2012年文数高考试题答案及解析-安徽
2012年全国高考文科数学试题及答案——安徽卷-推荐下载

(13)若函数 f (x) | 2x a | 的单调递增区间是[3,) ,则 a =________.
【解析】 a _____ 6 由对称性: a 3 a 6 2
(A) [-3 ,-1 ] (C) [ -3 ,1 ] ) 【解析】选 C
圆 (x a)2 y2 2 的圆心 C(a, 0) 到直线 x y 1 0 的距离为 d
则 d r 2 a 1 2 a 1 2 3 a 1 2
(10)袋中共有 6 个除了颜色外完全相同的球,其中有 1 个红球,2 个白球和 3
2
3
8
4
(B)4 (D)8
,则 z x y 的最小值是
(B)0 (D)3
高考
约束条件对应 ABC 边际及内的区域: A(0,3), B(0, 3),C(1,1) 则 t x y [3, 0] 2
(9)若直线 x y 1 0 与圆 (x a)2 y 2 2 有公共点,则实数 a 取值范围是
(3)( log2 9 )·( log3 4)=
(A) 1 4
(C) 2 【解析】选 D
log2
9
log3
4
lg lg
9 2
lg 4 lg 3
(4)命题“存在实数 x ,使 x > 1”的否定是 (A) 对任意实数 x , 都有 x > 1 (C) 对任意实数 x , 都有 x 1
【解析】选 C 存在---任意, x 1 --- x 1
满足两球颜色为一白一黑有 6 种,概率等于 6 2 15 5
2012 年普通高等学校招生全国统一考试(安徽卷) 数学(文科)
第Ⅱ卷(非选择题 共 100 分) 考生注事项: 请用 0.5 毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。 二.填空题:本大题共 5 小题,每小题 5 分,共 25 分,把答案填在答题卡的相应位 置。
2012年语文高考试题答案及解析-安徽

2012年普通高等学校招生全国统一考试(语文安徽卷解析)第Ⅰ卷(阅读题共66分)一、(9分)阅读下面的文字,完成1~3题。
中国传统文化的形成有两个重要的基础:一是小农自然经济的生产方式;二是国家一体,即由国及国的宗法社会政治结构。
在此基础上产生的必然是以伦理道德为核心的文化价值体系。
因为家族宗法血缘关系本质上是一种人伦关系,这种关系的扩展就形成了社会伦理关系。
家族本位的特点,一方面使得家族伦理关系的调节成为社会生活的基本课题,家族伦理成为个体安身立命的重要基础;另一方面,在家国一体社会政治结构中,整个社会的组织系统是家族——村落——国家,文化精神的生长路向是家族——宗族——民族。
家族的中心地位使得伦理在社会生活秩序的建构和调节中具有至关重要的意义。
在传统社会中,人们的社会生活是严格按照伦理的秩序进行的,服式举止,洒扫应对,人际交往,都限制在“礼”的范围内,否则便是对“伦理”的僭越。
这种伦理秩序的扩充,便上升为中国封建社会政治体制的基础——家长制。
家长制的实质就是用家族伦理的机制来进行政治统治,是一种伦理政治。
与此相适应,伦理道德学说在各种文化形态中便处于中心地位。
中国哲学是伦理型的,哲学体系的核心是伦理道德学说,宇宙的本体是伦理道德的形而上的实体,哲学的理性是道德化的实践理性。
因此人们才说,西方哲学家具有哲人的风度,中国哲学家则具有贤人的风度。
中国的文学艺术也是以善为价值取向的。
“文以载道”,美善合一,是中国文化审美性格的特征。
即使在科学技术中,伦理道德也是首要的价值取向。
中国传统科技的价值观是以“正德”即有利于德性的提升为第一目标,然后才考虑“利用、厚生”的问题。
因此,中国文化价值系统的特点是强调真、善、美统一,而以善为核心。
中国文化的普遍信念是“人为万物之灵”。
而人之所以能为“万物之灵”,就是因为有道德,因而中国文化特别重视人与人之间的“道”,以及遵循这种“道”而形成的“德”。
老子曾从本体论的高度说明“万物莫不尊道而贵德”的道理。
2012年高考真题(安徽卷)-有答案-有解析

2012年普通高等学校招生全国统一考试(安徽卷)英语第Ⅰ卷(选择题共50分)第一部分听力(共两节,满分30分)回答听力部分时,请先将答案标在试卷上。
听力部分结束前,你将有两分钟的时间将您的答案转涂到客观答题卡上。
第一节(共5小题:每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项选出最佳选项,并标在试卷的相应位置,听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下小题,每段对话仅读一遍。
例:How much is the shirt?A. ξ19.15.B. ξ9.15.C. ξ9.18答案是B。
1.Where does this conversation probably take place?A. In a bookstore.B. In a classroomC. In a library2. At what time will the film begin?A. 7:20B. 7:15C.7:003.What are the two speakers mainly talking about?A. Their friend Jane.B. A weekend tripC.A radio programme4.What will the woman probably do?A. Catch a trainB. See the man offC. Go shopping5. Why did the woman apologize?A. She made a late deliveryB. She went to the wrong placeC. She couldn’t take the cake back第二节(共15小题:每小题1.5分,满分22.5分)听下面5段对话。
每段对话有几个小题,从题中所给的A、B、C三个选项中选出的最佳选项,并标在试卷的相应位置。
2012年安徽省高考数学试卷(文科)答案与解析

