2020年秋人教版高中物理必修二综合测试含答案

合集下载

2020-2021学年新教材物理人教版必修第二册章末综合测评4 机械能守恒定律 Word版含解析

2020-2021学年新教材物理人教版必修第二册章末综合测评4 机械能守恒定律 Word版含解析

章末综合测评(四)机械能守恒定律(时间:90分钟分值:100分)1.(4分)关于功和功率的计算,下列说法中正确的是()A.用W=Fx cos θ可以计算变力做功B.用W合=E k2-E k1可以计算变力做功C.用W=Pt只能计算恒力做功D.用P=错误!可以计算瞬时功率B [W=Fx cos θ是恒力做功公式,不可以计算变力做功,故A错误;动能定理W合=E k2-E k1既可以计算恒力做功,也可以计算变力做功,故B正确;用W=Pt计算的是恒定功率下,外力做的功,此力可以是恒力,也可以是变力,C错误;用P=错误!计算的是平均功率,不能计算瞬时功率,D错误.]2.(4分) 如图所示,在离地面高为H的地方将质量为m的小球以初速度v0竖直上抛,取抛出位置所在的水平面为参考平面,则小球在最高点和落地处重力势能分别为( )A.mg错误!,0 B.错误!mv错误!,-mgHC.错误!mv错误!,mgH D.错误!mv错误!,mgH+错误!mv错误!B [小球能上升到的最高点与抛出点相距h=错误!,所以在最高点时具有重力势能E p1=mgh=错误!mv错误!。

落地时小球的位置在参考平面下方H处,所以落地时小球具有重力势能E p2=-mgH。

故B 项正确。

]3.(4分)如图所示,一质量为m1且足够长的木板放在光滑斜面上,木板的上端用细绳拴在斜面上,木板上有一只质量为m2的小猫。

剪断细绳,木板开始下滑,同时小猫沿木板向上爬。

小猫在向上爬的过程中,相对于地面的高度不变,忽略空气阻力。

细绳剪断后,小猫做功的功率P与时间t的关系图像是图中的()A B C DB [由题意可知,当小猫相对地面静止不动时,对小猫受力分析可知,小猫受木板的沿板面向上摩擦力F f=m2g sin θ(θ为斜面倾角),摩擦力F f恒定;对木板受力分析可知,木板沿斜面加速下滑,F f+m1g sin θ=m1a,加速度恒定;经过时间t,木板速度v=at,因此小猫做功功率P=F f v=F f at,可知P与时间t成正比,对比各选项中图像可知选项B正确。

高中物理(新人教版)必修第二册课后习题:第五章综合训练(课后习题)【含答案及解析】

高中物理(新人教版)必修第二册课后习题:第五章综合训练(课后习题)【含答案及解析】

第五章综合训练一、单项选择题(本题共7小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.关于互成角度的两个初速度为零的匀变速直线运动的合运动,下述说法正确的是()A.一定是直线运动B.一定是曲线运动C.可能是直线运动,也可能是曲线运动D.以上都不对,即物体受到两个互成角度的恒力作用,做初速度为零的匀加速直线运动,故A选项正确。

2.影视剧中的人物腾空、飞跃及空中武打镜头常常要通过吊钢丝(即吊威亚)来实现。

若某次拍摄时,将钢丝绳的一端通过特殊材料的设备系在演员身上,另一端跨过定滑轮固定在大型起重设备上。

起重设备在将演员竖直加速吊起的同时,沿水平方向匀速移动,使演员从地面“飞跃”至空中。

不计空气阻力,假定钢丝绳始终保持竖直,则在此过程中,下列判断正确的是()A.演员做匀变速曲线运动B.演员做直线运动C.演员的速度越来越大D.钢丝绳的拉力等于演员的重力,演员在水平方向做匀速运动,竖直方向做加速运动,则可知合力与速度方向不在同一直线上,故演员做曲线运动,但合力不一定是定值,即加速度不一定是定值,则演员不一定做匀变速曲线运动,故选项A、B错误;根据题意,演员水平方向的速度不变,但是竖直方向的速度增大,故合速度增大,故选项C正确;由于演员在竖直方向做加速运动,由牛顿第二定律可知,钢丝绳的拉力大于演员的重力,故选项D错误。

3.(2021山东安丘期中)如图所示为足球球门,球门宽为L。

一个球员在球门中心正前方距离球门s处高高跃起,将足球顶入球门的左下方死角(图中P点)。

球员顶球点的高度为h。

足球做平抛运动(足球可看成质点,忽略空气阻力),则()A.足球位移的大小x=√L 24+s2B.足球初速度的大小v0=√g2ℎ(L24+s2)C.足球末速度的大小v=√g2ℎ(L24+s2)+4gℎD.足球初速度的方向与球门线夹角的正切值tan θ=L2s,竖直方向的位移为h,水平方向的位移为d=√s2+(L2)2,足球的位移大小为x=√ℎ2+s2+L 24,A项错误;足球运动的时间t=√2ℎg,足球的初速度大小为v0=dt=√g2ℎ(L24+s2),B项正确;足球末速度的大小v=√v02+v y2=√g2ℎ(L24+s2)+2gℎ,C项错误;足球初速度的方向与球门线夹角的正切值为tan θ=s L2=2sL,D项错误。

人教版高中物理必修二全册综合测试试题(含答案)

人教版高中物理必修二全册综合测试试题(含答案)

新人教版必修2全册综合测试一、不定项选择题1、下面说法中正确的是:()A、物体在恒力作用下不可能做曲线运动。

B、物体在变力作用下有可能做曲线运动。

C、做曲线运动的物体,其速度方向与加速度的方向不在同一直线上。

D、物体在变力作用下不可能做曲线运动。

2、一飞机以150m/s的速度在高空某一水平面上做匀速直线运动,相隔1s先后从飞机上落下A、B两个物体,不计空气阻力,在运动过程中它们所在的位置关系是:()A、A在B之前150m处。

B、A在B之后150m处。

C、正下方4.9m处。

D、A在B的正下方且与B的距离随时间而增大。

3、下列说法正确的是:()A、做匀速圆周运动的物体的加速度恒定。

B、做匀速圆周运动的物体所受的合外力为零。

C、做匀速圆周运动的物体的速度大小是不变的。

D、做匀速圆周运动的物体处于平衡状态。

4、如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O,现给球一初速度,使球和杆一起绕轴在竖直面内转动,不计空气阻力,用F表示球到达最高点时杆对球的作用力,则F()A、一定是拉力。

B、一定是推力C、一定等于0D、可能是拉力,可能是推力,也可能等于05、某个行星质量是地球质量的一半,半径也是地球半径的一半,则一个物体在此行星上的重力是地球上重力的()A、0.25倍B、0.5倍C、4倍D、2倍6、关于地球同步卫星,下列说法中正确的是()A、由于它相对地球静止,所以它处于平衡状态B、它的加速度一定小于9.8m/2sC、它的速度小于7.9km/sD、它的周期为一天,且轨道平面与赤道平面重合7、行星A和B都是均匀球体,其质量之比是1:3,半径之比是1:3,它们分别有卫星a和b,轨道接近各自行星表面,则两颗卫星a和b的周期之比为()A、1:27B、1:9C、1:3D、3:18、关于功率,下列说法中正确的是:()A、由P=W/t可知,做功越多,功率越大。

B、由P=W/t可知,单位时间内做功越多,功率越大。

C、由P=Fv可知,做功的力越大,功率就越大。

2020年高中物理必修二综合测试2(附答案)

2020年高中物理必修二综合测试2(附答案)

