换热器的选型原则

合集下载

新编换热器选型设计与制造工艺实用全书

新编换热器选型设计与制造工艺实用全书

新编换热器选型设计与制造工艺实用全书一、简介新编换热器选型设计与制造工艺实用全书是一本系统介绍换热器选型设计和制造工艺的专业书籍。

换热器作为化工、电力、冶金等工业领域中必不可少的设备,其选型设计和制造工艺对整个系统的工作效率和安全性有着至关重要的影响。

二、换热器的基本原理换热器是一种能够实现热量传递的设备,其基本原理是利用热传导的方式,将热量从一个介质传递到另一个介质。

在换热器的工作过程中,热量的传递通常是通过传热面和传热介质之间的热量交换完成的。

三、换热器的选型设计1. 选型设计的基本原则在进行换热器的选型设计时,需要考虑多个因素,包括传热系数、介质流动特性、介质的物性参数等。

还需要根据具体的工艺要求和工作环境条件来确定换热器的类型和规格。

2. 选型设计的方法和步骤通过分析换热器的传热性能、流体流动特性和操作条件等数据,可以采用数学模型和计算方法来进行选型设计。

在确定换热器型号和参数时,还需要考虑换热器的牵引力损失、热力性能和结构强度等方面的要求。

四、换热器的制造工艺1. 制造工艺的基本流程换热器的制造工艺包括材料采购、构件加工、装配和检测等多个环节。

在这些环节中,需要严格控制材料和工艺的质量,以确保换热器具有良好的传热性能和稳定的工作状态。

2. 制造工艺的关键技术在换热器的制造过程中,需要掌握焊接、腐蚀防护、热处理和非破坏检测等一系列关键技术。

这些技术的应用能够有效提高换热器的制造质量和使用寿命。

五、个人观点换热器作为重要的热能设备,在工业生产中具有广泛的应用。

选型设计和制造工艺的优化对于提高换热器的性能和使用寿命至关重要。

通过深入了解和掌握这些方面的知识,可以更好地指导工程实践,提高换热器的整体性能和稳定性。

总结新编换热器选型设计与制造工艺实用全书详细介绍了换热器的选型设计和制造工艺的相关知识,涵盖了理论和实践两个方面。

通过学习这本书籍,不仅可以深入了解换热器的工作原理和性能特点,还能够掌握选型设计和制造工艺的具体方法和技术,从而为工程实践提供有力支持。

换热器的选型和设计指南全

换热器的选型和设计指南全

换热器的选型和设计指南全
1.温度和压力要求:在进行换热器选型和设计之前,需要明确设备所
需的温度和压力要求。

根据这些要求,可以选择合适的材料和换热器类型。

2.热交换面积计算:根据需要传递的热量和温度差,可以计算得到所
需的热交换面积。

热交换面积的计算是选择换热器类型和尺寸的基础。

3.材料选择:换热器的材料选择要考虑到介质的化学性质、腐蚀性以
及温度和压力要求。

常用的材料包括不锈钢、铜合金、钛合金等。

4.流体流动方式:流体可以采用并行流、逆流或交叉流方式通过换热器。

在选择流体流动方式时,需要考虑换热效率和压降等因素。

5.清洁程度要求:根据介质的清洁程度,可以选择适当的换热器类型。

尽量选择结构简单、易于清洁的换热器,以保证长期稳定的换热效果。

6.管束和散热面积:根据热量传递的需要,可以选择合适的管束形式
和散热面积。

管束的选择要考虑到介质的流速和传热系数等因素。

7.防堵塞设计:在换热器设计中要考虑到防止堵塞的问题。

可以采用
增加管道直径、添加过滤装置等措施来减少堵塞的风险。

8.设备布局和管道设计:在进行换热器的设计时,需要考虑到设备的
布局和管道的连接。

合理布局可以减少管道阻力和热量损失。

9.热媒选择:热媒的选择要根据介质的性质以及工艺流程的要求来进行。

常用的热媒有水、蒸汽、有机液体等。

10.清洗和维护考虑:在进行换热器设计时,要考虑到清洗和维护的
便捷性。

合理的设计可以降低维护成本和停机时间。

设备选型—换热器

设备选型—换热器

一、换热器类型的选取1.换热器分类:(1)按照使用目的分类:冷却器、加热器、再沸器、冷凝器等;(2)按照结构分类:管壳式、板式、管式等。

2.换热器的类型选择换热器的类型很多,每种型式都有特定的应用范围。

在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。

因此,针对具体情况正确地选择换热器的类型,是很重要的。

换热器选型时需要考虑的因素是多方面的,主要有:1) 热负荷及流量大小2) 流体的性质3) 温度、压力及允许压降的范围4) 对清洗、维修的要求5) 设备结构、材料、尺寸、重量6) 价格、使用安全性和寿命在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、制造条件、密封性、安全性等方面加以考虑。

