浙教版九年级上专题《相似三角形的基本模型》
三角形相似的判定课件浙教版数学九年级上册(完整版)

E
D
F
作业布置
选做题:
3.如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则相似三角形共
有( C )。 A.3对 B.5对 C.6对 D.8对
作业布置
选做题: 4.如图所示,△ABC中,BD⊥AC于点D,CE⊥AB于点E,BD与CE相 交于点F,连结DE. 求证:△BEF∽△CDF;
证明:∵BD⊥AC,CE⊥AB, ∴∠BEF=∠CDF=90°, 又∵∠EFB=∠DFC, ∴△BEF∽△CDF.
F
∴△ADE∽△ABC.
新知讲解
判定三角形相似的预备定理:
平行于三角形一边的直线和其他两边相交,所构成的三角形与原三 角形相似.
根据上述预备定理,我们可以得到以下三角形相似的判定定理:
有两个角对应相等的两个三角形相似.
新知讲解
已知:如图,在△ABC与△A'B'C'中,∠A=∠A',∠B=∠B'. 求证:△ABC∽△A'B'C'.
作业布置
【综合实践类作业】 5.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,BE平分 ∠ABC,BE分别与AC,CD相交于点E,F. 求证:△AEB∽△CFB.
证明:∵∠ACB=90°,∴∠ACD+∠BCD=90°. ∵CD为AB边上的高, ∴∠ADC=90°,∴∠A+∠ACD=90°, ∴∠A=∠BCD.∵BE平分∠ABC, ∴∠ABE=∠CBE,∴△AEB∽△CFB.
F
AD AE,BF AE,DE AE, AB AC BC AC BC AC
AD BF DE
AB BC BC
新知讲解
【合作学习】
如图,在△ABC中,D,E分别是AB,AC上的点,DE∥BC.
相似三角形的常见模型

初中数学 ︵ 九年级 ︶培优篇初中数学 ︵ 九年级 ︶培优篇【基本模型】①如图,在ABC 中,点D 在AB 上,点E 在AC 上,//DEBC ,则ADE ABC △△∽,AD AE DEAB AC BC.②模型拓展1:斜交A 字型条件:C ADE ,图2结论:~ADE ACB ;③模型拓展2: 如图,∠ACD =∠B ⇔△ADC ∽△ACB ⇔AD AC CDAC AB BC.初中数学 ︵ 九年级︶培优篇【例1】如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走2米到达B 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度等于_________.【变式1-1】有一块直角三角形木板,∠B =90°,AB =1.5m ,BC =2m ,要把它加工成一个面积尽可能大的正方形桌面.甲、乙两位同学的加工方法分别如图1、图2所示.请你用学过的知识说明哪位同学的加工方法更好(加工损耗忽略不计).初中数学 ︵ 九年级 ︶培优篇 【变式1-2】(2022•衢州二模)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F (1)如图1,当E 是BC 中点时,求证:AF =2EF ;(2)如图2,连接CF ,若AB =5,BD =8,当△CEF 为直角三角形时,求BE 的长; (3)如图3,当∠ABC =90°时,过点C 作CG ⊥AE 交AE 的延长线于点G ,连接DG ,若BE =BF ,求tan ∠BDG 的值.初中数学 ︵九年级 ︶培优篇 ③模型拓展:如图,∠A =∠C ⇔△AJB∽△CJD ⇔A B JA C D JC【例2】如图,在平行四边形ABCD 中,E 为边AD 的中点,连接AC 、BE 交于点F .若△AEF 的面积为2,则△ABC 的面积为( ) A .8B .10C .12D .14初中数学 ︵ 九年级 ︶培优篇 【变式2-1】如图,在△ABC 中,BC =6,AEA F EBFC,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于点Q ,当CQ =14CE 时,EP +BP 的值为( )A .9B .12C .18D .24【变式2-2】如图,在Rt △ACB 中,∠ACB =90°,AC =4,BC =3,点D 为AC 上一点,连接BD ,E 为AB 上一点,CE ⊥BD 于点F ,当AD =CD 时,求CE 的长.【变式2-3】如图,已知D 是BC 的中点,M 是AD的中点.求AN:NC的值.