2012年安徽省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.2.(5分)(2012•安徽)设集合A={x|﹣3≤2x﹣1≤3},集合B为函数y=lg(x﹣1)的定义域,B=,知,6.(5分)(2012•安徽)如图所示,程序框图(算法流程图)的输出结果是()向左平移向右平移个单位)个单8.(5分)(2012•安徽)若x,y满足约束条件,则z=x﹣y的最小值是(),表示的可行域如图,,,、)9.(5分)(2012•安徽)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范的距离为10.(5分)(2012•安徽)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白B=;二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.11.(5分)(2012•安徽)设向量=(1,2m),=(m+1,1),=(2,m),若(+)⊥,则||=.===,知,由(+)⊥)|==,+)⊥,),即.故答案为:12.(5分)(2012•安徽)某几何体的三视图如图所示,则该几何体的体积等于56.=5613.(5分)(2012•安徽)若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a=﹣6.关于直线关于直线14.(5分)(2012•安徽)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,若|AF|=3,则|BF|=.=⇔=故答案为:.15.(5分)(2012•安徽)若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则②④⑤(写出所有正确结论编号)①四面体ABCD每组对棱相互垂直②四面体ABCD每个面的面积相等③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°④连接四面体ABCD每组对棱中点的线段互垂直平分⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.,,易知能构成三角形.,,,任意两边之和大于第三边,能构成三角形.三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤,解答写在答题卡上的指定区域内.16.(12分)(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.A=,可求B=cosA=A=A=B=.17.(12分)(2012•安徽)设定义在(0,+∞)上的函数f(x)=ax++b(a>0)(Ⅰ)求f(x)的最小值;(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=,求a,b的值.y==ax+x=,可得:,∴a++b=﹣=18.(13分)(2012•安徽)若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.(Ⅲ)这批产品中的合格品的件数为(Ⅲ)这批产品中的合格品的件数为19.(12分)(2012•安徽)如图,长方体ABCD﹣A1B1C1D1 中,底面A1B1C1D1 是正方形,O是BD的中点,E是棱AA1上任意一点.(Ⅰ)证明:BD⊥EC1;(Ⅱ)如果AB=2,AE=,OE⊥EC1,求AA1的长.,求出AE=⇔=320.(13分)(2012•安徽)如图,F1、F2分别是椭圆C:(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.(Ⅰ)求椭圆C的离心率;(Ⅱ)已知△AF1B的面积为40,求a,b 的值.40=|BA||F=40b=521.(13分)(2012•安徽)设函数f(x)=+sinx的所有正的极小值点从小到大排成的数列为{x n}.(Ⅰ)求数列{x n}.(Ⅱ)设{x n}的前n项和为S n,求sinS n.)﹣,再分类讨论,求,可得;,可得;.)﹣,=;=﹣。
2012年高考文综安徽卷(含答案解析)

-------------绝密★启用前在2012 年普通高等学校招生全国统一考试(安徽卷)3. 读表 1,假定其他件不变,2011 年某企业生产 M 商品的劳动生产率提高的比例和价 值总量分别是 ( )表1 年份 2010 2011 社会必要劳动时间 4 4 个别劳动时间 4 2 M 商品总产量 10 万 20 万-------------------- --------------------------------------- ---------------------------------------------------------- ---------------------------------文科综合能力测试本试卷分第Ⅰ卷 (选择题) 和第Ⅱ卷 (非选择题) 两部分, 第Ⅰ卷第 1 页至第 8 页, 第Ⅱ卷第 9 页至第 12 页。
全卷满分 300 分。
考生注意事项: 1. 答卷前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核 对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务 必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第Ⅰ卷时,每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂 黑。
如需改动,用橡皮擦干净后,再涂其他答案标号。
3. 答第Ⅱ卷时,必须使用 0.5 毫米的黑色墨水签字笔在答题卡上书写,要求字体工 整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后再用 0.5 毫 米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域 书写的答案无效,在试题卷、草稿纸上答题无效。
4. 考试结束,务必将试题卷和答题卡一并上交。
A. 50% 40 万 C. 100% 80 万B. 50% 80 万 D. 200% 160 万 ( )此4. 网络给人们的信息交流提供了便利的平台,同时,借助这一平台,谣言也得以迅速传 播。
【专家解析】2012年高考数学(文)真题精校精析(安徽卷)(纯word书稿)

2012·安徽卷(文科数学)1.[2012·安徽卷] 复数z 满足(z -i)i =2+i ,则z =( ) A .-1-i B .1-i C .-1+3i D .1-2i1.B [解析] 由()z -i i =2+i ,得z -i =2+ii =1-2i ,所以z =1-i.2.[2012·安徽卷] 设集合A ={x |-3≤2x -1≤3},集合B 为函数y =lg(x -1)的定义域,则A ∩B =( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]2.D [解析] 根据已知条件,可求得A =[]-1,2,B =()1,+∞,所以A ∩B =[]-1,2∩()1,+∞=(]1,2.3.[2012·安徽卷] (log 29)·(log 34)=( ) A.14 B.12 C .2 D .43.D [解析] (解法一)由换底公式,得()log 29·()log 34=lg9lg2·lg4lg3=2lg3lg2·2lg2lg3=4.(解法二)()log 29·()log 34=()log 232·()log 322=2()log 23·2()log 32=4.4.[2012·安徽卷] 命题“存在实数x ,使x >1”的否定..是( ) A .对任意实数x ,都有x >1 B .不存在实数x ,使x ≤1 C .对任意实数x ,都有x ≤1 D .