2020年⾼中物理必修⼆综合测试2(附答案)2020年⾼中物理必修⼆综合测试2(附答案)命题⼈:学⽣姓名:测试成绩:⼀、单选题:1、下列说法正确的是()A .经典⼒学能够说明微观粒⼦的规律性B .经典⼒学适⽤于宏观物体的低速运动问题,不适⽤于⾼速运动的物体C .相对论与量⼦⼒学的出现,说明经典⼒学已失去意义D .对于宏观物体的⾼速运动问题,经典⼒学仍适⽤ 2、下列情况中,物体机械能⼀定守恒的是()A .物体所受合外⼒为零B .物体不受摩擦⼒C .物体受到重⼒和摩擦⼒D .物体只受重⼒ 3、关于功的概念,下述说法中正确的是()A .物体受⼒越⼤,做功越多B .物体受⼒越⼤,移动距离越⼤,做功越多C .功是能量转化的量度D .由于功有正负,所以功是⽮量 4、做曲线运动的物体,在运动过程中⼀定变化的物理量是() A .速率 B .速度 C .加速度 D .合外⼒5、⼀名跳伞运动员从距地⾯⼤约2700m 的飞机上跳下,假设没有风的时候,落到地⾯所⽤的时间为t ,⽽实际上在下落过程中受到了⽔平⽅向的风的影响,则实际下落所⽤时间() A .仍为t B .⼤于t C .⼩于t D .⽆法确定6、质点从同⼀⾼度⽔平抛出,不计空⽓阻⼒,下列说法正确的是() A .质量越⼤,⽔平位移越⼤ B .初速度越⼤,落地时竖直⽅向速度越⼤ C .初速度越⼤,空中运动时间越长 D .初速度越⼤,落地速度越⼤7、⼀辆汽车通过拱形桥顶点时速度为10m/s ,车对桥顶的压⼒为车重的43,如果要使汽车在桥顶时对桥⾯没有压⼒,车速⾄少为()A .15m/sB .20m/sC .25m/sD .30m/s8、做匀加速直线运动的物体,速度从0增⼤到v ,动能增加了1K E ?,速度从v 增⼤到2v ,动能增加了2K E ?,则两次动能增加量之⽐1K E ?:2K E ?为()A .1:1B .1:2C .1:3D .1:49、物体⾃由下落过程中,速度由零增加到5m/s 和由5m/s 增加到10m/s 的两端时间内,重⼒做功的平均功率之⽐为()A .1:1B .1:2C .1:3D .1:410、某⼈在⾼h 处抛出⼀个质量为m 的物体,不计空⽓阻⼒,物体落地时速度为v ,则⼈对物体所做的功为()A .mgh B.221mv C.mgh mv +221 D.mgh mv -22111、质量为m ,速度为v 的⼩球与墙壁垂直相碰后以原速率返回,则⼩球动量的变化量为(以原来速度⽅向为正⽅向)()A .0B .mvC .2mvD .-2mv12、两个物体在光滑⽔平⾯上发⽣碰撞后都停了下来,这两个物体在碰撞前()A .质量⼀定相等B .速度⼤⼩⼀定相等C .动量⼤⼩⼀定相等D .动能⼀定相等 13、跳⾼时在横杆的后下⽅要放置厚海绵垫,其原因是()A .延长⼈体与垫的接触时间,使⼈受到的冲⼒减⼩B .减少⼈体与垫的接触时间,使⼈受到的冲⼒减⼩C .延长⼈体与垫的接触时间,使⼈受到的冲⼒增⼤D .减少⼈体与垫的接触时间,使⼈受到的冲⼒增⼤ 14、⼀颗⼩⾏星绕太阳做匀速圆周运动的轨道半径是地球公转半径的4倍,则这颗⼩⾏星的运⾏速率是地球运⾏速率的()A .4倍B .2倍C .21倍 D .16倍 15、天⽂学家发现了某恒星有⼀颗⾏星在圆形轨道上绕其运动,并测出了⾏星的轨道半径和运⾏周期,由此可以推算出()A .⾏星的质量B .⾏星的半径C .恒星的质量D .恒星的半径⼆、多选题:1、甲、⼄两个做匀速圆周运动的质点,它们的加速度之⽐为2:1,线速度之⽐为2:3,那么下列说法中正确的是() A .它们的半径之⽐为2:9 B.它们的半径之⽐为1:2 C .它们的周期之⽐为2:3 D.它们的周期之⽐为1:32、⼀个物体分别从⾼度相同、倾⾓不同的光滑斜⾯顶端由静⽌释放滑⾄底端,在这些过程中() A .增加的动能相同 B .重⼒做功相同 C .下滑加速度相同 D .下滑时间相同3、竖直向上抛出的物体,运动中受到空⽓阻⼒作⽤,则() A .物体上升过程中机械能减⼩ B .物体上升过程中机械能增加 C .物体下落过程中机械能减⼩ D .物体下落过程中机械能增加4、两个物体在粗糙⽔平⾯上⾃由滑⾏直⾄停⽌,如果它们的初动能相等,与⽔平地⾯间的动摩擦因数相等,则下列说法正确的是()A .质量⼤的滑⾏距离长B .质量⼩的滑⾏距离长C .质量⼤的滑⾏时间长 D.质量⼩的滑⾏时间长 5、下列说法中正确的是()A .物体的速度发⽣变化,其动能⼀定发⽣变化B .物体的速度发⽣变化,其动量⼀定发⽣变化C .物体的动量发⽣变化,其动能⼀定发⽣变化D .物体的动能发⽣变化,其动量⼀定发⽣变化三、填空题:1、如图所⽰,摩擦轮A 和B 通过中介轮C 进⾏传动,A 为主动轮,A 的半径为20cm ,B 的半径为10cm,A、B两轮边缘上的点⾓速度之⽐为,向⼼加速度之⽐为2、两颗⾏星的质量之⽐为2:1,它们绕太阳运动的轨道半径之⽐为4:1,则它们的周期之⽐为3、物体沿斜⾯匀速下滑,在这个过程中物体的动能,重⼒势能,机械能(填“增加”、“不变”、“减少”)4、⽤200N的拉⼒将地⾯上的⼀个质量为10kg的物体提升10m,不计空⽓阻⼒,g=10m/s2,拉⼒对物体所做的功是 J,物体被提⾼后具有的重⼒势能是 J(以地⾯为零势能参考⾯),物体被提⾼后具有的动能是 J5、⼀个质量是0.5kg的⼩球,从距地⾯⾼5m处开始做⾃由落体运动,与地⾯碰撞后,竖直向上跳起的最⼤⾼度为4m,⼩球与地⾯碰撞过程中损失的机械能为 J,(不计空⽓阻⼒,g=10m/s2)6、⼀质量为100g的⼩球从0.8m⾼处⾃由下落到⼀厚软垫上,若从⼩球接触厚软垫到⼩球陷到最低点经历了0.2s,不计空⽓阻⼒,g=10m/s2,则软垫对⼩球的平均作⽤⼒⼤⼩为 N四、实验题:1、在做“研究平抛物体运动”的实验中,引起实验误差的原因是()①安装斜槽时,斜槽末端切线⽅向不⽔平②确定Oy轴时,没有⽤重锤线③斜槽不是绝对光滑的,有⼀定摩擦④空⽓阻⼒对⼩球运动有较⼤影响A.①③ B.①②④ C.③④ D.②④2、在研究平抛运动实验中,⽤⼀张印有⼩⽅格的纸记录轨迹,⼩⽅格边长L=1.25cm,若⼩球在平抛运动途中的⼏个位置如图中a、b、c、d所⽰,则⼩球平抛初速度的计算式为(⽤L、g表⽰),其值是(g=9.8m/s2)3、在“验证机械能守恒定律”的⼀次实验中,质量m=1kg的重物⾃由下落,在纸带上打出⼀系列的点,如图所⽰(相邻记数点时间间隔为0.02s),那么:(1)纸带的________(⽤字母表⽰)端与重物相连;(2)打点计时器打下计数点B时,物体的速度v B=________;(3)从起点P到打下计数点B的过程中物体的重⼒势能减少量△E P=________,此过程中物体动能的增加量△E k=________;(g取9.8m/s2,保留两位⼩数)(4)通过计算,数值上△E P___△E k(填“<”、“>”或“=”),这是因为____________;(5)实验的结论是:___________________________________________________________.五、计算题:1、A、B两⼩球同时从距地⾯⾼度为h=15m处的同⼀点抛出,初速度⼤⼩均为10m/s,A球竖直向下抛出,B球⽔平抛出,空⽓阻⼒不计,g=10m/s2,求:(1)A球经多长时间落地?(2)A球落地时,A、B两球间的距离是多少?2、质量是25kg的⼩孩坐在质量为5kg的秋千板上,秋千板离栓绳⼦的横梁2.5m,如果秋千板摆动经过最低点的速度为3m/s,这时秋千板所受压⼒是多⼤?每根绳⼦对秋千板的拉⼒是多⼤?(g=10m/s2)abcd3、位于竖直平⾯内的光滑轨道,有⼀段斜的直轨道和与之相切的圆形轨道连接,圆形轨道的半径为R,⼀质量为m的⼩物块从斜轨道上某处由静⽌开始下滑,然后沿圆轨道运动,(1)要求物块能通过圆轨道最⾼点,求物块初始位置相对圆形轨道底部的⾼度h;(2)若要求⼩物块在该轨道最⾼点与轨道间的压⼒不超过5mg,求物块初始位置相对圆形轨道底部的⾼度H4、⼀颗质量为0.6kg的⼿榴弹以10m/s的速度⽔平飞⾏,设它炸裂成两块后,质量为0.2kg的⼩块速度为100m/s,其⽅向与原飞⾏⽅向相同,求:(1)另⼀块速度的⼤⼩和⽅向(2)⼿榴弹爆炸时有多少化学能转化成机械能5、假设在半径为R的某天体上发射⼀颗该天体的卫星,若它贴近该天体的表⾯做匀速圆周运动的周期为T1,已知万有引⼒常量为G,则该天体的密度是多少?若这颗卫星距该天体表⾯的⾼度为h,测得在该处做圆周运动的周期为T2,则该天体的密度⼜是多少?答案⼀、单选题(每题2分)1B 2D 3C 4B 5A 6D 7B 8C 9C 10D 11D 12C 13A 14C 15C⼆、多选题(每题3分) 1AD 2AB 3AC 4BD 5BD三、填空题(每空1分)1、1:2 1:22、8:13、不变减少减少4、2000 1000 10005、56、3四、实验题2 0.7m/s(每空2分)1、B(2分)2、gl3、(1)P (2)0.98m/s (3)0.49J 0.48J (4)> 有机械能损失(5)在误差允许范围内,物体减少的重⼒势能等于增加的动能(每空1分)。

新版人教版高中物理必修第二册全册测试题(附答案)

新版人教版高中物理必修第二册全册测试题(附答案)

A.小球运动的线速度越来越大 B.小球运动的角速度不变 C.小球运动的加速度越来越大 D.小球所受的合外力不变 5.船在河中行驶,设船受到的阻力与速度大小成正比。当船以速度 v 匀速时,发动机功率为
第1页共7页
P,当船以 3v 匀速时,发动机的功率为( ) A.P B.6P C.9P D.3P
6.质量为 的物体,以初速度 由固定的光滑斜面的底端沿斜面向上滑动,在滑动过程中,
第3页共7页
A.卫星在三个轨道运动的周期关系是:T1< T3< T2 B.卫星在三个轨道运动的周期关系是:T1< T2< T3 C.卫星在轨道 1 上经过 Q 点时的速度小于它在轨道 2 上经过 P 点时的速度 D.卫星在三个轨道运动的机械能关系是:E1< E2 < E 3 13.关于平抛运动,下列说法正确的是( ) A.平抛运动是匀变速运动 B.平抛运动是变加速运动 C.任意两个时刻的加速度相同 D.任意两段相等时间内的位移变化量相同 14.两质量均为 1kg 的小球 1、2(均视为质点)用长为 1m 的水平轻质杆相连,置于光滑水平 面上,且小球 1 恰好与光滑竖直墙壁接触,如图所示。现用向上的力 F 拉动小球 1,使小球 1 贴着竖直墙壁上升,小球 2 沿水平面向左运动,直到杆与水平面的夹角θ=53°,此时小球 2 的 速度大小为 m/s。取 sin53°=0.8,cos53°=0.6,重加速度大小 g=10m/s2。下列分析正确的是( )
A.n B.n2 C. -1 D. -1
10.如图所示,有一固定的且内壁光滑的半球面,球心为 ,最低点为 ,有两个可视为质点
且质量相同的小球 和 ,在球面内壁两个高度不同的水平面内做匀速圆周运动, 球的轨迹
平面高于 球的轨迹平面, 、 两球与 点的连线与竖直线 间的夹角分别为

