.当 CQ=1 时,写出线段 BP 的长(不需要计算过程,请直接写出结果).
15.已知在梯形 ABCD 中,AD∥BC,AD<BC,且 BC=6,AB=DC=4,点 E 是 AB 的中点. (1)如图,P 为 BC 上的一点,且 BP=2.求证:△BEP∽△CPD; (2)如果点 P 在 BC 边上移动(点 P 与点 B、C 不重合),且满足∠EPF=∠C,PF 交直线 CD 于点 F,同时
其中正确的结论是
.(把你认为正确结论的序号都填上)
3.已知:如图,△ABC 中,点 E 在中线 AD 上,∠DEB=∠ABC.
求证:(1)DB2=DE•DA; (2)∠DCE=∠DAC.
4.已知:如图,等腰△ABC 中,AB=AC,AD⊥BC 于 D,CG∥AB,BG 分别交 AD、AC 于 E、F.求证: BE2=EF•EG.
2.如图,在△ABC 中,AB=AC=10,BC=16,点 D 是边 BC 上(不与 B,C 重合)一动点,∠ADE=∠B=α,
DE 交 AC 于点 E.下列结论:
①AD2=AE•AB;②3.6≤AE<10;③当 AD=2 时,△ABD≌△DCE;
④△DCE 为直角三角形时,BD 为 8 或 12.5.
13.已知梯形 ABCD 中,AD∥BC,且 AD<BC,AD=5,AB=DC=2. (1)如图,P 为 AD 上的一点,满足∠BPC=∠A,求 AP 的长; (2)如果点 P 在 AD 边上移动(点 P 与点 A、D 不重合),且满足∠BPE=∠A,PE 交直线 BC 于点 E,同时 交直线 DC 于点 Q. ①当点 Q 在线段 DC 的延长线上时,设 AP=x,CQ=y,求 y 关于 x 的函数关系式,并写出自变量 x 的取值 范围; ②当 CE=1 时,写出 AP 的长.(不必写解答过程)
6
17.如图所示,已知矩形 ABCD 中,CD=2,AD=3,点 P 是 AD 上的一个动点(与 A、D 不重合),过点 P 作 PE⊥CP 交直线 AB 于点 E,设 PD=x,AE=y,
(1)写出 y 与 x 的函数解析式,并指出自变量的取值范围; (2)如果△PCD 的面积是△AEP 面积的 4 倍,求 CE 的长; (3)是否存在点 P,使△APE 沿 PE 翻折后,点 A 落在 BC 上?证明你的结论.
(五)一线三直角型: (六)双垂型:
A D
C 1
相似三角形判定的变化模型
旋转型:由 A 字型旋转得到。
8 字型拓展
A
D
B
C
E
B
共享性
A
E
F
G
C
一线三等角的变形
一线三直角的
2
1.如图,梯形 ABCD 中,AD∥BC,对角线 AC、BD 交于点 O,BE∥CD 交 CA 延长线于 E.求证:OC2=OA•OE.
交直线 AD 于点 M,那么 ①当点 F 在线段 CD 的延长线上时,设 BP=x,DF=y,求 y 关于 x 的函数解析式,并写出函数的定义域;
②当
时,求 BP 的长.
16.如图所示,已知边长为 3 的等边△ABC,点 F 在边 BC 上,CF=1,点 E 是射线 BA 上一动点,以线段 EF 为边向右侧作等边△EFG,直线 EG,FG 交直线 AC 于点 M,N, (1)写出图中与△BEF 相似的三角形; (2)证明其中一对三角形相似; (3)设 BE=x,MN=y,求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围; (4)若 AE=1,试求△GMN 的面积.
5
14.如图,在梯形 ABCD 中,AD∥BC,AB=CD=BC=6,AD=3.点 M 为边 BC 的中点,以 M 为顶点作∠EMF=∠B,
射线 ME 交腰 AB 于点 E,射线 MF 交腰 CD 于点 F,连接 EF. (1)求证:△MEF∽△BEM; (2)若△BEM 是以 BM 为腰的等腰三角形,求 EF 的长; (3)若 EF⊥CD,求 BE 的长.
9.(已知:如图,在 Rt△ABC 中,AB=AC,∠DAE=45°.求证: (1)△ABE∽△DCA;(2)BC2=2BE•CD.
4
10.如图,在等边△ABC 中,边长为 6,D 是 BC 边上的动点,∠EDF=60°. (1)求证:△BDE∽△CFD; (2)当 BD=1,CF=3 时,求 BE 的长.
一、相似三角形判定的基本模型认识
(一)A 字型、反 A 字型(斜 A 字型)
A
A
D
E
D E
B
C (平行)
(二)8 字型、反 8 字型
A
B
O
C
D
(平行) (三)母子型
A
D
B
C (不平行)
A
B J
D C
(蝴蝶型) (不平行)
A D
B
C
C
(四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景
5.如图,已知 AD 为△ABC 的角平分线,EF 为 AD 的垂直平分线.求证:FD2=FB•FC.
3
6.已知:如图,在 Rt△ABC 中,∠C=90°,BC=2,AC=4,P 是斜边 AB 上的一个动点,PD⊥AB,交边 AC 于点 D(点 D 与点 A、C 都不重合),E 是射线 DC 上一点,且∠EPD=∠A.设 A、P 两点的距离为 x,△BEP 的面积为 y. (1)求证:AE=2PE; (2)求 y 关于 x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.