存在实数x ,使x ≤14.C [解析] 对结论进行否定同时对量词做对应改变,原命题的否定应为:“对任意实数x ,都有x ≤1”.5.[2012·安徽卷] 公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( )A .1B .2C .4D .85.A [解析] 设等比数列的公比为q ,则由等比中项的性质,得a 3 · a 11 = a 27 = 16,又因为数列{}a n 各项为正数,所以a 7=4.所以a 5q 2=4,即4a 5=4,解得a 5=1.6.[2012·安徽卷] 如图1-1所示,程序框图(算法流程图)的输出结果是( )图1-1A .3B .4C .5D .86.B [解析] 由程序框图可知,第一次循环后,得到x =2,y =2,满足判断条件;第二次循环后,得到x =4,y =3,满足判断条件;第三次循环后,得到x =8,y =4,不满足判断条件,故跳出循环,输出y =4.7.[2012·安徽卷] 要得到函数y =cos(2x +1)的图象,只要将函数y =cos2x 的图象( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位 D .向右平移12个单位7.C [解析] 因为y =cos ()2x +1=cos2⎝ ⎛⎭⎪⎫x +12,所以只需要将函数y =cos2x 的图像向左移动12个单位即可得到函数y =cos ()2x +1的图像.8.[2012·安徽卷] 若x ,y 满足约束条件⎩⎨⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0 C.32 D .38.A[解析] 作出不等式组⎩⎨⎧x ≥0,x +2y ≥3,2x +y ≤3表示的可行域(如图所示的△ABC 的边界及内部).平移直线z =x -y ,易知当直线z =x -y 经过点C (0,3)时,目标函数z =x -y 取得最小值,即z min =-3.9.[2012·安徽卷] 若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)9.C [解析] 因为直线x -y +1=0与圆()x -a 2+y 2=2有公共点,所以圆心到直线的距离d =||a -0+12≤r =2,可得||a +1≤2,即a ∈[]-3,1.10.[2012·安徽卷] 袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.4510.B [解析] 从袋中任取两球有15种取法,其中一白一黑有共6种取法,由等可能事件的概率公式可得p =615=25.11.[2012·安徽卷] 设向量=(1,2m ),=(m +1,1),=(2,m ),若(+)⊥,则||=________. 11.2 [解析] 因为+=(3,3m ),又=(m +1,1),(+)⊥所以(+)·=0,即(3,3m )·(m +1,1)=6m +3=0,解得m =-12,则=(1,-1).故||= 2.12.、[2012·安徽卷] 某几何体的三视图如图1-2所示,则该几何体的体积等于________.图1-212.56 [解析] 如图,根据三视图还原的实物图为底面是直角梯形的直四棱柱,其体积为V =Sh =12()2+5×4×4=56.13.[2012·安徽卷] 若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________. 13.-6 [解析] 容易作出函数f (x )的图像(图略),可知函数f (x )在⎝ ⎛⎦⎥⎤-∞,-a 2上单调递减,在⎣⎢⎡⎭⎪⎫-a 2,+∞单调递增.又已知函数f (x )的单调递增区间是[3,+∞),所以-a2=3,解得a =-6.14.[2012·安徽卷] 过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点.若|AF |=3,则|BF |=________.14.32 [解析] 如图,设A ()x 0,y 0()y 0<0,易知抛物线y 2=4x 的焦点为F ()1,0,抛物线的准线方程为x =-1,故由抛物线的定义得||AF =x 0-()-1=3,解得x 0=2,所以y 0=-2 2.故点A ()2,-22.则直线AB 的斜率为k =-22-02-1=-22,直线AB 的方程为y =-22x +22,联立⎩⎨⎧y =-22x +22,y 2=4x , 消去y 得2x 2-5x +2=0,由x 1x 2=1,得A ,B 两点横坐标之积为1,所以点B 的横坐标为12.再由抛物线的定义得||BF =12-()-1=32.15.[2012·安徽卷] 若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则________(写出所有正确结论的编号).①四面体ABCD每组对棱相互垂直;②四面体ABCD每个面的面积相等;③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°;④连接四面体ABCD每组对棱中点的线段相互垂直平分;⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.15.②④⑤[解析] 如图,把四面体ABCD放入长方体中,由长方体中相对面中相互异面的两条面对角线不一定相互垂直可知①错误;由长方体中△ABC≌△ABD≌△DCB≌△DCA,可知四面体ABCD每个面的面积相等,同时四面体ABCD中过同一顶点的三个角之和为一个三角形的三个内角之和,即为1800,故②正确,③错误;长方体中相对面中相互异面的两条面对角线中点的连线相互垂直,故④正确;从四面体ABCD 每个顶点出发的三条棱可以移到一个三角形中,作为一个三角形的三条边,故⑤正确.答案为②④⑤.16.、[2012·安徽卷] 设△ABC的内角A,B,C所对边的长分别为a,b,c,且有2sin B cos A=sin A cos C+cos A sin C.(1)求角A的大小;(2)若b=2,c=1,D为BC的中点,求AD的长.16.解:(1)(方法一)由题设知,2sin B cos A=sin(A+C)=sin B.因为sin B≠0,所以cos A=1 2.由于0<A<π,故A=π3.(方法二)由题设可知,2b ·b 2+c 2-a 22bc =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc .于是b 2+c 2-a 2=bc .所以cos A =b 2+c 2-a 22bc =12. 由于0<A <π,故A =π3.(2)(方法一)因为AD 2→=⎝ ⎛⎭⎪⎫AB →+AC →22=14(AB →2+AC →2+2AB →·AC →) =14(1+4+2×1×2×cos π3)=74, 所以|AD→|=72.从而AD =72. (方法二)因为a 2=b 2+c 2-2bc cos A =4+1-2×2×112=3,所以a 2+c 2=b 2,B =π2. 