人教版高中物理必修二综合测试含答案及详细解析

人教版高中物理必修二综合测试含答案及详细解析

绝密★启用前2020年秋人教版高中物理必修二综合测试本试卷共100分,考试时间90分钟。

一、单选题(共10小题,每小题4.0分,共40分)1.我国的人造卫星围绕地球的运动,有近地点和远地点,由开普勒定律可知卫星在远地点运动速率比近地点的运动速率小,如果近地点距地心距离为R1,远地点距地心距离为R2,则该卫星在远地点运动速率和近地点运动的速率之比为()A.B.C.D.2.爱尔兰作家萧伯纳曾诙谐的说“科学总是从正确走向错误”,像一切科学一样,经典力学也有其局限性,是“一部未完成的交响曲”,经典力学能适用于下列哪些情况()A.研究原子中电子的运动B.研究“嫦娥一号”飞船的高速发射C.研究地球绕太阳的运动D.研究强引力3.如图所示,长0.5 m的轻质细杆,其一端固定于O点,另一端固定有质量为1 kg的小球.小球在竖直平面内绕O点做圆周运动.已知小球通过最高点时速度大小为2 m/s,运动过程中小球所受空气阻力忽略不计,g取10 m/s2.关于小球通过最高点时杆对小球的作用力,下列说法中正确的是()A.杆对小球施加向上的支持力,大小为2 NB.杆对小球施加向上的支持力,大小为18 NC.杆对小球施加向下的拉力,大小为2 ND.杆对小球施加向下的拉力,大小为18 N4.关于功率的以下说法中正确的是()A.根据P=可知,机器做功越多,其功率就越大B.根据P=Fv可知,汽车牵引力一定与速度成反比C.对于交通工具而言,由P=Fv只能计算出牵引力的瞬时功率D.根据P=Fv可知,发动机功率一定时,交通工具的牵引力与运动速度成反比.5.欧盟和中国联合开发的伽利略项目建立起了伽利略系统(全球卫星导航定位系统).伽利略系统由27颗运行卫星和3颗预备卫星组成,可以覆盖全球,现已投入使用.卫星的导航高度为2.4×104km,倾角为56°,分布在3个轨道上,每个轨道面部署9颗工作卫星和1颗在轨预备卫星,当某颗工作卫星出现故障时可及时顶替工作.若某颗预备卫星处在略低于工作卫星的轨道上,以下说法中正确的是()A.预备卫星的周期大于工作卫星的周期,速度大于工作卫星的速度,向心加速度大于工作卫星的向心加速度B.工作卫星的周期小于同步卫星的周期,速度大于同步卫星的速度,向心加速度大于同步卫星的向心加速度C.为了使该颗预备卫星进入工作卫星的轨道,应考虑启动火箭发动机向前喷气,通过反冲作用从较低轨道上使卫星加速D.三个轨道平面只有一个过地心,另外两个轨道平面分别只在北半球和南半球6.若用假想的引力场线描绘质量相等的两星球之间的引力场分布,使其他星球在该引力场中任意一点所受引力的方向沿该点引力场线的切线上并指向箭头方向.则描述该引力场的引力场线分布图是()A.B.C.D.7.做曲线运动的物体,在运动过程中,一定变化的物理量是()A.速率B.速度C.加速度D.合外力8.关于做匀速圆周运动的物体,下列说法正确的是()A.因为在相等的时间内通过的圆弧长度相等,所以线速度恒定B.如果物体在0.1 s内转过30°角,则角速度为300 rad/sC.若半径r一定,则线速度与角速度成反比D.若半径为r,周期为T,则线速度为v=9.我国自主研发的北斗卫星导航系统中有数颗地球同步轨道卫星(其周期与地球自转周期相同),A 是其中一颗.物体B静止于赤道上随地球自转.分别把A、B的角速度记为ωA、ωB,线速度记为v A、v B,加速度记为a A、a B,所受地球万有引力记为F A、F B,则()A.ωA>ωBB.v A<v BC.a A>a BD.F A<F B10.我国成功发射“天宫二号”空间实验室,之后发射了“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接二、多选题(共4小题,每小题5.0分,共20分)11.(多选)如图所示,物体在恒力F作用下沿曲线从点A运动到点B,这时突然使它所受的力反向,但大小不变,即由F变为-F.在此力的作用下,物体以后的运动情况,下列说法中正确的是()A.物体不可能沿曲线Ba运动B.物体不可能沿直线Bb运动C.物体不可能沿曲线Bc运动D.物体不可能沿原曲线BA返回12.(多选)某物体同时受到三个力作用而做匀减速直线运动,其中F1与加速度a的方向相同,F2与速度v的方向相同,F3与速度v的方向相反,则()A.F1对物体做正功B.F2对物体做正功C.F3对物体做正功D.合外力对物体做负功13.(多选)一物体做变速运动时,下列说法正确的有()A.合外力一定对物体做功,使物体动能改变B.物体所受合外力一定不为零C.合外力一定对物体做功,但物体动能可能不变D.物体加速度一定不为零14.(多选)如图所示,长为l的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,关于最高点的速度v,下列说法正确的是()A.v的极小值为B.v由零逐渐增大,向心力也增大C.当v由逐渐增大时,杆对小球的弹力逐渐增大D.当v由逐渐减小时,杆对小球的弹力逐渐增大三、实验题(共1小题,每小题10.0分,共10分)15.某同学在“验证机械能守恒定律”时按如图甲所示安装好实验装置,正确进行实验操作,从打出的纸带中选出符合要求的纸带,如图乙所示.图中O点为打点起始点,且速度为零.甲乙(1)选取纸带上打出的连续点A、B、C,……,测出其中E、F、G点距起始点O的距离分别为h1、h2、h3,已知重锤质量为m,当地重力加速度为g,打点计时器打点周期为T.为验证此实验过程中机械能是否守恒,需要计算出从打下O点到打下F点的过程中,重锤重力势能的减少量ΔE p=________,动能的增加量ΔE k=________(用题中所给字母表示).(2)以各点到起始点的距离h为横坐标,以各点速度的平方v2为纵坐标建立直角坐标系,用实验测得的数据绘出v2-h图线,如图丙所示,该图象说明了________.丙(3)从v2-h图线求得重锤下落的加速度g=________ m/s2.(结果保留三位有效数字)四、计算题(共3小题,每小题10.0分,共30分)16.盘在地面上的一根不均匀的金属链重30 N,长1 m,从甲端缓慢提至乙端恰好离地时需做功10 J.如果改从乙端缓慢提至甲端恰好离地要做多少功?(取g=10 m/s2)17.一艘宇宙飞船绕地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示,太阳光可看作平行光,宇航员在A点测出地球的张角为α,已知地球的半径为R,地球质量为M,引力常量为G,求:(1)宇宙飞船离距地面的高度.(2)宇宙飞船的周期T.18.如图所示,斜面体ABC固定在水平地面上,小球p从A点静止下滑.当小球p开始下滑时,另一小球q从A点正上方的D点水平抛出,两球同时到达斜面底端的B处.已知斜面AB光滑,长度l=2.5 m,斜面倾角θ=30°.不计空气阻力,g取10 m/s2,求:(1)小球p从A点滑到B点的时间;(2)小球q抛出时初速度的大小.答案解析1.【答案】B【解析】由开普勒第二定律:行星与太阳的连线在相等时间内扫过的面积相等即rmv=c(常数),所以v=,v近∶v远=R2∶R1.2.【答案】BC【解析】经典力学适用于低速运动、宏观物体.电子是属于微观粒子,故A不适用;研究“嫦娥一号”飞船的高速发射,是低速运动、宏观物体.故B正确;研究地球绕太阳的运动,是低速运动、宏观物体.故C正确;强引力属于微观粒子之间的相互作用,故D不适用.3.【答案】C【解析】通过最高点时,小球受重力和杆的弹力F作用.假设弹力F和重力同向竖直向下,那么就有mg+F=m,带入数据得F=2 N,弹力大于0所以弹力方向与假设的方向相同,竖直向下,是拉力.答案C正确.4.【答案】D【解析】P=表明,功率不仅与物体做功的多少有关同时还与做功所用的时间有关,A选项错误;对于交通工具而言,由P=Fv可知,如果v为平均速度,则计算出的功率为平均功率,故C错误;P=Fv,当功率一定时,在一定阶段牵引力与速度成反比,但当牵引力等于阻力时,速度不变,牵引力也不再变化,D选项正确;当牵引力一定时,速度增加,功率也增加,在这种情况下牵引力F是不变的,B选项错误.5.【答案】B【解析】预备卫星在略低于工作卫星的轨道上,由开普勒第三定律=k知预备卫星的周期小于工作卫星的周期,由卫星的速度公式v=分析知,预备卫星的速度大于工作卫星的速度,由向心加速度公式a n==知,预备卫星的向心加速度大于工作卫星的向心加速度,A错误;地球同步卫星的周期为24 h,工作卫星的周期小于同步卫星的周期,由卫星的速度公式v=分析知,工作卫星的速度大于同步卫星的速度,由向心加速度公式a n =知,工作卫星的向心加速度大于同步卫星的向心加速度,B正确;预备卫星处于低轨道上,为了使该预备卫星进入工作卫星的轨道上,应考虑启动火箭发动机向后喷气,通过加速使其做离心运动,使卫星的轨道半径增大才能从较低轨道进入工作卫星的轨道,C错误.三个轨道平面都必须过地心,否则由于地球引力的作用,卫星不能稳定工作,D错误.6.【答案】B【解析】其他星球在该引力场中任意一点必定受到两星球的万有引力,方向应指向两星球,A、D错,由于两星球相互间引力场间的影响,其引力场线应是弯曲的,C错;故描述该引力场的引力场线分布图是图B.7.【答案】B【解析】物体做曲线运动时,速度方向一定变化,速度大小不一定变化,A错,B对.做曲线运动的物体的合外力或加速度既可能变,也有可能不变,C、D错.8.【答案】D【解析】物体做匀速圆周运动时,线速度大小恒定,方向沿圆周的切线方向,在不断地改变,故选项A错误;角速度ω==rad/s=rad/s,选项B错误;线速度与角速度的关系为v=ωr,由该式可知,r一定时,v∝ω,选项C 错误;由线速度的定义可得,在转动一周时有v=,选项D正确.9.【答案】C【解析】同步卫星和地球赤道上的物体的角速度相同,即ωA=ωB,A错误.由v=ωr,a=ω2r知,v A>v B,a A>a B,B错误,C正确.因为不知道卫星A与物体B的质量,无法比较F A、F B的大小,D错误.10.【答案】C【解析】若使飞船与空间实验室在同一轨道上运行,飞船加速,所需向心力变大,则飞船将脱离原轨道而进入更高的轨道,不能实现对接,A错误;若使飞船与空间实验室在同一轨道上运行,空间实验室减速,所需向心力变小,则空间实验室将脱离原轨道而进入更低的轨道,不能实现对接,B错误;要想实现对接,可使飞船在比空间实验室半径较小的轨道上加速,然后飞船将进入较高的空间实验室轨道,逐渐靠近空间实验室后,两者速度接近时实现对接,C正确,同理D错误.11.【答案】ABD【解析】物体沿曲线从点A运动到点B(点B除外)的过程中,其所受恒力F的方向必定指向曲线的内侧.当运动到B点时,因恒力反向,由曲线运动的特点“物体以后运动的曲线轨迹必定向合外力方向弯曲”可知:物体以后的运动只可能沿Bc运动.故本题正确选项为A、B、D.12.【答案】BD【解析】因物体做匀减速直线运动,a的方向与v的方向相反,故F1对物体做负功,A错误;F2与v的方向相同,做正功,B正确;F3与v 的方向相反,做负功,C错误;物体做匀减速直线运动时,物体所受合外力的方向与运动方向相反,做负功,故D正确.13.【答案】BD【解析】物体的速度发生了变化,则合外力一定不为零,加速度也一定不为零,B、D正确;物体的速度变化,可能是大小不变、方向变化,故动能不一定变化,合外力不一定做功,A、C 错误.14.【答案】BCD【解析】由于是轻杆,即使小球在最高点速度为零,小球也不会掉下来,因此v的极小值是零,A错;v由零逐渐增大,由F向=可知,F向也增大,B对;当v=时,F向==mg,此时杆恰对小球无作用力,向心力只由其自身重力提供;当v由增大时,则=mg+F,故F=m-mg,杆对球的力为拉力,且逐渐增大;当v由减小时,杆对球的力为支持力.此时,mg-F′=,F′=mg-m ,支持力F′逐渐增大,杆对球的拉力、支持力都为弹力,所以C、D也对,故选B、C、D. 15.【答案】(1)mgh2【解析】(1)重锤重力势能的减少量ΔE p=mgh2,动能增加量ΔE k=.(2)当物体自由下落时,只有重力做功,物体的重力势能和动能互相转化,机械能守恒.(3)由mgh=mv2可知题图的斜率表示重力加速度g的2倍,为求直线的斜率,可在直线上取两个距离较远的点,如(25.5×10-2,5.0)、(46.5×10-2,9.0),则g==×≈9.52 m/s2.16.【答案】20 J【解析】设绳子的重心离乙端距离为x,则当乙端刚离开地面时有mgx=10 J,可得:x=m.则绳子的重心离甲端为m,可知从乙端缓慢提至甲端恰好离地要做功W=mg(1-x)=20 J.17.【答案】(1).(2)2π【解析】(1)设飞船做圆周运动的半径为r,距离地面的高度为h.由几何关系知sin=①距离地面的高度为h=r-R②由①②解得h=R(2)由万有引力提供做圆周运动所需的向心力得G=m()2r③由①③解得T=2π18.【答案】(1)1 s(2)m/s【解析】(1)设小球p 从斜面上下滑的加速度为a,由牛顿第二定律得:a==g sinθ①设下滑所需时间为t1,根据运动学公式得l=at12②由①②得t1=③代入数据得t1=1 s;④(2)对小球q:水平方向位移x=l cosθ=v0t2⑤依题意得t2=t1⑥由④⑤⑥得v0==m/s.。