所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。

针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。

因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。

对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。

3.管壳式换热器管壳式换热器的应用范围很广,适应性很强,还具有容量大、结构简单、造价低廉、清洗方便等优点,因此它在换热器中是最主要的型式。

以下内容均用于管壳式换热器二、工艺条件的选定1.压降较高的压降值导致较高的流速,因此会导致较小的设备和较少的投资,但运行费用会增高,较低的允许压降值则与此相反。

所以,应该在投资和运行费用之间进行一个经济技术比较。

换热器的压降可以参考相关的经验数据。

允许压降必须尽可能加以利用,如果计算压降与允许压降有实质差别,则必须尝试改变设计参数。

在设计中要充分利用允许压降用;而增加一点压降会增加很大的经济性,则应再行设计并考虑增加允许压降的可能性。

换热器的选型和设计指南

换热器的选型和设计指南

换热器的选型和设计指南换热器是一种常见的工业设备,用于传递热量。

在选型和设计换热器时,有几个关键因素需要考虑,包括换热器的类型、工作条件、热介质性质、热量传递要求以及材料选择等。

本文将探讨这些因素,并提供选型和设计换热器的指南。

1.换热器类型选择换热器的类型多种多样,包括壳管式换热器、板式换热器、管束式换热器等。

在选择换热器类型时,需要考虑以下几个方面:-热量传递效率:不同类型的换热器有不同的热量传递效率,需要根据具体的热量传递要求选择。

-空间限制:不同类型的换热器对空间的要求也不同,需要考虑设备安装的实际情况。

-清洁维护:不同类型的换热器在清洁和维护方面也不同,这也需要考虑到。

2.工作条件考虑换热器的工作条件包括温度、压力和流量。

这些条件会对选型和设计产生影响,并需要根据不同的工况选择合适的换热器。

对于高温、高压或高流量的情况,需要选择能够承受这些条件的换热器,并进行合理的设计。

3.热介质性质分析热介质的物理性质对换热器的选型和设计也有影响。

例如,不同的热介质对应不同的热导率、比热容和粘度等物理特性,这些特性会对换热器的热量传递效果产生影响。

需要根据热介质的性质选择合适的换热器和传热方式。

4.热量传递要求根据具体的热量传递要求,选择合适的热量交换方式。

换热器可以采用对流、辐射或传导等方式进行热量传递。

不同的传热方式在热量传递效率和能耗方面也有差异,需要根据具体要求进行选择。

5.材料选择换热器的材料选择对其性能和使用寿命起着重要作用。

一些常用的换热器材料包括不锈钢、铜、铝和钛等。

需要根据热介质的特性、工作条件和预算等因素选择合适的材料。

此外,还需要考虑材料的耐腐蚀性能、尺寸稳定性和可焊性等因素。

在设计换热器时-设计热传导面积:根据热量传递要求和热介质的特性,设计合适的热传导面积,确保达到所需的热传递效果。

-流体力学分析:对流动的流体进行流体力学分析,考虑流体的流速、压降以及流体在换热器中的流动模式等,以确保热量传递效果和系统的稳定性。

板式换热器选型

板式换热器选型

板式换热器怎么选型?板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。

各种板片之间形成薄矩形通道,通过板片进行热量交换。

板式换热器是液—液、液—汽进行热交换的理想设备。

它具有换热效率高、热损失小、结构紧凑轻巧、占地面积小、安装清洗方便、应用广泛、使用寿命长等特点。

选型要点及原则1、流速及取值:①、换热管网流速:指进、出水管路,见流速表。

②、机组总管流速:管径≦ 80时,选1m/s,≧ 100时,见流速表。

③、角孔流速:最大为6m/s (四个进出口)。

④、板间流速:0.4 ~ 0.8m/s(L型0.8,M型0.6,H型0.4)。

2、换热面积:指换热器的面积,单板面积*参与换热片数(总片数减二)①、换热面积的计算:换热面积=换热量/换热系数/对数平均温差/污垢系数②、换热量的计算:换热量=建筑面积*采暖热指标(即热负荷,见指标表)3、介质参数:①、区域供暖:暖气采暖/地热采暖:110/75 ℃ - 50/75②、区域供暖:地热采暖:110/75 ℃- 40/50 ℃③、楼宇空调:风机盘管采暖:110/75 ℃ - 50/60 ℃④、生活热水:洗浴、厨房、洗衣房:70/50 ℃ - 10/55 ℃⑤、泳池供水:游泳池恒温供水:110/70 ℃ - 10/40 ℃⑥、超高层空调制冷:冷水转换:7/11 ℃ - 8/12 ℃板式换热器选型计算的方法及公式现今板式换热器选型计算一般都采用软件选型。