因为BD =32,AB =1,所以AD =1+34=72.17.[2012·安徽卷] 设定义在(0,+∞)上的函数f (x )=ax +1ax +b (a >0). (1)求f (x )的最小值;(2)若曲线y =f (x )在点(1,f (1))处的切线方程为y =32x ,求a ,b 的值. 17.解:(1)(方法一)由题设和均值不等式可知, f (x )=ax +1ax +b ≥2+b . 其中等号成立当且仅当ax =1. 即当x =1a 时,f (x )取最小值为2+b .(方法二)f (x )的导数f ′(x )=a -1ax 2=a 2x 2-1ax 2.当x >1a 时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫1a ,+∞上递增;当0<x <1a 时,f ′(x )<0,f (x )在⎝ ⎛⎭⎪⎫0,1a 上递减. 所以当x =1a 时,f (x )取最小值为2+b .(2)f′(x)=a-1 ax2.由题设知,f′(1)=a-1a=32,解得a=2或a=-12(不合题意,舍去).将a=2代入f(1)=a+1a+b=32,解得b=-1,所以a=2,b=-1.18.[2012·安徽卷] 若某产品的直径长与标准值的差的绝对值不超过...1 mm时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5 000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:(1)...(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数.18.解:(1)频率分布表(2)在区间(1,3]内的概率约为0.50+0.20=0.70;(3)设这批产品中的合格品数为x件,依题意有505000=20x+20,解得x=5000×2050-20=1 980.所以该批产品的合格品件数估计是1 980件.19.[2012·安徽卷] 如图1-3,长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.(1)证明:BD⊥EC1;(2)如果AB=2,AE=2,OE⊥EC1,求AA1的长.图1-319.解:(1)证明:连接AC,A1C1.由底面是正方形知,BD⊥AC.因为AA1⊥平面ABCD,BD⊆平面ABCD,所以AA1⊥BD.又由AA1∩AC=A,所以BD ⊥平面AA 1C 1C . 再由EC 1⊆平面AA 1C 1C 知, BD ⊥EC 1.(2)设AA 1的长为h ,连接OC 1. 在Rt △OAE 中,AE =2,AO =2, 故OE 2=(2)2+(2)2=4.在Rt △EA 1C 1中,A 1E =h -2,A 1C 1=2 2.故EC 21=(h -2)2+(22)2.在Rt △OCC 1中,OC =2,CC 1=h ,OC 21=h 2+(2)2. 因为OE ⊥EC 1,所以OE 2+EC 21=OC 21,即4+(h -2)2+(22)2=h 2+(2)2,解得h =3 2. 所以AA 1的长为3 2.图1-420.[2012·安徽卷] 如图1-4,F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.20.解: (1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12. (2)( 方法一)a 2=4c 2,b 2=3c 2. 直线AB 的方程可为y =-3(x -c ). 将其代入椭圆方程3x 2+4y 2=12c 2, 得B ⎝ ⎛⎭⎪⎫85c ,-335c .所以|AB |=1+3·⎪⎪⎪⎪⎪⎪85c -0=165c . 由S △AF 1B =12|AF 1|·|AB |sin ∠F 1AB =12a ·165c ·32=235a 2=403, 解得a =10,b =5 3. (方法二)设|AB |=t .因为|AF 2|=a ,所以|BF 2|=t -a .由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t . 再由余弦定理(3a -t )2=a 2+t 2-2at cos60°可得, t =85a .由S △AF 1B =12a ·85a ·32=235a 2=403知,a =10,b =5 3.21.[2012·安徽卷] 设函数f (x )=x2+sin x 的所有正的极小值点从小到大排成的数列为{x n }.(1)求数列{x n }的通项公式; (2)设{x n }的前n 项和为S n ,求sin S n .21.解:(1)因为f ′(x )=12+cos x =0,cos x =-12. 解得x =2k π±23π(k ∈).由x n 是f (x )的第n 个正极小值点知, x n =2n π-23π(n ∈).(2)由(1)可知,S n =2π(1+2+…+n )-23n π =n (n +1)π-2n π3.所以sin S n =sin ⎝ ⎛⎭⎪⎫n (n +1)π-2n π3.因为n (n +1)表示两个连续正整数的乘积,n (n +1)一定为偶数.11 所以sin S n =-sin ⎝ ⎛⎭⎪⎫2n π3. 当n =3m -2(m ∈*)时,sin S n =-sin ⎝ ⎛⎭⎪⎫2m π-43π=-32; 当n =3m -1(m ∈*)时,sin S n =-sin ⎝ ⎛⎭⎪⎫2m π-23π=32; 当n =3m (m ∈*)时,sin S n =-sin2m π=0.综上所述,sin S n =⎩⎪⎨⎪⎧ -32,n =3m -2(m ∈N *),32,n =3m -1(m ∈N *),0,n =3m ()m ∈N *.。
2012年文数高考试题答案及解析-新课标
绝密* 启用前2012 年普通高等学校招生全国统一考试文科数学注息事项 :1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题 )两部分 .答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上 .2.问答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后, 再选涂其它答案标号 .写在本试卷上无效 .3.回答第Ⅱ卷时.将答案写在答题卡上 .写在本试卷上无效 ·4.考试结束后 .将本试卷和答且卡一并交回 .第Ⅰ卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合 A={x| x2- x -2<0},B={x| -1<x<1},则( A )A B(B )B A(C )A=B(D ) A ∩B=【命题意图】本题主要考查一元二次不等式解法与集合间关系,是简单题 .【解析】 A=(- 1,2),故 B A ,故选 B.(2)复数 z = 3 2 i i 的共轭复数是( A ) 2 i (B ) 2 i (C ) 1 i (D ) 1 i 【命题意图】本题主要考查复数的除法运算与共轭复数的概念,是简单题.