2019_2020学年高中物理综合能力测试卷含解析新人教版必修2

2019_2020学年高中物理综合能力测试卷含解析新人教版必修2

综合能力测试卷[时间:90分钟 满分:100分]一、选择题(本题共12小题,每小题4分,共48分.每小题至少有一个选项正确,全部选对的得4分,漏选的得2分,错选的得0分)1.(多选)关于曲线运动,下列说法正确的是( )A .曲线运动一定是变速运动B .曲线运动速度的方向不断地变化,但速度的大小可以不变C .匀速圆周运动的加速度不变D .做曲线运动的物体所受的合外力一定是变化的答案 AB解析 对于曲线运动来说,物体速度方向始终在变化,所以曲线运动一定是变速运动.物体速度的大小可以不变,如匀速圆周运动.A 、B 项正确.匀速圆周运动的加速度大小不变方向改变,做曲线运动的物体所受的合外力可能不变,如平抛运动.C 、D 项错误.2.下列说法正确的是( )A .滑动摩擦力一定对物体做负功B .作用力的功与反作用力的功其代数和一定为零C .重力对物体做功与路径无关,只与始末位置有关D .若物体受到的合外力不为零,则物体的机械能一定变化答案 C解析 作用力、反作用力既可以做正功又可以做负功还可以不做功,A 、B 项错误,重力做功只与重力方向上的位移即竖直高度有关,因此C 项正确,机械能守恒可以是只有重力做功,所以合外力可以是重力.D 项错误.3.(多选)半径为R 的圆桶固定在小车上,有一光滑小球静止在圆桶最低点,如图所示.小车以速度v 向右做匀速运动,当小车遇到障碍物突然停止时,小球在圆桶中上升的高度可能为( )A .等于v 22gB .大于v 22g C .小于v 22gD .等于2R 答案 ACD解析 当速度v 较小,小球上升高度h<R 时,由机械能守恒有12mv 2=mgh ,h =v 22g,A 项正确;当v ≥5gR 时,h =2R ,D 项正确;当R<h<2R 时,由机械能守恒知,12mv 2=mgh +12mv 12,h<v 22g,C 项正确,B 项错误.4.如图所示,a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是( )A .b 、c 的线速度大小相等,且大于a 的线速度B .b 、c 的向心加速度大小相等,且大于a 的向心加速度C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的cD .a 卫星由于某原因,轨道半径缓慢减小,其线速度将增大答案 D解析 因为b 、c 在同一轨道上运行,故其线速度大小、加速度大小均相等.又因为b 、c 轨道半径大于a 的轨道半径,由v =GM r知,v b =v c <v a ,故A 项错误;由加速度a =GM/r 2可知a b =a c <a a ,故B 项错误;当c 加速时,c 受到的万有引力F<mv 2/r ,故它将偏离原轨道做离心运动;当b 减速时,b 受到的万有引力F>mv 2/r ,故它将偏离原轨道做近心运动.所以无论如何c 也追不上b ,b 也等不到c ,故C 项错误.对a 卫星,当它的轨道半径缓慢减小时,在一段较短时间内,可近似认为它的轨道半径未变,可视为稳定运行,由v =GM r 知,r 减小时v 逐渐增大,故D 项正确.5.横截面为直角三角形的两个相同斜面紧靠在一起,固定在水平面上,如图所示.现有三个小球从左边斜面的顶点以不同的初速度向右平抛,最后落在斜面上.其落点分别是a 、b 、c.下列判断正确的是( )A .图中三小球比较,落在a 点的小球飞行时间最短B .图中三小球比较,落在c 点的小球飞行时间最短C .图中三小球比较,落在c 点的小球飞行过程速度变化最大D .图中三小球比较,落在c 点的小球飞行过程速度变化最快答案 B解析 小球在平抛运动过程中,可分解为竖直方向的自由落体运动和水平方向的匀速直线运动,由于竖直方向的位移为落在c 点处的最小,而落在a 点处的最大,所以落在a 点的小球飞行时间最长,落在c 点的小球飞行时间最短,A 项错误、B 项正确;速度的变化量Δv=gt ,所以落在c 点的小球速度变化最小,C 项错误;三个小球做平抛运动的加速度都为重力加速度,故三个小球飞行过程中速度变化一样快,D 项错误.6.如图所示,一根跨越光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点),a 站于地面,b 从图示的位置由静止开始向下摆动,运动过程中绳始终处于伸直状态,当演员b 摆至最低点时,a 刚好对地面无压力,则演员a 质量与演员b 质量之比为( )A .1∶1B .2∶1C .3∶1D .4∶1答案 B解析 设b 摆至最低点时的速度为v ,此时对应绳长为l ,由机械能守恒定律,可得m b gl(1-cos60°)=12m b v 2,解得v =gl.设b 至最低点时绳子的拉力为F T ,由圆周运动知识,得F T -m b g =m b v 2l,解得F T =2m b g ,对演员a 有F T =m a g ,所以,演员a 质量与演员b 质量之比为2∶1.故B 项正确.7.(多选)汽车发动机的额定功率为P 1,它在水平路面上行驶时受到的阻力f 大小恒定,汽车在水平路面上由静止开始运动,最大速度为v ,汽车发动机的输出功率随时间变化的图像如图所示,则汽车( )A .0~t 1做匀加速运动,牵引力恒定B .0~t 1做变加速运动,牵引力增大C .t 1后加速度逐渐减小,速度达到v 后做匀速运动D .t 1后牵引力恒定,与阻力大小相等答案 AC解析 由图可知:0~t 1汽车发动机的功率P =kt(k 为图像斜率,为定值),由功率P =Fv ,可知P =Fat =F ×F -f M t =F 2-F ×f Mt ,由于阻力f 大小恒定,则牵引力F 恒定,故A 项正确,B 项错误.t 1后功率P =P 1恒定不变,但在t 1时牵引力F>f ,故速度继续增加,则F 开始减小,加速度开始减小,当F =f 时,加速度减小为零,速度增加到最大为v ,此后汽车开始做匀速运动,故C 项正确,D 项错误.8.(多选)如图所示为月球表面的地形,其中e 处有一山丘,随着月球的自转做圆周运动,“嫦娥二号”在飞往月球的过程中经过了p 和q两个过渡轨道,两轨道均可视为圆轨道,且与山丘所在的轨道平面共面,其中q 轨道为月球同步轨道.设山丘的运行速率、“嫦娥二号”在p 、q 轨道上的运行速率分别为v 1、v 2、v 3,其向心加速度分别为a 1、a 2、a 3,则( )A .v 1>v 2>v 3B .v 1<v 3<v 2C .a 1>a 2>a 3D .a 1<a 3<a 2 答案 BD解析 由题意可知:山丘与嫦娥二号在q 轨道上运行的角速度、周期相同,由v =ωr,a =ω2r 可知v 1<v 3、a 1<a 3;对q 轨道和p 轨道来说,满足v =GM r 、a =GM r2,可知v 3<v 2、a 3<a 2,对比各项可知B 、D 项正确.9.(多选)2013年6月11日17时38分,我国在酒泉卫星发射中心用长征二号F 改进型运载火箭“神箭”,成功地将“神舟十号”飞船送入太空预定轨道,其发射全过程可简化为如图所示的过程,飞船在A 点发射,在椭圆轨道Ⅰ运行到B 点,在B 点飞船从椭圆轨道Ⅰ进入圆形轨道Ⅱ,B 为轨道Ⅱ上的一点,关于飞船的运动,下列说法中正确的有( )A .在轨道Ⅰ上经过B 的速度小于经过A 的速度B .在轨道Ⅰ上经过B 的动能大于在轨道Ⅱ上经过B 的动能C .在轨道Ⅰ上运动的周期大于在轨道Ⅱ上运动的周期D .在轨道Ⅰ上经过B 的加速度等于在轨道Ⅱ上经过B 的加速度答案 AD解析 飞船在轨道上从近地点A 向远地点B 运动的过程中万有引力做负功,所以A 点的速度大于B 点的速度,A 项正确;飞船在轨道Ⅰ上经过B 点后是近心运动,在轨道Ⅱ上经过B 点后是圆周运动,故需要加速后才能从椭圆轨道Ⅰ进入圆形轨道Ⅱ,所以飞船在轨道Ⅱ上经过B 点的动能大于在轨道Ⅰ上经过B 点的动能,B 项错误;根据开普勒第三定律R 3T2=k ,因为轨道Ⅰ的半长轴小于轨道Ⅱ的半径,所以飞船在轨道Ⅰ的运动周期小于在轨道Ⅱ的运动周期,C 项错误;根据牛顿第二定律F =ma ,因飞船在轨道Ⅰ和轨道Ⅱ上B 点的万有引力相等,所以在轨道Ⅰ上经过B 点的加速度等于在轨道Ⅱ上经过B 点的加速度,D 项正确.10.(多选)(2018·吕梁一模)如图所示,三角形传送带以v =2 m/s 的速度逆时针匀速转动,两边的传送带长都是2 m ,且与水平方向的夹角均为37°.现有两个质量均为1 kg 的物块A 、B 从传送带顶端都以 2 m/s 的初速度沿传送带下滑,两物块与传送带间的动摩擦因数都是0.5,g 取10 m/s 2.sin37°=0.6,cos37°=0.8.下列判断正确的是( )A .物块A 先到达传送带底端B .物块A 由顶端到达传送带底端过程中做匀速直线运动C .物块A 由顶端到达传送带底端过程中所产生的热量比物块B 由顶端到达传送带底端过程中所产生的热量要少D .物块A 与物块B 由顶端到达传送带底端过程中,传送带对B 做的功与传送带对A 做的功相同答案 CD解析 A 、B 两项,小物块A 、B 都以 1 m/s 的初速度沿传送带下滑,因为mgsin37°>μmgcos37°,故均沿斜面向下做匀加速直线运动,传送带对两物块的滑动摩擦力均沿斜面向上,大小也相等,则两物块沿斜面向下的加速度大小相同,滑到底端时位移大小相等,故时间相同,故A 、B 两项错误.C 项,由x =v 0t +12at 2,a =gsin37°-μgcos37°,得t =1 s ,传送带在1 s 内的位移为x =vt =1 m .A 与传送带是同向运动的,A 的划痕长度是A 对地位移(斜面长度)减去在此时间内传送带的位移,即为Δ1=2 m -1 m =1 m .B 与传送带是反向运动的,B 的划痕长度是B 对地位移(斜面长度)加上在此时间内传送带的位移,即为Δx 2=2 m +1 m =3 m .根据产生的热Q =μmg·Δx 可得物块A 由顶端到达传送带底端过程中所产生的热量比物块B 由顶端到达传送带底端过程中所产生的热量要少,故C 项正确.D 项,滑动摩擦力方向沿斜面向上,位移沿斜面向下,摩擦力对两物块A 、B 均做负功,且克服摩擦力做的功一样多,故D 项正确.点评 解决本题的关键能正确对其受力分析,判断A 、B 在传送带上的运动规律,结合运动学公式分析研究.11.(多选)如图所示,轻质弹簧的一端与固定的竖直板P 拴接,另一端与物体A 相连,物体A 静止于光滑水平桌面上,右端接一细线,细线绕过光滑的定滑轮与物体B 相连.