初中数学 ︵ 九年级︶培优篇【例3】如图,在平行四边形ABCD 中,∠ABC 的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若AF =2FD ,则BEEG的值为( ) A .12B .13C .23D .34【变式3-1】(2020•杭州)如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,∠DAE 的平分线AG 与CD 边交于点G ,与BC 的延长线交于点F .设=λ(λ>0).(1)若AB =2,λ=1,求线段CF 的长. (2)连接EG ,若EG ⊥AF , ①求证:点G 为CD 边的中点. ②求λ的值.初中数学 ︵ 九年级 ︶培优篇【例4】如图,在△ABC 中,45ABC ,AB A D A E ,D A E 90 ,C E,则CD 的长为______.初中数学 ︵ 九年级 ︶培优篇 【变式4-1】矩形ABCD 中,AD =9,AB =12,点E 在对角线BD 上(不与B 、D 重合),EF ⊥AE 交CD 于F 点,连接AF 交BD 于G 点. (1)如图1,当G 为DE 中点时. ①求证:FD =FE ; ②求BE 的长.(2)如图2,若E 为BD 上任意点,求证:AG 2=BG •GE .初中数学 ︵ 九年级 ︶培优篇 【变式4-2】如图,ABC 中,,,AB AC AB AC 点D E 、分别是BC AC 、的中点,AF BE ⊥与点F .(1)求证:2AE FE BE ;(2)求A F C 的大小;(3)若DF=1,求△ABF 的面积.初中数学 ︵ 九年级 ︶培优篇结论:AH ⊥GF ,△AGF ∽△ABC ,GF AHBC AM【例5】如图1,在△ABC 中,AB =AC =5,BC =6,正方形DEFG 的顶点D 、G 分别在AB 、AC 上,EF 在BC 上. (1)求正方形DEFG 的边长;(2)如图2,在BC 边上放两个小正方形DEFG 、FGMN ,则DE= .初中数学 ︵ 九年级 ︶培优篇 【变式5-1】有一块锐角三角形卡纸余料ABC ,它的边BC =120cm ,高AD =80cm ,为使卡纸余料得到充分利用,现把它裁剪成一个邻边之比为2:5的矩形纸片EFGH 和正方形纸片PMNQ ,裁剪时,矩形纸片的较长边在BC 上,正方形纸片一边在矩形纸片的较长边EH 上,其余顶点均分别在AB ,AC 上,具体裁剪方式如图所示. (1)求矩形纸片较长边EH 的长;(2)裁剪正方形纸片时,小聪同学是按以下方法进行裁剪的:先沿着剩余料△AEH 中与边EH 平行的中位线剪一刀,再沿过该中位线两端点向边EH 所作的垂线剪两刀,请你通过计算,判断小聪的剪法是否正确.初中数学 ︵ 九年级︶培优篇 ②拓展:(1)在正方形、长方形中经常会出现射影定理模型,如图,在有射影定理模型.(2)如图,在圆中也会出现射影定理模型.【例6】如图,四边形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,分别以ED 、EC 为折痕将两个角(∠A 、∠B )向内折起,点A 、B 恰好落在CD 边的点F 处,若AD =3,BC =5,则EF 的长是( ) A.15B .215C .17D .217初中数学 ︵ 九年级 ︶培优篇 【变式6-1】如图所示,在△ABC 中,∠ABC =90°,BD ⊥AC ,DE ⊥BC ,垂足分别为D 、E 两点,则图中与△ABC 相似的三角形有( ) A .4个B .3个C .2个D .1个【变式6-2】如图,在R t △ABC 中,∠ACB =90°,点D 在AB 上,且AD AC =ACAB. (1)求证 △ACD ∽△ABC ;(2)若AD =3,BD =2,求CD 的长.【变式6-3】ABC 中,90ABC ,BD AC ,点E 为B D 的中点,连接A E 并延长交B C 于点F ,且有AF CF ,过F 点作FH AC 于点H . (1)求证:AD E CD B ∽; (2)求证:=2A E EF ; (3)若FHB C 的长.初中数学 ︵ 九年级 ︶培优篇②如图所示,BDE 和ABC 则ABD CBE ∽△△,且相似比为总结:旋转相似型中由公共旋转顶点、一点及其旋转后的对应点组成的三角形与由公共旋转顶点、另一点及其旋转后的对应点组成的三角形相似.初中数学 ︵ 九年级 ︶培优篇【例7】如图,在△ABC 与△ADE 中,∠ACB =∠AED =90°,∠ABC =∠ADE ,连接BD 、CE ,若AC :BC =3:4,则BD :CE 为( ) A .5:3B .4:3C .