【解析】∵ z =3 2 i i = 1 i ,∴ z 的共轭复数为 1 i ,故选 D. (3)在一组样本数据( x 1,y 1),(x 2, y 2),⋯ ,(x n ,y n )(n ≥ 2,x 1,x 2, ⋯ ,x n 不全相等)的散点图中,若所有样1 1本点( x i ,y i )(i=1,2, ⋯ , n) 都在直线y x 1y= x+1 上,则这组样本数据的样本相关系数为22 12( A )- 1 (B )0 (C )(D )1 【命题意图】本题主要考查样本的相关系数,是简单题 . 【解析】有题设知,这组样本数据完全正相关,故其相关系数为 1,故选 D.(4)设 F , 1 F 是椭圆 E : 2 2 2 x y 22 a b=1( a > b >0)的左、 右焦点, P 为直线x 3a 2 上一点,△ F PF 是底角为 2 10 30 的等腰三角形,则 E 的离心率为A . 1 2B . 2 3C . 3 4D . 4 5【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题 .【解析】∵△F PF 是底角为2 130 的等腰三角形,∴0PF2A 60 , | PF2 | | F1F2 | 2c,∴| AF | =c,∴232c a,∴e=234,故选C.第1页共8 页(5)已知正三角形 ABC 的顶点 A(1,1),B(1,3),顶点 C 在第一象限, 若点(x ,y )在△ ABC 内部, 则 z x y 的 取值范围是 (A )(1- 3,2) (B )(0,2) (C )( 3-1,2) (D )(0,1+ 3)【命题意图】本题主要考查简单线性规划解法,是简单题 .【解析】有题设知 C(1+ 3 ,2),作出直线l : x y 0,平移直线 l 0 ,有图像知,直线 l : zx y 过B0 点时, z =2,过C 时, max z =1 3,∴ z x y 取值范围为 (1- 3,2),故选A.min(6)如果执行右边的程序框图,输入正整数 N ( N ≥ 2)和实数 a , a 2 ,⋯ , a N ,输出 A , B ,则1 A . A + B 为 a 1, a2 ,⋯ , a N 的和 B . A B 2 为 a , a 2 ,⋯ , a N 的算术平均数1 C . A 和 B 分别为 a , 1 a ,⋯ ,2 a 中的最大数和最小数N D . A 和 B 分别为 a , 1 a ,⋯ , 2 a 中的最小数和最大数N【命题意图】本题主要考查框图表示算法的意义,是简单题 . 【解析】 由框图知其表示的算法是找N 个数中的最大值和最小值, A 和B 分别为 a , 1 a ,⋯ , 2a 中的最大数和最小数,故选C . N2(7)如图,网格上小正方形的边长为 1,粗线画出的是某几何体的三 视图,则几何体的体积为A .6B .9C .12D .18【命题意图】 本题主要考查简单几何体的三视图及体积计算, 是简单题 . 【解析】由三视图知,其对应几何体为三棱锥,其底面为一边长为 6,这边上高为 3,棱锥的高为 3,故其体积为 1 1 3 2 6 3 3 =9,故选B . (8)平面 α截球 O 的球面所得圆的半径为 1,球心 O 到平面 α 的距离为2,则此球的体积为( A ) 6π (B )4 3π ( C )4 6π(D )6 3π【命题意图】 【解析】 (9)已知 >0, 0,直线 x = 和x =两条相邻的对称轴,则 = 45 4 是函数 f (x) sin( x) 图像的(A ) π 4 (B )π 3 (C )π 2 3π(D )4【命题意图】本题主要考查三角函数的图像与性质,是中档题 .【解析】由题设知, = 5 4 4 ,∴ =1,∴ = k ( k Z ),4 2∴= k (k Z ),∵0 ,∴=4 4,故选A.(10)等轴双曲线 C 的中心在原点,焦点在x轴上,C 与抛物线 2 16y x的准线交于A、B 两点,| AB |= 43 ,则 C 的实轴长为A . 2B . 2 2C .4D .8第2页共8 页【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题 . 【解析】由题设知抛物线的准线为: x 4 ,设等轴双曲线方程为: x 2 y 2 a 2 ,将 x 4 代入等轴双曲线方程解得 y = 2 16 a ,∵ | AB |=4 3 ,∴ 22 16 a =43 ,解得a =2,∴ C 的实轴长为4,故选C .(11)当 0< x ≤1 2x 时, 4log a x ,则 a 的 取值范围是 (A )(0, 2 ) (B )( 2 2 ,1) (C )(1, 2) (D )( 2,2)2【命题意图】本题主要考查指数函数与对数函数的图像与性质及数形结合思想,是中档题 .0 a 1 【解析】由指数函数与对数函数的图像知 1 1 log 42 a 2,解得2 a ,故选A .2 (12)数列 {n a }满足a 1 ( 1) a 2n 1,则 { a n }的前 60 项和为 n n n (A )3690 (B )3660 (C )1845 (D )1830【命题意图】本题主要考查灵活运用数列知识求数列问题能力,是难题 . 【解析】【法 1】有题设知 a a =1,① a 3 a 2 =3 ② a 4 a 3 =5 ③ a 5 a 4 =7, a 6 a 5 =9, 2 1a a =11, a 8 a 7 =13, a 9 a 8 =15, a 10 a 9=17, a 11 a 10 =19, a 12 a 11 21, 7 6 ⋯ ⋯∴②-①得a a =2,③ +②得 a 4 a 2 =8,同理可得 a 5 a 7 =2, a 6 a 8=24, a 9 a 11 =2, a 10 a 12 =40,⋯ , 1 3∴a a , a 5 a 7 , a 9 a 11 ,⋯ ,是各项均为 2 的常数列, a 2 a 4 , a 6 a 8 , a 10 a 12 ,⋯ 是首项为8, 1 3 公差为16 的等差数列,∴{ 1 a }的前 60 项和为15 2 15 8 16 15 14 n2=1830. 【法 2】可证明:b 1 a 4 1 a 4 2 a 4 3 a 4 4 a 4 3 a 4 2 a 4 2 a 4 16 b 16n n n n nn n n n n1 5 1 4b a a a a 1 0 S 1 0 1 5 1 6 1 8 3 01 1234 1 52二.填空题:本大题共 4 小题,每小题 5 分。
2012年安徽省高考语文试题及答案解析
2012年安徽高考语文卷解析第Ⅰ卷(阅读题共66分)一、(9分)阅读下面的文字,完成1~3题.中国传统文化的形成有两个重要的基础:一是小农自然经济的生产方式;二是国家一体,即由国及国的宗法社会政治结构。
在此基础上产生的必然是以伦理道德为核心的文化价值体系。
因为家族宗法血缘关系本质上是一种人伦关系,这种关系的扩展就形成了社会伦理关系。