开始时用手托住B ,让细线恰好伸直,然后由静止释放B ,直至B 获得最大速度.下列有关该过程的分析正确的是( )A .B 物体的机械能一直减小B .B 物体的动能的增加量等于它所受重力与拉力做的功之和C.B物体机械能的减少量等于弹簧的弹性势能的增加量D.细线拉力对A物体做的功等于A物体与弹簧所组成的系统机械能的增加量答案ABD解析由静止释放B到B达到最大速度的过程中,B一直要克服绳的拉力做功,根据功能关系可知,B物体的机械能一直减小,A项正确;根据动能定理,重力与拉力做功之和也正是B所受的合外力做的功,B项正确;根据能量转化和守恒定律可知,B物体减少的机械能等于弹簧增加的弹性势能与A增加的动能之和,C项错误;根据功能关系可知,细线拉力对A 做的功等于A物体和弹簧所组成的系统机械能的增加量,D项正确.12.(多选)质量为m的小球由轻绳a、b分别系于一轻质木架上的A和C点,绳长分别为l a、l b,如图所示,当轻杆绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向,当小球运动到图示位置时,绳b被烧断的同时轻杆停止转动,则( )A.小球仍在水平面内做匀速圆周运动B.在绳b被烧断瞬间,a绳中张力突然增大C.若角速度ω较小,小球在垂直于平面ABC的竖直平面内摆动D.绳b未被烧断时,绳a的拉力大于mg,绳b的拉力为mω2l b答案BC解析在绳b被烧断之前,小球绕BC轴做匀速圆周运动,竖直方向上受力平衡,绳a的拉力等于mg,故D项错误.绳b被烧断的同时轻杆停止转动,此时小球具有垂直平面ABC向外的速度,小球将在垂直于平面ABC的平面内做圆周运动,若ω较大,则在该平面内做圆周运动,若ω较小,则在该平面内来回摆动,故C项正确,A项错误.绳b被烧断瞬间.绳a的拉力与重力的合力提供向心力,所以拉力大于物体的重力,绳a中的张力突然变大了,故B项正确.二、实验题(共2小题,共14分)13.(6分)如图(a)中,悬点正下方P点处放有水平放置炽热的电热丝,当悬线摆至电热丝处时能轻易被烧断,小球由于惯性向前飞出做平抛运动.在地面上放上白纸,上面覆盖着复写纸,当小球落在复写纸上时,会在下面白纸上留下痕迹.用重锤线确定出A、B点的投影点N、M.重复实验10次(小球每一次都从同一点由静止释放)球的落点痕迹如图(b)所示,图中米尺水平放置,零刻度线与M点对齐.用米尺量出AN的高度h1、BM的高度h2,算出A、B 两点的竖直距离,再量出M、C之间的距离x,即可验证机械能守恒定律,已知重力加速度为g,小球的质量为m.(1)根据图(b)可以确定小球平抛时的水平射程为________ cm.(2)用题中所给字母表示出小球平抛时的初速度v 0=________.(3)用测出的物理量表示出小球从A 到B 过程中,重力势能的减少量ΔE p =________,动能的增加量ΔE k =________.答案 (1)65.0 (2)x g 2h 2 (3)mg(h 1-h 2) mgx 24h 2 解析 (1)由落点痕迹可读出平均射程为65.0 cm.(2)由平抛运动规律,h 2=12gt 2,x =v 0t ,得v 0=x g 2h 2(3)ΔE p =mg(h 1-h 2)ΔE k =12mv 02=mgx 24h 214.(8分)某同学为探究“恒力做功与物体动能改变的关系”,设计了如下实验,他的操作步骤是:①摆好实验装置如图所示.②将质量为200 g 的小车拉到打点计时器附近,并按住小车.③在质量为10 g 、30 g 、50 g 的三种钩码中,他挑选了一个质量为50 g 的钩码挂在拉线的挂钩P 上.④释放小车,打开电磁打点计时器的电源,打出一条纸带.(1)在多次重复实验得到的纸带中取出自认为满意的一条,经测量、计算,得到如下数据: ①第一个点到第N 个点的距离为40.0 cm.②打下第N 点时小车的速度大小为1.00 m/s.该同学将钩码的重力当作小车所受的拉力,算出拉力对小车做的功为________ J ,小车动能的增量为________ J.(2)此次实验探究结果,他没能得到“恒力对物体做的功,等于物体动能的增量”,且误差很大.显然,在实验探究过程中忽视了各种产生误差的因素.请你根据该同学的实验装置和操作过程帮助分析一下,造成较大误差的主要原因是:_______________________________________________________________________________________________________________________________________.答案 (1)②0.196 0.100 (2)①小车质量没有远大于钩码质量;②没有平衡摩擦力;③操作错误:先放小车后接通电源解析 (1)拉力F =mg =0.050×9.8 N =0.49 N ,拉力对小车做的功W =Fl =0.49×0.400 J =0.196 J小车动能的增量ΔE k =12mv 2=12×0.200×1.002 J =0.100 J (2)误差很大的可能原因:①小车质量不满足远大于钩码质量,使钩码的重力与小车受到的线的拉力差别较大; ②没有平衡摩擦力;③先放小车后开电源,使打第一个点时,小车已有一定的初速度.三、计算题(共4小题,共38分)15.(8分)荡秋千是大家喜爱的一项体育活动.随着科技的迅速发展,将来的某一天,同学们也许会在其他星球上享受荡秋千的乐趣.假设你当时所在星球的质量为M 、半径为R ,可将人视为质点,秋千质量不计、摆长不变、摆角小于90°,万有引力常量为G.那么,(1)该星球表面附近的重力加速度g 星等于多少?(2)若经过最低位置的速度为v 0,你能上升的最大高度是多少?答案 (1)GM R 2 (2)R 2v 022GM解析 (1)设人的质量为m ,在星球表面附近的重力等于万有引力,有mg 星=GMm R 2① 解得g 星=GM R 2② (2)设人能上升的最大高度为h ,由机械能守恒,得mg 星h =12mv 02③ 解得h =R 2v 022GM④ 16.(8分)如图所示,质量为m 的小物块在粗糙水平桌面上做直线运动,经距离l 后以速度v 飞离桌面,最终落在水平地面上.已知l =1.4 m ,v =3.0 m/s ,m =0.10 kg ,物块与桌面间的动摩擦因数μ=0.25,桌面高h =0.45 m .不计空气阻力,重力加速度取10 m/s 2.求:(1)小物块落地点距飞出点的水平距离s ;(2)小物块落地时的动能E k ; (3)小物块的初速度大小v 0.答案 (1)0.9 m (2)0.9 J (3)4.0 m/s解析 (1)小物块落地所用时间为t ,有h =12gt 2 t =2h g =2×0.4510s =0.3 s 小物块落地点距飞出点的水平距离s =vt =3×0.3 m =0.9 m(2)根据机械能守恒,小物块落地时的动能为E k =12mv 2+mgh =12×0.10×9 J +0.10×10×0.45 J =0.90 J (3)在桌面上滑行过程中根据动能定理,有W f =12mv 2-12mv 02=-μmgl 则v 0=v 2+2μgl=9+2×0.25×10×1.4 m/s =4.0 m/s17.(10分)如图所示,一个质量为0.6 kg 的小球以某一初速度从P 点水平抛出,恰好从光滑圆弧ABC 的A 点的切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失).已知圆弧的半径R =0.3 m ,θ=60°,小球到达A 点时的速度v =4 m/s.(g 取10 m/s 2)试求:(1)小球做平抛运动的初速度v 0;(2)P 点与A 点的水平距离和竖直高度;(3)小球到达圆弧最高点C 时对轨道的压力.答案 (1)2 m/s (2)0.69 m 0.60 m(3)8 N 竖直向上解析 (1)作出小球到达A 点时的速度分解图如图所示,有v 0=vcosθ=4×cos60° m/s=2 m/sv y =vsinθ=4×sin60° m/s=2 3 m/s(2)设平抛运动的时间为t ,水平位移为x ,竖直位移为h ,由平抛运动规律,有v y =gt ,x =v 0t ,h =12gt 2 代入数据,解得x =253 m ≈0.69 m ,h =0.60 m (3)设到达C 点时的速度为v C ,取A 点重力势能为零,由机械能守恒定律,有12mv 2=12mv C 2+mg(R +Rcosθ) 设C 处轨道对小球的压力为F N ,有F N +mg =m v C 2R代入数据,解得F N =8 N由牛顿第三定律得小球对轨道的压力大小为8 N ,方向竖直向上.18.(12分)如图所示是一皮带传输装载机械的示意图.井下挖掘工将矿物无初速度地放置于沿图示方向运行的传送带A 端,被传输到末端B 处,再沿一段圆形轨道到达轨道的最高点C 处,然后水平抛到货台上.已知半径为R =0.4 m 的圆形轨道与传送带在B 点相切,O 点为半圆的圆心,BO 、CO 分别为圆形轨道的半径,矿物m 可视为质点,传送带与水平面间的夹角θ=37°,矿物与传送带间的动摩擦因数μ=0.8,传送带匀速运行的速度为v 0=8 m/s ,传送带AB 点间的长度为s AB =45 m .若矿物落点D 处离最高点C 点的水平距离为x CD =2 m ,竖直距离为h CD =1.25 m ,矿物质量m =50 kg ,sin37°=0.6,cos37°=0.8,g 取10 m/s 2,不计空气阻力.求:(1)矿物到达B 点时的速度大小;(2)矿物到达C 点时对轨道的压力大小;(3)矿物由B 点到达C 点的过程中,克服阻力所做的功.答案 (1)6 m/s (2)1 500 N (3)140 J解析 (1)假设矿物在AB 段始终处于加速状态,由动能定理可得(μmgcosθ-mgsinθ)s AB =12mv B 2 代入数据得v B =6 m/s由于v B <v 0,故假设成立,矿物到达B 处时速度为6 m/s.(2)设矿物对轨道C 处压力为F ,由平抛运动知识可得x CD =v C th CD =12gt 2 代入数据得矿物到达C 处时速度v C =4 m/s由牛顿第二定律可得F′+mg =m v C 2R代入数据得F′=1 500 N.根据牛顿第三定律可得所求压力F =F′=1 500 N.(3)矿物由B 到C 的过程,由动能定理得-mgR(1+cos37°)+W f =12mv C 2-12mv B 2代入数据得W f=-140 J即矿物由B到达C时克服阻力所做的功W f=140 J.。