√5:2D .2:√3【变式7-1】如图,点E 是菱形ABCD 对角线CA 的延长线上任意一点,以线段AE 为边作一个菱形AEFG ,且菱形AEFG ∽菱形ABCD ,相似比是:2,连接EB ,GD .(1)求证:EB =GD ;(2)若∠DAB =60°,AB =2,求GD 的长.初中数学 ︵ 九年级 ︶培优篇 【变式7-2】如图,正方形ABCD ,对角线AC ,BD 相交于O ,Q 为线段DB 上的一点,90MQN ,点M 、N 分别在直线BC 、DC 上.(1)如图1,当Q 为线段OD 的中点时,求证:1132DN BM BC ;(2)如图2,当Q 为线段OB 的中点,点N 在CD 的延长线上时,则线段DN 、BM 、BC 的数量关系为 ;(3)在(2)的条件下,连接MN ,交AD 、BD 于点E 、F ,若:3:1M B M C ,N Q ,求EF 的长.初中数学 ︵ 九年级 ︶培优篇 补充:其他常见的一线三等角图形【例8】【感知】如图①,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),90A B DPC .易证DAP PBC △△∽.(不需要证明) 【探究】如图②,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),A B D PC .若4PD ,8P C ,6BC ,求AP 的长.【拓展】如图③,在ABC 中,8AC BC ,12A B ,点P 在边AB 上(点P 不与点A 、B 重合),连结CP ,作CPE A ,PE 与边BC 交于点E ,当CPE △是等腰三角形时,直接写出AP 的长.初中数学 ︵ 九年级 ︶培优篇 【变式8-1】如图,在矩形ABCD 中,CD =4,E 是BC 的中点,连接AE ,tan ∠AEB 43,P 是AD 边上一动点,沿过点P 的直线将矩形折叠,使点D 落在AE 上的点D ¢处,当A P D △是直角三角形时,PD 的值为( )A .23或67B .83或247C .83或307D .103或187初中数学 ︵ 九年级 ︶培优篇 【变式8-2】(2022秋•温州校级月考) 【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G . (1)求证:BCE CDG △△≌. 【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若45HD HF ,9C E ,求线段DE 的长.【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC ,45HD HF ,求DEEC的值(用含k 的代数式表示).。
4.5 相似三角形的性质及其应用第2课时 相似三角形的性质(2)浙教版数学九年级上册课件

三角形相似的 性质(2)
周长比 =相似比 面积比 =相似比的平方
1.填空: (1)如果三角形的边长扩大到原来的100倍,那么三角 形的周长扩大到原来的____1_0_0倍;面积扩大到原来的 ___1_0_0_0倍0 . (2)如果三角形的周长扩大到原来的100倍,那么三角 形的边长扩大到原来的____1_0_0倍. (3)如果三角形的面积扩大到原来的100倍,那么三角 形的边长扩大到原来的_____1_0倍.
3
5
4
10 6
8
相似比
3
5
4
10 6
8
相似三角形的周长和面积有以下性质:
相似三角形的周长之比等于相似比; 相似三角形的面积之比等于相似比的平方.
A
B
C
A′
B′
C′
A
如图,分别作△ABC,△A′B′C′的BC,
B
B′C′边上的高线AD,A′D′.
∵△ABC∽△A,在等边三角形ABC中,点D,E分别在边AB,AC上, DE∥BC. 如果BC=8 cm,AD:DB=1:3,则△ADE的周长等 于___6___cm,△ADE的面积等于______cm2.
感谢观看!
∵AD,A′D′分别是BC, B′C′边上的高线,
∴∠ADB=∠A′D′B′=90°,
B′
DC A′
C′ D′
A B DC
A′
B′
C′
D′
解:(1)在△ABC和△ADE中, ∵∠CAB=∠EAD(公共角), ∠B=∠ADE(已知), ∴△ABC∽△ADE.
如图,D,E分别是AC,AB上的点,∠ADE=∠B, AG⊥BC于点G,AF⊥DE于点F. 若AD=3,AB=5,求: (2)△ADE与△ABC的周长之比. (3)△ADE与△ABC的面积之比.