常规手算方法和公式如下:(1) 求热负荷QQ=G.ρ.CP.Δt(2) 求冷热流体进出口温度t2=t1+ Q /G .ρ.CP(3) 冷热流体流量G=Q / ρ.CP .(t2-t1 )(4) 求平均温度差ΔtmΔtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2-t1)或Δtm=(T1-t2)+(T2-t1)/2 (5) 选择板型若所有的板型选择完,则进行结果分析。

(6) 由K值范围,计算板片数范围Nmin,NmaxNmin = Q / Kmax .Δtm .F P .βNmax = Q / Kmin .Δtm .F P .β(7) 取板片数N(Nmin≤N≤Nmax )若N已达Nmax,做(5)。

换热器 选型 计算

换热器 选型 计算

换热器选型计算
1. 工艺条件:确定换热器的工艺条件,包括流体的进出口温度、流量、压力等。

这些参数将影响换热器的类型、尺寸和材料选择。

2. 热负荷计算:计算换热器的热负荷,即需要传递的热量。

这可以通过能量平衡方程或热传递方程来确定。

3. 换热器类型选择:根据工艺条件和热负荷,选择适合的换热器类型,如管壳式换热器、板式换热器、螺旋板式换热器等。

不同类型的换热器具有不同的传热特性和适用范围。

4. 传热系数计算:根据换热器的类型和流体的物理性质,计算传热系数。

传热系数是衡量换热器换热性能的重要参数。

5. 对数平均温差(LMTD)计算:计算流体在换热器中的对数平均温差。

LMTD 是换热的驱动力,它影响换热器的换热效率。

6. 换热面积计算:根据热负荷、传热系数和 LMTD,计算所需的换热面积。

换热面积是选择换热器尺寸的关键因素之一。

7. 压降计算:计算流体在换热器内的压降,以确保在设计流量下的可接受压降范围内。

8. 材料选择:根据流体的腐蚀性、温度和压力等因素,选择适合的换热器材料,以确保设备的耐腐蚀性和可靠性。

9. 设备布局和尺寸:根据换热面积和换热器类型,确定换热器的设备布局和尺寸。

10. 设计验证和优化:进行设计验证,检查换热器是否满足工艺要求和性能指标。

如有需要,进行优化以提高换热效率或降低成本。

需要注意的是,换热器选型计算是一个复杂的过程,可能需要借助专业的工程软件和工具来进行。

此外,还应考虑安全因素、维护要求和可操作性等因素。

最好由经验丰富的工程师或技术团队来进行换热器的选型计算,以确保设备的性能和可靠性。

板式换热器的选型及应用

板式换热器的选型及应用

板式换热器的选型及应用板式换热器是一种常用的换热设备,它具有结构紧凑、换热效率高、占地面积小等优点,在许多行业中得到广泛应用。

本文将介绍板式换热器的选型及应用。

首先介绍板式换热器的选型。

在选择板式换热器时,需要考虑以下几个因素:1.工艺参数:包括流体温度、压力、流量等参数。

根据工艺参数确定板式换热器的换热面积、板数等技术参数。

2.介质特性:包括介质的黏度、腐蚀性等特性。

根据介质特性选择适合的板材材料和密封材料,以确保换热器的使用寿命和稳定性。

3.换热效果要求:根据换热效果要求选择适合的板式换热器类型,如传统的残余热回收型换热器、高效节能型换热器等。

4.工艺布局:考虑工艺布局的限制,选择适合的板式换热器型号和规格。

其次介绍板式换热器的应用。

板式换热器广泛应用于石油化工、化学工程、食品加工、制药工业等各个领域。

以下是板式换热器的几个典型应用:1.冷却和加热:板式换热器可用于冷却和加热流体,如冷却剂回收、加热介质供给等。

2.热回收:板式换热器可用于回收余热,提高能源利用效率,降低生产成本。

3.蒸发和冷凝:板式换热器可用于蒸发和冷凝过程,如蒸发器、冷凝器等。

4.气体处理:板式换热器可用于气体处理过程中的热交换,如空气预热器、烟气冷凝器等。

5.石油和化工:板式换热器在石油和化工工业中广泛应用,如原油加热、石化产品冷却等。

最后总结一下,板式换热器是一种常用的高效换热设备,选型时需要考虑工艺参数、介质特性、换热效果要求和工艺布局等因素。

它在石油化工、化学工程、食品加工、制药工业等多个领域有广泛的应用,包括冷却和加热、热回收、蒸发和冷凝、气体处理以及石油和化工等。

希望这些信息能对选择和应用板式换热器有所帮助。

管壳式换热器选型标准