2020学年新教材高中物理模块综合试卷(一)(含解析)新人教版必修第二册.

2020学年新教材高中物理模块综合试卷(一)(含解析)新人教版必修第二册.

模块综合试卷(一)(时间:90分钟满分:100分)一、选择题(本题共12小题,每小题4分,共48分.1~7为单项选择题,8~12为多项选择题)1.如图1所示,在皮带传送装置中,皮带把物体P匀速传送至高处,在此过程中,下述说法正确的是( )图1A.摩擦力对物体做正功B.支持力对物体做正功C.重力对物体做正功D.合外力对物体做正功答案 A解析摩擦力方向平行皮带向上,与物体运动方向相同,故摩擦力做正功,A对;支持力始终垂直于速度方向,不做功,B错;重力对物体做负功,C错;合外力为零,做功为零,D错.2.质量不等但有相同初动能的两个物体在动摩擦因数相同的水平地面上滑行,直到停止,则( )A.质量大的物体滑行距离大B.质量小的物体滑行距离大C.两个物体滑行的时间相同D.质量大的物体克服摩擦力做的功多答案 B解析由动能定理得-μmgx=0-E k,两个物体克服摩擦力做的功一样多,质量小的物体滑行距离大,B 正确,A 、D 错误;由E k =12mv 2得v =2E km,再由t =v μg =1μg2E km可知,滑行的时间与质量有关,两个物体滑行时间不同,C 错误.3.(2019·北京卷)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星).该卫星( ) A.入轨后可以位于北京正上方 B.入轨后的速度大于第一宇宙速度 C.发射速度大于第二宇宙速度 D.若发射到近地圆轨道所需能量较少 答案 D解析 同步卫星只能位于赤道正上方,A 项错误;由GMm r 2=mv 2r知,卫星的轨道半径越大,卫星做匀速圆周运动的线速度越小,因此入轨后的速度小于第一宇宙速度(近地卫星的速度),B 项错误;同步卫星的发射速度大于第一宇宙速度,小于第二宇宙速度,C 项错误;将卫星发射到越高的轨道克服引力做功越多,故发射到近地圆轨道所需能量较少,D 正确.4.如图2所示为质点做匀变速曲线运动轨迹的示意图,且质点运动到D 点(D 点是曲线的拐点)时速度方向与加速度方向恰好互相垂直,则质点从A 点运动到E 点的过程中,下列说法中正确的是( )图2A.质点经过C 点的速率比D 点的大B.质点经过A 点时的加速度方向与速度方向的夹角小于90°C.质点经过D 点时的加速度比B 点的大D.质点从B 到E 的过程中加速度方向与速度方向的夹角先增大后减小 答案 A解析 因为质点做匀变速运动,所以加速度恒定,C 项错误.在D 点时加速度与速度垂直,故知加速度方向向上,合力方向也向上,所以质点从A 到D 的过程中,合力方向与速度方向夹角大于90°,合力做负功,动能减小,v C >v D ,A 项正确,B 项错误.从B 至E 的过程中,加速度方向与速度方向夹角一直减小,D 项错误.5.(2019·天津卷)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”,如图3所示.已知月球的质量为M 、半径为R .探测器的质量为m ,引力常量为G ,嫦娥四号探测器围绕月球做半径为r 的匀速圆周运动时,探测器的( )图3A.周期为4π2r3GM B.动能为GMm 2RC.角速度为Gm r 3D.向心加速度为GM R2答案 A解析 嫦娥四号探测器环绕月球做匀速圆周运动时,万有引力提供其做匀速圆周运动的向心力,有GMm r 2=mω2r =m v 2r =m 4π2T 2r =ma ,解得ω=GMr 3、v =GMr、T =4π2r3GM、a =GM r2,则嫦娥四号探测器的动能为E k =12mv 2=GMm2r,由以上可知A 正确,B 、C 、D 错误.6.(2018·石室中学高一下学期期末)如图4所示,固定的倾斜光滑杆上套有一个质量为m 的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A 点,弹簧处于原长,圆环高度为h .让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑到底端的过程中(重力加速度为g ,杆与水平方向夹角为30°)( )图4A.圆环的机械能守恒B.弹簧的弹性势能先减小后增大C.弹簧的弹性势能变化了mghD.弹簧与光滑杆垂直时圆环动能最大答案 C解析圆环与弹簧组成的系统机械能守恒,但圆环的机械能不守恒,A错误;弹簧形变量先增大后减小然后再增大,所以弹簧的弹性势能先增大后减小再增大,B错误;由于圆环与弹簧组成的系统机械能守恒,圆环的机械能减少了mgh,所以弹簧的弹性势能增加mgh,C正确;弹簧与光滑杆垂直时,圆环所受合力沿杆向下,圆环具有与速度同向的加速度,所以做加速运动,D错误.7.(2018·石室中学高一下学期期末)如图5所示,abc是竖直面内的光滑固定轨道,ab水平、长度为2R;bc是半径为R的四分之一圆弧,与ab相切于b点.一质量为m的小球,始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动.重力加速度为g.小球从a 点开始运动到其轨迹最高点,动能的增量为( )图5A.2mgRB.4mgRC.5mgRD.6mgR答案 A解析 由题意知水平拉力为F =mg ,设小球达到c 点的速度为v 1,从a 到c 根据动能定理可得:F ·3R -mgR =12mv 12,解得:v 1=2gR ;小球离开c 点后,竖直方向做竖直上抛运动,水平方向做初速度为零的匀加速直线运动,由于水平方向加速度a x =g ,小球至轨迹最高点时v x =v 1,故小球从a 点开始运动到最高点时的动能的增量为ΔE k =12mv 12=2mgR .8.(2019·江苏卷)如图6所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m ,运动半径为R ,角速度大小为ω,重力加速度为g ,则座舱( )图6A.运动周期为2πRωB.线速度的大小为ωRC.受摩天轮作用力的大小始终为mgD.所受合力的大小始终为mω2R 答案 BD解析 座舱做匀速圆周运动,合力提供向心力,知座舱的运动周期T =2πω、线速度大小v =ωR 、所受合力的大小F =mω2R ,选项B 、D 正确,A 错误;座舱的重力为mg ,座舱做匀速圆周运动受到的合力大小不变,方向时刻变化,故座舱受到摩天轮的作用力大小不可能始终为mg ,选项C 错误.9.(2018·简阳市高一下学期期末)竖直平面内有两个半径不同的半圆形光滑轨道,如图7所示,A 、M 、B 三点位于同一水平面上,C 、D 分别为两轨道的最低点,将两个相同的小球分别从A 、B 处同时无初速度释放,则( )图7A.通过C 、D 时,两球的线速度大小相等B.通过C 、D 时,两球的角速度大小相等C.通过C 、D 时,两球的机械能相等D.通过C 、D 时,两球对轨道的压力相等 答案 CD解析 对任意一球研究,设半圆轨道的半径为r ,根据机械能守恒定律得:mgr =12mv 2,得:v =2gr ,由于r 不同,则v 不等,故A 错误;由v =rω得:ω=vr=2gr,可知两球的角速度大小不等,故B 错误;两球的初始位置机械能相等,下滑过程机械能都守恒,所以通过C 、D 时两球的机械能相等,故C 正确;通过圆轨道最低点时小球的向心加速度为a n =v 2r=2g ,根据牛顿第二定律得:F N -mg =ma n ,得轨道对小球的支持力大小为F N =3mg ,由牛顿第三定律知球对轨道的压力为F N ′=F N =3mg ,与半径无关,则通过C 、D 时,两球对轨道的压力相等,故D 正确.10.(2018·永春一中高一下学期期末)如图8,北斗导航卫星的发射需要经过几次变轨,例如某次变轨,先将卫星发射至近地圆轨道1上,然后在P 处变轨到椭圆轨道2上,最后由轨道2在Q 处变轨进入圆轨道3,轨道1、2相切于P 点,轨道2、3相切于Q 点.忽略空气阻力和卫星质量的变化,则以下说法正确的是( )图8A.该卫星从轨道1变轨到轨道2需要在P 处减速B.该卫星从轨道1到轨道2再到轨道3,机械能逐渐减小C.该卫星在轨道3的动能小于在轨道1的动能D.该卫星稳定运行时,在轨道3上经过Q 点的加速度等于在轨道2上Q 点的加速度 答案 CD解析 该卫星从轨道1变轨到轨道2需要在P 处加速,选项A 错误;该卫星从轨道1到轨道2需要点火加速,则机械能增加;从轨道2再到轨道3,又需要点火加速,机械能增加;故该卫星从轨道1到轨道2再到轨道3,机械能逐渐增加,选项B 错误;根据v =GMr可知,该卫星在轨道3的速度小于在轨道1的速度,则卫星在轨道3的动能小于在轨道1的动能,选项C 正确;根据a =GM r2可知,该卫星稳定运行时,在轨道3上经过Q 点的加速度等于在轨道2上Q 点的加速度,选项D 正确.11.(2019·江苏卷)如图9所示,轻质弹簧的左端固定,并处于自然状态.小物块的质量为m ,从A 点向左沿水平地面运动,压缩弹簧后被弹回,运动到A 点恰好静止.物块向左运动的最大距离为s ,与地面间的动摩擦因数为μ,重力加速度为g ,弹簧未超出弹性限度.在上述过程中( )图9A.弹簧的最大弹力为μmgB.物块克服摩擦力做的功为2μmgsC.弹簧的最大弹性势能为μmgsD.物块在A 点的初速度为2μgs 答案 BC解析 小物块处于最左端时,弹簧的压缩量最大,然后小物块先向右加速运动再减速运动,可知弹簧的最大弹力大于滑动摩擦力μmg ,选项A 错误;物块从开始运动至最后回到A 点过程,路程为2s ,可得物块克服摩擦力做功为2μmgs ,选项B 正确;物块从最左侧运动至A 点过程,由能量守恒定律可知E pm =μmgs ,选项C 正确;设物块在A 点的初速度为v 0,整个过程应用动能定理有-2μmgs =0-12mv 02,解得v 0=2μgs ,选项D 错误.12.如图10所示,两个34圆弧轨道固定在水平地面上,半径R 相同,a 轨道由金属凹槽制成,b 轨道由金属圆管制成(圆管内径远小于半径R ),均可视为光滑轨道,在两轨道右端的正上方分别将金属小球A 和B (直径略小于圆管内径)由静止释放,小球距离地面的高度分别用h A 和h B 表示,下列说法中正确的是( )图10A.若h A =h B ≥52R ,两小球都能沿轨道运动到最高点B.若h A =h B ≥32R ,两小球在轨道上上升的最大高度均为32RC.适当调整h A 和h B ,均可使两小球从轨道最高点飞出后,恰好落在轨道右端口处D.