家族本位的特点,一方面使得家族伦理关系的调节成为社会生活的基本课题,家族伦理成为个体安身立命的重要基础;另一方面,在家国一体社会政治结构中,整个社会的组织系统是家族--村落——国家,文化精神的生长路向是家族—-宗族-—民族。
家族的中心地位使得伦理在社会生活秩序的建构和调节中具有至关重要的意义.在传统社会中,人们的社会生活是严格按照伦理的秩序进行的,服式举止,洒扫应对,人际交往,都限制在“礼”的范围内,否则便是对“伦理”的僭越。
这种伦理秩序的扩充,便上升为中国封建社会政治体制的基础-—家长制。
家长制的实质就是用家族伦理的机制来进行政治统治,是一种伦理政治。
与此相适应,伦理道德学说在各种文化形态中便处于中心地位。
中国哲学是伦理型的,哲学体系的核心是伦理道德学说,宇宙的本体是伦理道德的形而上的实体,哲学的理性是道德化的实践理性。
因此人们才说,西方哲学家具有哲人的风度,中国哲学家则具有贤人的风度.中国的文学艺术也是以善为价值取向的。
“文以载道”,美善合一,是中国文化审美性格的特征。
即使在科学技术中,伦理道德也是首要的价值取向。
中国传统科技的价值观是以“正德”即有利于德性的提升为第一目标,然后才考虑“利用、厚生”的问题。
因此,中国文化价值系统的特点是强调真、善、美统一,而以善为核心。
中国文化的普遍信念是“人为万物之灵”。
而人之所以能为“万物之灵",就是因为有道德,因而中国文化特别重视人与人之间的“道”,以及遵循这种“道”而形成的“德”。
老子曾从本体论的高度说明“万物莫不尊道而贵德”的道理.“尊道贵德”的基本精神,就是强调人兽之分,以德性作为人兽区分的根本,突显人格尊严。
2012安徽高考语文卷及答案解析
2012年普通高等学校招生全国统一考试(安徽卷)语文本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分,第Ⅰ卷第1页至第6页,第Ⅱ卷第7页至第8页。
全卷满分150分,考试时间150分钟。
考生注意事项:答卷前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2.答选择题(第Ⅰ卷1~6题,和第Ⅱ卷15~17题时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再涂其他答案标号。
3.答是非题(第Ⅰ卷7~14题,第Ⅱ卷18~21题时,必修使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。
4.考试结束,务必将试题卷和答题卡一并上交。
第Ⅰ卷(阅读题共66分)一、(9分)阅读下面的文字,完成1~3题。
中国传统文化的形成有两个重要的基础:一是小农自然经济的生产方式;二是国家一体,即由国及国的宗法社会政治结构。
在此基础上产生的必然是以伦理道德为核心的文化价值体系。
因为家族宗法血缘关系本质上是一种人伦关系,这种关系的扩展就形成了社会伦理关系。
家族本位的特点,一方面使得家族伦理关系的调节成为社会生活的基本课题,家族伦理成为个体安身立命的重要基础;另一方面,在家国一体社会政治结构中,整个社会的组织系统是家族—村落—国家,文化精神的生长路向是家族—宗族——民族。
家族的中心地位使得伦理在社会生活秩序的建构和调节中具有至关重要的意义。
在传统社会中,人们的社会生活是严格按照伦理的秩序进行的,服式举止,洒扫应对,人际交往,都限制在“礼”的范围内,否则便是对“伦理”的僭越。
这种伦理秩序的扩充,便上升为中国封建社会政治体制的基础——家长制。
2012年高考文科数学安徽卷(含详细答案)
数学试卷 第1页(共24页)数学试卷 第2页(共24页)数学试卷 第3页(共24页)绝密★启用前2012年普通高等学校招生全国统一考试(全国新课标卷1)数学(文科)适用地区:海南、宁夏、黑龙江、吉林、山西、河南、新疆、云南、河北、内蒙古注息事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4. 考试结束后,将本试卷和答且卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( )A .A ⫋B B . AB φ=C . A B =D . B ⫋A 2. 复数3i2iz -+=+的共轭复数是 ( )A . 2i +B . 1i --C . 1i -+D . 2i -3. 在一组样本数据11(,)x y ,22(,)x y ,,(,)n n x y (122,,,,n n x x x ≥不全相等)的散点图中,若所有样本点(,)i i x y (1,2,,)i n =都在直线112y x =+上,则这组样本数据的样本相关系数为( )A . 1-B . 0C . 12D . 14. 设1F 、2F 是椭圆E :22221(0)x y a b a b +=>>的左、右焦点,P 为直线32x a =上一点,21F PF △是底角为30°的等腰三角形,则E 的离心率为( )A . 12B . 23C . 34D . 455. 已知正三角形ABC 的顶点(1,1)A ,(1,3)B ,顶点C 在第一象限,若点(,)x y 在ABC △内部,则z x y =-+的取值范围是( )A . (13,2)-B . (0,13)+C . (31,2)-D . (0,2)6. 如果执行右边的程序框图,输入正整数(2)N N ≥和实数1a ,2a ,,N a ,输出A ,B ,则( )A . AB +为1a ,2a ,,N a 的和B .2A B+为1a ,2a ,,N a 的算术平均数C . A 和B 分别是1a ,2a ,,N a 中最大的数和最小的数D . A 和B 分别是1a ,2a ,,N a 中最小的数和最大的数7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A . 6B . 9C . 12D . 188. 平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .6πB . 43πC . 46πD . 63π9. 已知0ω>,0πϕ<<,直线π4x =和5π4x =是函数()sin()f x x ωϕ=+图象的两条相邻的对称轴,则ϕ=( )A .π4B .π3C .π2D .3π410. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||43AB =,则C 的实轴长为( )A .2 B . 22 C . 4D . 8 11. 当102x <≤时,4log xa x <,则a 的取值范围是( )A . 2(0,)2B . 2(,1)2C . (1,2)D . (2,2) 12. 数列{}n a 满足1(1)21nn n a a n ++-=-,则{}n a 的前60项和为( )A . 3 690B . 1 830C . 1 845D . 3 660第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13. 