管壳式换热器选型标准

管壳式换热器选型标准一、工艺参数在选择管壳式换热器时,首先要明确工艺参数,包括热负荷、冷流体和热流体的流量和温度、换热器材质以及工艺要求等。

这些参数将直接影响换热器的设计、选材和制造。

二、物料特性了解物料特性对于选择合适的管壳式换热器至关重要。

物料特性包括密度、粘度、腐蚀性、相变性质(如沸点、熔点等)等,这些特性将决定换热器的设计、结构、材料选择以及操作方式。

三、设计条件设计条件包括工作压力、温度、密封性要求、结构设计要求等。

在选择管壳式换热器时,需要考虑这些条件,以确保换热器能够满足实际需求,并保证操作安全可靠。

四、结构形式管壳式换热器的结构形式多种多样,包括固定管板式、浮头式、U形管式等。

选择合适的结构形式需要考虑实际工况、工艺要求、物料特性和设计条件等因素。

每种结构形式都有其优点和缺点,需要根据具体情况进行选择。

五、材料选择根据物料特性和设计条件,选择合适的换热器材料。

常用的材料包括碳钢、不锈钢、合金钢等。

在选择材料时,需要考虑腐蚀性、耐高温性能、抗低温性能等因素,以确保换热器的长期稳定运行。

六、传热计算传热计算是选择管壳式换热器的重要环节。

根据工艺参数和物料特性,进行传热计算,确定传热面积和传热系数等参数。

传热计算将直接影响换热器的设计、结构和材料选择。

七、流体阻力计算流体阻力计算是选择管壳式换热器的重要环节之一。

对于不同的流体介质,需要计算其流经换热器时的阻力损失,以确定流体泵或风机的型号和规格。

流体阻力计算将直接影响换热器的设计、结构和材料选择。

八、校核与优化在完成初步设计和选型后,需要对换热器进行校核和优化,以确保其满足工艺要求和设计条件。

校核主要包括强度校核、密封性校核等;优化主要包括结构优化、材料优化等。

通过校核与优化,可以提高换热器的性能和可靠性,降低成本和维护成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

换热器选型时需要考虑的因素很多,主要是流体的性质;压力、温度及允许压降的范围;对清洗、维修的要求;材料价格;使用寿命等。

目前应用^广泛的是列管式换热器,常用的分固定管板式和浮头式两种。

一般要根据介质的性质、流量、腐蚀性、允许压降、操作温度与压力、结垢情况和检修清洗等要素决定选用列管换热器的型式。

从经济角度看,只要工艺条件允许,应该优先选用固定管板式换热器。

但遇到以下两种情况时,应选用浮头式换热器。

①壳壁与管壁的温差超过70℃;壁温相差50~70℃。

而壳程流体压力大于0.6MPa时,不宜采用有波形膨胀节的固定管板式换热器。

②壳程流体易结垢或腐蚀性强时不能采用固定管板式换热器。

换热管规格选择
①管子的外形:列管换热器的管子外形有光滑管和螺纹管两种。

一般按光滑管设计。

当壳程膜系数低,采取其他措施效果不显著时,可选用螺纹管,它能强化壳程的传热效果,减少结垢的影响。

②管子的排列方式:相同壳径时,采用正三角形排列要比正方形排列可多排布管子,使单位传热面积的金属耗量降低。

一般壳程流体不易结垢或可以进行化学清洗的场合下,推荐用正三角形排列。

必须进行机械清洗的场合,则采用正方形排列。

③管子直径:管径越小换热器越紧凑、越便宜。

但管径越小换热器压降越大。

为了满足允许的压力降一般选用Ф19mm的管子。

对于易结垢的物料,为方便清洗,采用外径为25mm的管子。

对于有气液两相流的工艺物流,一般选用较大的管径。

直径小的管子可以承受更大的压力,
而管壁较薄,有利传热;相同的壳径,可以排较多的小管子,使传热面积增大,单位传热面积的金属耗量降低。

所以,在管程结垢不是很严重,又允许压力降较高的情况下,采用Φ19mm×2mm的管子是合理的。

④管长:无相变换热时,管子较长,传热系数增加。

在相同传热面积时,采用长管管程数较少,压力降小,而且每平方米传热面积的性价比也高。

但是,管子过长给制造带来困难。

壳径较大的换热器采用较长的管子可降低单位传热面积的金属耗量,更为经济。

因此,一般选用管长4~6m。

对于大面积或无相变的换热器可以选用8~9m的管长。

管心距:管心距小、设备紧凑,但将引起管板增厚、清洁不便、壳程压降增大,一般选用范围为管外径的1.25~1.5倍。

相关文档
最新文档