若使小球沿轨道运动并且从最高点飞出,h A 的最小值为52R ,B 小球在h B >2R 的任何高度释放均可 答案 AD解析 若小球A 恰好能到a 轨道的最高点,由mg =m v 2AR ,得v A =gR ,由mg (h A -2R )=12mv A 2,得h A =52R ;若小球B 恰好能到b 轨道的最高点,在最高点的速度v B =0,根据机械能守恒定律得h B =2R ,所以h A =h B ≥52R 时,两球都能到达轨道的最高点,故A 、D 正确;若h B =32R ,小球B 在轨道上上升的最大高度等于32R ;若h A =32R ,则小球A 在到达最高点前离开轨道,有一定的速度,由机械能守恒定律可知,A 在轨道上上升的最大高度小于32R ,故B 错误.小球A从最高点飞出后做平抛运动,下落R 高度时,水平位移的最小值为x A =v A2Rg=gR ·2Rg=2R >R ,所以若小球A 从最高点飞出后会落在轨道右端口外侧,而适当调整h B ,B 可以落在轨道右端口处,所以适当调整h A 和h B ,只有B 球可以从轨道最高点飞出后,恰好落在轨道右端口处,故C 错误.二、实验题(本题共2小题,共12分)13.(5分)某兴趣小组用如图11甲所示的装置与传感器结合,探究向心力大小的影响因素.实验时用手拨动旋臂使它做圆周运动,力传感器和光电门固定在实验器上,测量角速度和向心力.(1)电脑通过光电门测量挡光杆通过光电门的时间,并由挡光杆的宽度d、挡光杆通过光电门的时间Δt、挡光杆做圆周运动的半径r,自动计算出砝码做圆周运动的角速度,则计算其角速度的表达式为________________.(2)图乙中取①②两条曲线为相同半径、不同质量下向心力与角速度的关系图线,由图可知,曲线①对应的砝码质量__________(选填“大于”或“小于”)曲线②对应的砝码质量.图11答案(1)drΔt(3分) (2)小于(2分)解析 (1)砝码转动的线速度v =dΔt由ω=v r计算得出ω=dr Δt(2)题图中抛物线说明向心力F 和ω2成正比.若保持角速度和半径都不变,则质点做圆周运动的向心加速度不变,由牛顿第二定律F =ma 可知,质量大的物体需要的向心力大,所以曲线①对应的砝码质量小于曲线②对应的砝码质量.14.(7分)(2018·石室中学高一下学期期末)某同学用如图12甲所示的装置验证机械能守恒定律,他将两物块A 和B 用轻质细绳连接并跨过轻质定滑轮,B 下端连接纸带,纸带穿过固定的打点计时器,用天平测出A 、B 两物块的质量m A =300g ,m B =100g ,A 从高处由静止开始下落,B 拖着的纸带打出一系列的点,对纸带上的点迹进行测量,即可验证机械能守恒定律,图乙给出的是实验中获取的一条纸带:0是打下的第一个点,每相邻两计数点间还有4个点(图中未标出),计数点间的距离如图乙所示,已知打点计时器计时周期为T =0.02s ,则:图12(1)在打点0~5过程中系统动能的增加量ΔE k =______J ,系统势能的减小量ΔE p =________J ,由此得出的结论是__________________;(重力加速度g =9.8m/s 2,结果均保留三位有效数字)(2)用v 表示物块A 的速度,h 表示物块A 下落的高度.若某同学作出的v 22-h 图像如图丙所示,则可求出当地的重力加速度g =________m/s 2(结果保留三位有效数字).答案 (1)1.15(2分) 1.18(2分) 在误差允许范围内,A 、B 组成的系统机械能守恒(1分) (2)9.70(2分)解析 (1)根据某段时间内平均速度等于中间时刻的瞬时速度,计数点5的瞬时速度v 5=x 462×5T =(21.60+26.40)×10-20.2m/s =2.40 m/s ,则系统动能的增加量:ΔE k =12(m A +m B )v 52=12×0.4×2.42J≈1.15J,系统重力势能的减小量ΔE p =(m A -m B )gh =0.2×9.8×(38.40+21.60)×10-2J≈1.18J .在误差允许的范围内,A 、B 组成的系统机械能守恒. (2)根据机械能守恒定律得: (m A -m B )gh =12(m A +m B )v 2得12v 2=m A -m B m A +m B gh 故斜率k =m A -m B m A +m B g =5.821.20m/s 2代入数据得:g =9.70m/s 2.三、计算题(本题共4小题,共40分)15.(7分)火星半径约为地球半径的12,火星质量约为地球质量的19,地球表面的重力加速度g取10m/s 2.(1)求火星表面的重力加速度.(结果保留两位有效数字)(2)若弹簧测力计在地球上最多可测出质量为2kg 的物体所受的重力,则该弹簧测力计在火星上最多可测出质量为多大的物体所受的重力? 答案 (1)4.4m/s 2(2)4.5kg 解析 (1)对于在星球表面的物体,有mg =G MmR2(2分)可得g 火g 地=M 火M 地(R 地R 火)2=19×(21)2=49(2分) 故g 火=49g 地≈4.4 m/s 2.(1分)(2)弹簧测力计的最大弹力不变,即m 地g 地=F =m 火g 火(1分)则m 火=m 地g 地g 火=4.5 kg.(1分) 16.(8分)(2019·天津卷)完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功.航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图13甲所示.为了便于研究舰载机的起飞过程,假设上翘甲板BC 是与水平甲板AB 相切的一段圆弧,示意如图乙,AB 长L 1=150m ,BC 水平投影L 2=63m ,图中C 点切线方向与水平方向的夹角θ=12˚(sin12°≈0.21).若舰载机从A 点由静止开始做匀加速直线运动,经t =6s 到达B 点进入BC .已知飞行员的质量m =60kg ,g =10m/s 2,求:图13(1)舰载机水平运动的过程中,飞行员受到水平力所做的功W ; (2)舰载机刚进入BC 时,飞行员受到竖直向上的压力F N 多大.答案 (1)7.5×104J (2)1.1×103N解析 (1)舰载机由静止开始做匀加速直线运动,设其刚进入上翘甲板时的速度为v ,则有v2=L 1t①(1分) 根据动能定理,有W =12mv 2-0②(2分)联立①②式,代入数据,得W =7.5×104J③(1分)(2)设上翘甲板所对应的圆弧半径为R ,根据几何关系,有L 2=R sin θ④(1分)由牛顿第二定律,有F N -mg =m v 2R⑤(2分)联立①④⑤式,代入数据,得F N =1.1×103N.(1分)17.(11分)如图14所示,半径为R =1.5m 的光滑圆弧支架竖直放置,圆心角θ=60°,支架的底部CD 水平,离地面足够高,圆心O 在C 点的正上方,右侧边缘P 点固定一个光滑小轮,可视为质点的小球A 、B 系在足够长的跨过小轮的轻绳两端,两球的质量分别为m A =0.3kg 、m B =0.1kg.将A 球从紧靠小轮P 处由静止释放,不计空气阻力,g 取10m/s 2.图14(1)求A 球运动到C 点时的速度大小;(2)若A 球运动到C 点时轻绳突然断裂,从此时开始,需经过多长时间两球重力的功率大小相等?(计算结果可用根式表示). 答案 (1)2m/s (2)340s 解析 (1)由题意可知,A 、B 组成的系统机械能守恒,有 12m A v A 2+12m B v B 2=m A gh A -m B gh B (2分)h A =R -R cos 60°=R2(1分)h B =R (1分) v B =v A cos 30°=32v A (1分) 联立解得v A =2 m/s(1分)(2)轻绳断裂后,A 球做平抛运动,B 球做竖直上抛运动,B 球上抛初速度v B =v A cos 30°=3m/s(1分)设经过时间t 两球重力的功率大小相等,则m A gv Ay =m B gv By (1分)v Ay =gt (1分) v By =v B -gt (1分)联立解得t =340s(1分) 18.(14分)如图15所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1 kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入光滑圆弧轨道BC ,经圆弧轨道后滑上与C 点等高、静止在粗糙水平面的长木板上,圆弧轨道C 端的切线水平,已知长木板的质量M =4 kg ,A 、B 两点距C 点的高度分别为H =0.6 m 、h =0.15 m ,圆弧轨道半径R =0.75 m ,物块与长木板之间的动摩擦因数μ1=0.5,长木板与水平面间的动摩擦因数μ2=0.2,长木板与水平面间的最大静摩擦力近似等于滑动摩擦力,g 取10 m/s 2.已知sin 37°=0.6,cos 37°=0.8.求:图15(1)小物块运动至B 点时的速度大小和方向; (2)物块滑动至C 点时,对圆弧轨道C 点的压力大小; (3)长木板至少为多长,才能保证物块不滑出长木板.答案 (1)5m/s 与水平方向成37°角斜向下 (2)47.3N (3)2.8m解析 (1)小物块从A 点到B 点做平抛运动,有H -h =12gt 2(1分)到达B 点的竖直分速度v By =gt ,(1分) 到达B 点的速度v B =v 20+v 2By (1分) 联立解得v B =5 m/s(1分)设到达B 点时物块的速度方向与水平面的夹角为θ,则cos θ=v 0v B=0.8,即与水平方向成37°角斜向下.(1分)(2)设物块到达C 点的速度为v C ,从A 点到C 点由机械能守恒定律得mgH =12mv C 2-12mv 02(2分)设物块在C 点受到的支持力为F N ,由牛顿第二定律得F N -mg =m v 2CR(1分)解得F N ≈47.3 N .(1分)由牛顿第三定律得,物块对圆弧轨道C 点的压力大小为F N ′=F N =47.3 N ,方向竖直向下.(1分) (3)物块对长木板的摩擦力F f1=μ1mg =5 N.(1分)长木板与水平面间的最大静摩擦力近似等于滑动摩擦力,为F f2=μ2(M +m )g =10 N.(1分) 由于F f1小于F f2,可判定物块在长木板上滑动时,长木板静止不动.(1分)物块在长木板上做匀减速运动,设木板至少长为l 时,物块不滑出长木板,且物块到达木板最右端时速度恰好为零,则有v C 2=2al ,μ1mg =ma ,联立解得l =2.8 m.(1分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2020年秋人教版高中物理必修二综合测试本试卷共100分,考试时间90分钟。