曲线(3ln 1)y x x =+在点(1,1)处的切线方程为_________.14. 等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =_________. 15. 已知向量a ,b 夹角为45,且||1=a ,2|10-=|a b ,则|=|b _________.16. 设函数22(1)sin ()1x xf x x ++=+的最大值为M ,最小值为m ,则M m +=_________.姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------数学试卷 第4页(共24页)数学试卷 第5页(共24页)数学试卷 第6页(共24页)三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,3sin cos c a C c A =-. (Ⅰ)求A ;(Ⅱ)若2a =,ABC △的面积为3,求b ,c .18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10201616151310(ⅰ)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ⅱ)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=,112AC BC AA ==,D 是棱1AA 的中点.(Ⅰ)证明:平面1BDC ⊥平面BDC ;(Ⅱ)平面1BDC 分此棱柱为两部分,求这两部分体积的比.20.(本小题满分12分)设抛物线C :22(0)x py p =>的焦点为F ,准线为l .A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(Ⅰ)若90BFD ∠=,ABD △的面积为42,求p 的值及圆F 的方程;(Ⅱ)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.(本小题满分12分)设函数()e 2xf x ax =--.(Ⅰ)求()f x 的单调区间;(Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,D ,E 分别为ABC △边AB ,AC 的中点,直线DE 交ABC △的外接圆于F ,G 两点.若CF AB ∥,证明: (Ⅰ)CD BC =; (Ⅱ)BCD GBD △∽△.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程是2cos ,3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=.正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为π(2,)3. (Ⅰ)求点A ,B ,C ,D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PA PB PC PD +++的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|||2|f x x a x =++-.(Ⅰ)当3a =-时,求不等式()3f x ≥的解集;(Ⅱ)若()4|f x x -≤|的解集包含[1,2],求a 的取值范围.(1,2]A B=,集合BA B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学精品资料2012年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效.........,在试题卷....、草稿纸上答题无效........。
考试结束后,务必将试题卷和答题卡一并上交。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数z 满足:()2z i i i -=+;则z =( )()A 1i -- ()B 1i -()C i -1+3 ()D i 1-2【解析】选B2()21iz i i i z i i i+-=+⇔=+=- (2)设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则A B = ( )()A (1,2) ()B [1,2] ()C [,)12 ()D (,]12【解析】选D{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=(3)23log 9log 4⨯=( ) ()A 14 ()B 12()C 2 ()D 4【解析】选D23lg9lg 42lg32lg 2log 9log 44lg 2lg3lg 2lg3⨯=⨯=⨯=4. 命题“存在实数x ,,使1x >”的否定是( )()A 对任意实数x , 都有1x > ()B 不存在实数x ,使1x ≤()C 对任意实数x , 都有1x ≤ ()D 存在实数x ,使1x ≤ 【解析】选C存在---任意,1x >---1x ≤5. 公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a =( ) ()A 1 ()B 2 ()C 4 ()D 8 【解析】选A2231177551616421a a a a a a =⇔=⇔==⨯⇔=(6)如图所示,程序框图(算法流程图)的输出结果是( ) ()A 3 ()B 4 ()C 5 ()D 8 【解析】选Bx1 2 4 8 y1234(7)要得到函数cos(21)y x =+的图象,只要将函数cos 2y x =的图象( ) ()A 向左平移1个单位 ()B 向右平移1个单位 ()C 向左平移12个单位 ()D 向右平移12个单位【解析】选Ccos2cos(21)y x y x =→=+左+1,平移12(8)若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的最小值是( )()A 3- ()B 0 ()C 32()D 3 【解析】选A【解析】x y -的取值范围为_____[3,0]-约束条件对应ABC ∆边际及内的区域:3(0,3),(0,),(1,1)2A B C 则[3,0]t x y =-∈-(9))若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( ) ()A [3,1]-- ()B [1,3]- ()C [3,1]- ()D (,3][1,)-∞-+∞ 【解析】选C圆22()2x a y -+=的圆心(,0)C a 到直线10x y -+=的距离为d则1231d r a a ≤=⇔≤+≤⇔-≤≤(10)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( )()A15 ()B 25 ()C 35 ()D 45【解析】选B1个红球,2个白球和3个黑球记为112123,,,,,a b b c c c 从袋中任取两球共有111211121312111213212223121323,;,;,;,;,;,;,;,;,,;,;,;,;,;,a b a b a c a c a c b b b c b c b c b c b c b c c c c c c c 15种;满足两球颜色为一白一黑有6种,概率等于62155= 第II 卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.................. 