新浙教版数学九年级上册4.5相似三角形的性质及其应用精品PPT课件

新浙教版九(上)§第四章
旧知尝试
1.相似三角形对应边的比叫做 相似比 2.相似三角形的性质:相似三角形的对应角 相等 , 对应边成比例 相似比 . 相似比 相似比 3. 相似三角形对应角平分线之比等于 ,对应边上的中线 3:5 之比等于 , 对应边上的高线之比等于 2:5 . 4.如图:△ABC中AE:EC=2:3,则 AE:AC= ,CE:AC= 若△ADE与四边形BCED的面积之比是 4:25 4:21 A 则 △ADE与△ABC的面积之比是
D
E C
Байду номын сангаас
B
探究新知
A
在8×8的正方形网格中,△ABC∽△A/B/C/,探究下面 的问题:
1、两个相似三角形的相似比是多少?
A B B C A C = = =2 BC AC AB
新知尝试
2、两个相似三角形的周长比是多少?
C 6+2 5+4 2 2(3 + 5 + 2 2) ΔA B C = = C 3+ 5 +2 2 3+ 5+2 2 / / / ΔA B C
探究新知
A
相似三角形的周长比等于相似比; 相似三角形的面积比等于相似比的平方
已知:Δ ABC∽Δ A/B/C/,相似比为k, SΔ A B C CΔ ABC 2 = k = k 求证: C SΔ A / B / C / Δ A B C
/ / /
证明:∵△ABC∽△A/B/C/且相似比为k
B
A/
C
A B B C A C / / = / / = / / =k AB BC AC
AD AB ∴ / / = / / =k AD AB
C/
浙教版九年级数学上册第四章:相似三角形基本模型练习题(含答案)

相似证明中的基本模型A 字形图①A 字型,结论:AD AE DE AB AC BC ==,图②反A 字型,结论:AE AD DEAC AB BC== 图③双A 字型,结论:DF BG EF GC =,图④内含正方形A 字形,结论AH a aAH BC-=(a 为正方形边长)IH G FED CB AGFEDC BAEDCB A ED C BA图① 图② 图③ 图④8字型图①8字型,结论:AO BO AB OD CO CD ==,图②反8字型,结论:AO BO AB CO DO CD==、四点共圆 图③双8字型,结论:AE DF BE CF=,图④A 8字型,结论:111AB CD EF += 图⑤,结论:EF EG =、AED BEC ABE CDE S S S S ⋅=⋅△△△△EFD C BA F ED C BAOD C BAODC BAGFED CB A图① 图② 图③ 图④ 图⑤一线三等角型结论:出现两个相似三角形HE DC B AE DC BAEDCBAC60°F E DCB AFED CB A图① 图② 图③ 图④角分线定理与射影定理图①内角分线型,结论:AB BD AC DC =,图②外角分线型,结论:AB BDAC CD= 图③斜射影定理型,结论:2AB BD BC =⋅,图④射影定理型,结论:1、2AC AD AB =⋅,2、2CD AD BD =⋅,3、2BC BD BA =⋅D C BD BCAEDB AD B A梅涅劳斯型常用辅助线G FEDCBAGFEDCBA G E DC B ADEFCBA四、相似证明中的面积法面积法主要是将面积的比,和线段的比进行相互转化来解决问题. 常用的面积法基本模型如下:如图:1212ABC ACDBC AHS BCS CD CD AH ⋅⋅==⋅⋅△△. 图1:“山字”型H DC B A如图:1212ABC BCDBC AHS AH AO S DG OD BC DG ⋅⋅===⋅⋅△△. 图2:“田字”型G HODCBA如图:ABD ABD AED ACE AED ACE S S S AB AD AB ADS S S AE AC AE AC⋅=⋅=⋅=⋅△△△△△△.