二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)设向量(1,2),(1,1),(2,)a m b m c m ==+= ,若()a c +⊥b ,则a = _____【解析】a =_____1(3,3),()3(1)3022a c m a cb m m m +=+=++=⇔=-=(12)某几何体的三视图如图所示,该几何体的体积是_____ 【解析】表面积是_____56该几何体是底面是直角梯形,高为4的直四棱柱几何体的的体积是1(25)44562V =⨯+⨯⨯= (13)若函数()|2|f x x a =+的单调递增区间是[3,)+∞,则_____a = 【解析】_____a =6- 由对称性:362aa -=⇔=-(14)过抛物线24y x =的焦点F 的直线交该抛物线于,A B 两点,若||3AF =,则||BF =______ 【解析】||BF =_____32设(0)AFx θθπ∠=<<及BF m =;则点A 到准线:1l x =-的距离为3得:1323cos cos 3θθ=+⇔=又232cos()1cos 2m m m πθθ=+-⇔==+ (15)若四面体ABCD 的三组对棱分别相等,即AB CD =,AC BD =,AD BC =,则________.(写出所有正确结论编号) ①四面体ABCD 每组对棱相互垂直 ②四面体ABCD 每个面的面积相等③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90ο而小于180ο④连接四面体ABCD 每组对棱中点的线段互垂直平分⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长 【解析】正确的是_____②④⑤②四面体ABCD 每个面是全等三角形,面积相等③从四面体ABCD 每个顶点出发的三条棱两两夹角之和等于180ο ④连接四面体ABCD 每组对棱中点构成菱形,线段互垂直平分⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.(16)(本小题满分12分)设ABC ∆的内角,,A B C 所对的边为,,a b c ,且有2sin cos sin cos cos sin B A A C A C =+ (Ⅰ)求角A 的大小;(II ) 若2b =,1c =,D 为BC 的中点,求AD 的长。
【解析】(Ⅰ),,(0,)sin()sin 0A C B A B A C B ππ+=-∈⇒+=>2sin cos sin cos cos sin sin()sin B A A C A C A C B =+=+=1cos 23A A π⇔=⇔=(II )2222222cos 2a b c bc A a b a c B π=+-⇔=⇒=+⇒=在Rt ABD ∆中,AD ===(17)(本小题满分12分)设定义在(0,+∞)上的函数1()(0)f x ax b a ax=++> (Ⅰ)求()f x 的最小值;(II )若曲线()y f x =在点(1,(1))f 处的切线方程为32y x =,求,a b 的值。
【解析】(I )1()2f x ax b b b ax =++≥=+ 当且仅当11()ax x a ==时,()f x 的最小值为2b + (II )由题意得:313(1)22f a b a =⇔++= ①2113()(1)2f x a f a ax a ''=-⇒=-= ②由①②得:2,1a b ==- (18)(本小题满分13分)若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品。
在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。
计算这50件不合格品的直径长与标准值的差(单位:mm ), 将所得数据分组,(Ⅰ)将上面表格中缺少的数据填在答题卡的相应位置;(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率; (Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。
据此估算这批产品中的合格品的件数。
【解析】(I )(Ⅱ)不合格品的直径长与标准值的差落在区间(1,3]内的概率为0.50.20.7+=(Ⅲ)合格品的件数为50002020198050⨯-=(件) 答:(Ⅱ)不合格品的直径长与标准值的差落在区间(1,3]内的概率为0.7 (Ⅲ)合格品的件数为1980(件)(19)(本小题满分12分)K]如图,长方体1111D C B A ABCD -中,底面1111D C B A 是正方形,O 是BD 的中点,E 是棱1AA 上任意一点。
(Ⅰ)证明:BD 1EC ⊥ ;(Ⅱ)如果AB =2,AE =2, 1EC OE ⊥, 求1AA 的长。
【解析】(I )连接AC,11//,,,AE CC E AC C ⇒共面长方体1111D C B A ABCD -中,底面1111D C B A 是正方形,,AC BD EA BD AC EA A BD ⊥⊥=⇒⊥ 面1EACC 1BD EC ⇒⊥(Ⅱ)在矩形11ACC A 中,111OE EC OAE EAC ⊥⇒∆∆ 得:1111AC AE AA AO EA =⇔=⇔=(20)(本小题满分13分)如图,21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1260F AF ο∠=.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知1AF B ∆面积为403,求,a b 的值 【解析】(I )1216022c F AF a c e a ο∠=⇔=⇔== (Ⅱ)设2BF m =;则12BF a m =-在12BF F ∆中,22212122122cos120BF BF F F BF F F ο=+-⨯⨯ 2223(2)5a m m a am m a ⇔-=++⇔=1AF B ∆面积21113sin 60()225210,5,S F F AB a a a a c b ο=⨯⨯⨯⇔⨯⨯+⨯=⇔=== (21)(本小题满分13分)设函数()sin 2xf x x =+的所有正的极小值点从小到大排成的数列为{}n x . (Ⅰ)求数列{}n x ;(Ⅱ)设{}n x 的前n 项和为n S ,求n S sin 。