图3:“燕尾”型CDEB A考点一:相似三角形【例1】 如图,D 、E 是ABC ∆的边AC 、AB 上的点,且AD AC ⋅=AE AB ⋅,求证:ADE B ∠=∠.EDCBA【答案】∵AD AC AE AB ⋅=⋅ ∴AD ABAE AC=∵DAE BAC ∠=∠∴DAE ∆∽BAC ∆∴ADE B ∠=∠ 【例2】 如图,在ABC ∆中,AD BC ⊥于D ,CE AB ⊥于E ,ABC ∆的面积是BDE ∆面积的4倍,6AC =,求DE 的长.ED CB A【答案】∵AD BC ⊥,CE AB ⊥,ABD CBE ∠=∠ ∴ABD ∆∽CBE ∆∴BE BCBD AB=∵EBD CBA ∠=∠ ∴BED ∆∽BCA ∆∴11322DEDE AC AC===⇒== 【例3】 如图,ABC △中,60ABC ∠=︒,点P 是ABC △内一点,使得APB BPC CPA ∠=∠=∠,86PA PC ==,,则PB =________.PCBA【解析】120APB BPC ∠=∠=︒,60BAP ABP ABC ABP CBP ∠=︒-∠=∠-∠=∠,故ABP BCP △∽△,2PB PA PC =⋅.【例4】 如图,已知三个边长相等的正方形相邻并排,求EBF EBG ∠+∠.HGFED CB A【答案】45︒ 【解析】连接DF 、CG ,则45EDF EBF DFB ∠=∠+∠=︒,若DFB EBG ∠=∠,则EBF EBG ∠+∠可求,问题的关键是证明BCG FDB △∽△.考点二:相似三角形与边的比例☞考点说明:可运用相似三角形模型,常用A 字形与8字形【例5】 在ABC ∆中,BD CE =,DE 的延长线交BC 的延长线于P , 求证:AD BP AE CP ⋅=⋅.PE D CBA MPED C BA【答案】过C 作CM AB ∥交DP 于M ,∵CM AB ∥,∴PCM PBD ∆∆∽, ∴CM PC BD PB =, ∵CM AB ∥,∴CEM AED ∆∆∽, ∴CM AD CE AE =, ∵BD CE =, ∴CM CM CE BD =, ∴PC AD PB AE=, ∴AD BP AE CP ⋅=⋅【例6】 如图,在ABC ∆的边AB 上取一点D ,在AC 取一点E ,使AD AE =,直线DE 和BC 的延长线相交于P ,求证:BP BDCP CE= PEDCBA4321MPE D CBA【答案】过C 作CM AB ∥交DP 于M ,∵CM AB ∥,∴PCM PBD ∆∆∽, ∴BP BD CP CM =, ∵CM AB ∥, ∴14∠=∠, 又∵AD AE =,∴12∠=∠,∴24∠=∠, ∵23∠=∠, ∴34∠=∠, ∴CM CE = ∴BP BD CP CE= 【例7】 如图,M 、N 为ABC △边BC 上的两点,且满足BM MN NC ==,一条平行于AC 的直线分别交AB 、AM 和AN 的延长线于点D 、E 和F .求证:3EF DE =.F NMED CBAK HF N MG ED CBA【答案】过M ,N 分别作AC 的平行线交AB 于H ,G 两点,NH 交AM 于K ,∵BM MN NC ==, ∴BG GH HA ==,易知12HK GM =,12GM HN =,∴14HK HN =,即13HK KN =,又∵DF HN ∥, ∴13DE HK EF KN ==,即3EF DE =. 考点三:相似三角形与内接矩形☞考点说明:内接矩形问题是相似三角形中比较典型的问题,考查了相似三角形对应高的比等于相似比【例1】 一块直角三角形木板的一条直角边AB 长为1.5米,面积为1.5平方米,工人师傅要把它加工成一个面积最大的正方形桌面,请甲、乙两位同学进行设计加工方案。
相似三角形的性质及其应用课件浙教版九年级数学上册(完整版)

三角形的重心分每一条中线成1:2的两条线段.
课堂练习
【知识技能类作业】 必做题:
1.(1)两个相似三角形的相似比为1:2, 则对应高的比为__1_:__2____, 则对应中线的比为__1__:__2___. (2)两个相似三角形对应中线的比为1:4 ,则对应高的比为_1_:__4__ .
A'
D'
C'
新知讲解
解:∵△ABC∽△A'B'C',∴∠B=∠B', AB BC . A'B' B'C'
∵ AD,A'D'分别是△ABC与△A'B'C'的中线,
∴BD= 1 BC,B'D'= 1 B'C',
2
2
BD
BC
AB .
A
B'D' B'C' A'B'
∴△ABD∽△A'B'D',
AD A'D'
1 2
.
证明:如图,连结DE.
∵BD,CE是△ABC的两条中线,∴
DE
∥=
1 2
BC.
∴∠EDB=∠DBC,∠DEC=∠ECB,
∴△DEP∽△BCP.
DB PP
EP CP
DE BC
1 2
.
新知讲解
例2中,如果再作BC边上的中线,这条中线与AC边上的中线BD的交 点也必定分BD成1:2的两条线段,也就是点P. 这就证明了三角形的三条中线相交于一点.
作业布置
选做题: 3.如图,在△ABC中,BC=120,高AD=60,正方形EFGH的一边在 BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为( B). A.15 B.20 C.25 D.30
浙教版数学九上42《相似三角形》课件

浙教版数学九上42《相似三角形》课件一、教学内容本节课选自浙教版数学九年级上册第42讲《相似三角形》。
教学内容主要包括教材第5章第3节的相似三角形的判定和性质。
详细内容包括:相似三角形的定义、判定方法(AA、SAS、SSS)、相似三角形的性质(对应角相等、对应边成比例、周长比和面积比相等),以及相似三角形在实际问题中的应用。
二、教学目标1. 让学生掌握相似三角形的定义、判定方法及其性质。
2. 培养学生运用相似三角形知识解决实际问题的能力。
3. 提高学生的逻辑思维能力和空间想象能力。
三、教学难点与重点教学难点:相似三角形的判定方法、性质的应用。
教学重点:相似三角形的定义、判定方法、性质。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:直尺、圆规、三角板。
五、教学过程1. 实践情景引入通过展示生活中的相似图形(如相似的建筑、家具等),引导学生发现相似图形的美和实用价值。
2. 例题讲解(1)已知三角形ABC与三角形DEF相似,求证:对应角相等、对应边成比例。
(2)已知三角形ABC中,AB=6cm,BC=8cm,AC=10cm。
三角形DEF 中,DE=4cm,EF=5cm,DF=6.4cm。
判断两个三角形是否相似,并说明理由。
3. 随堂练习(1)已知三角形ABC与三角形DEF相似,已知对应边的比值为2:1,求证:对应角相等。
4. 讲解相似三角形的判定方法、性质和应用。
5. 课堂小结六、板书设计1. 相似三角形的定义2. 相似三角形的判定方法(AA、SAS、SSS)3. 相似三角形的性质(1)对应角相等(2)对应边成比例(3)周长比和面积比相等4. 实际应用七、作业设计1. 作业题目:(1)已知三角形ABC与三角形DEF相似,对应边的比值为3:2,求证:对应角相等。
(2)已知三角形ABC中,AB=4cm,BC=6cm,AC=8cm。
三角形DEF 中,DE=3cm,EF=4.8cm,DF=6cm。
判断两个三角形是否相似,并说明理由。
新浙教版九年级上册初中数学 第1课时 相似三角形的性质 教学课件

A
A'
对应中线 对应角平分线
B
D
C
A
B' D' C' A'
BD
C
B' D' C'
新课讲解
相似三角形对应线段的比 由此我们可以得到: 相似三角形对应高的比、对应中线与对应角平分线的比都等于相似比。 一般地,我们有: 相似三角形对应线段的比等于相似比。
新课讲解
典例分析
例 已知 △ABC∽△DEF,BG、EH 分别是 △ABC和 △DEF 的角平分线,
DQ 是中线,若 AP=2,则 DQ的值为( C )
A.2 B.4 C.1
D. 1
2
拓展与延伸
如图,这是圆桌正上方的灯泡 (点A) 发出的光线照 射桌面形成阴影的示意图,
已知桌面的直径为 1.2 米,桌面距离地面为 1 米,若灯泡距离地面 3 米,则地
面上阴影部分的面积约为多少 (结果保留两位小数)?
以高为例 A
解:如图,分别作出 △ABC 和 △A' B' C' 的
高 AD 和 A' D'
则∠ADB =∠A' D' B'=90° ∵△ABC ∽△A′B′C′
BD
C
∴∠B=∠B'
A'
∴△ABD ∽△A' B' D'
∴ AD AB k A'D' A'B'
B' D'
C'
新课讲解
如图,△ABC ∽△A′B′C′,相似比为 k,它们对应高、对应中线、对应
BC = 6 cm,EF = 4cm,BG= 4.8 cm. 求 EH 的长。