一、单选题(共10小题,每小题4.0分,共40分)1.我国的人造卫星围绕地球的运动,有近地点和远地点,由开普勒定律可知卫星在远地点运动速率比近地点的运动速率小,如果近地点距地心距离为R1,远地点距地心距离为R2,则该卫星在远地点运动速率和近地点运动的速率之比为()A.B.C.D.2.爱尔兰作家萧伯纳曾诙谐的说“科学总是从正确走向错误”,像一切科学一样,经典力学也有其局限性,是“一部未完成的交响曲”,经典力学能适用于下列哪些情况()A.研究原子中电子的运动B.研究“嫦娥一号”飞船的高速发射C.研究地球绕太阳的运动D.研究强引力3.如图所示,长0.5 m的轻质细杆,其一端固定于O点,另一端固定有质量为1 kg的小球.小球在竖直平面内绕O点做圆周运动.已知小球通过最高点时速度大小为2 m/s,运动过程中小球所受空气阻力忽略不计,g取10 m/s2.关于小球通过最高点时杆对小球的作用力,下列说法中正确的是()A.杆对小球施加向上的支持力,大小为2 NB.杆对小球施加向上的支持力,大小为18 NC.杆对小球施加向下的拉力,大小为2 ND.杆对小球施加向下的拉力,大小为18 N4.关于功率的以下说法中正确的是()A.根据P=可知,机器做功越多,其功率就越大B.根据P=Fv可知,汽车牵引力一定与速度成反比C.对于交通工具而言,由P=Fv只能计算出牵引力的瞬时功率D.根据P=Fv可知,发动机功率一定时,交通工具的牵引力与运动速度成反比.5.欧盟和中国联合开发的伽利略项目建立起了伽利略系统(全球卫星导航定位系统).伽利略系统由27颗运行卫星和3颗预备卫星组成,可以覆盖全球,现已投入使用.卫星的导航高度为2.4×104km,倾角为56°,分布在3个轨道上,每个轨道面部署9颗工作卫星和1颗在轨预备卫星,当某颗工作卫星出现故障时可及时顶替工作.若某颗预备卫星处在略低于工作卫星的轨道上,以下说法中正确的是()A.预备卫星的周期大于工作卫星的周期,速度大于工作卫星的速度,向心加速度大于工作卫星的向心加速度B.工作卫星的周期小于同步卫星的周期,速度大于同步卫星的速度,向心加速度大于同步卫星的向心加速度C.为了使该颗预备卫星进入工作卫星的轨道,应考虑启动火箭发动机向前喷气,通过反冲作用从较低轨道上使卫星加速D.三个轨道平面只有一个过地心,另外两个轨道平面分别只在北半球和南半球6.若用假想的引力场线描绘质量相等的两星球之间的引力场分布,使其他星球在该引力场中任意一点所受引力的方向沿该点引力场线的切线上并指向箭头方向.则描述该引力场的引力场线分布图是()A.B.C.D.7.做曲线运动的物体,在运动过程中,一定变化的物理量是()A.速率B.速度C.加速度D.合外力8.关于做匀速圆周运动的物体,下列说法正确的是()A.因为在相等的时间内通过的圆弧长度相等,所以线速度恒定B.如果物体在0.1 s内转过30°角,则角速度为300 rad/sC.若半径r一定,则线速度与角速度成反比D.若半径为r,周期为T,则线速度为v=9.我国自主研发的北斗卫星导航系统中有数颗地球同步轨道卫星(其周期与地球自转周期相同),A 是其中一颗.物体B静止于赤道上随地球自转.分别把A、B的角速度记为ωA、ωB,线速度记为v A、v B,加速度记为a A、a B,所受地球万有引力记为F A、F B,则()A.ωA>ωBB.v A<v BC.a A>a BD.F A<F B10.我国成功发射“天宫二号”空间实验室,之后发射了“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接二、多选题(共4小题,每小题5.0分,共20分)11.(多选)如图所示,物体在恒力F作用下沿曲线从点A运动到点B,这时突然使它所受的力反向,但大小不变,即由F变为-F.在此力的作用下,物体以后的运动情况,下列说法中正确的是()A.物体不可能沿曲线Ba运动B.物体不可能沿直线Bb运动C.物体不可能沿曲线Bc运动D.物体不可能沿原曲线BA返回12.(多选)某物体同时受到三个力作用而做匀减速直线运动,其中F1与加速度a的方向相同,F2与速度v的方向相同,F3与速度v的方向相反,则()A.F1对物体做正功B.F2对物体做正功C.F3对物体做正功D.合外力对物体做负功13.(多选)一物体做变速运动时,下列说法正确的有()A.合外力一定对物体做功,使物体动能改变B.物体所受合外力一定不为零C.合外力一定对物体做功,但物体动能可能不变D.物体加速度一定不为零14.(多选)如图所示,长为l的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,关于最高点的速度v,下列说法正确的是()A.v的极小值为B.v由零逐渐增大,向心力也增大C.当v由逐渐增大时,杆对小球的弹力逐渐增大D.当v由逐渐减小时,杆对小球的弹力逐渐增大三、实验题(共1小题,每小题10.0分,共10分)15.某同学在“验证机械能守恒定律”时按如图甲所示安装好实验装置,正确进行实验操作,从打出的纸带中选出符合要求的纸带,如图乙所示.图中O点为打点起始点,且速度为零.甲乙(1)选取纸带上打出的连续点A、B、C,……,测出其中E、F、G点距起始点O的距离分别为h1、h2、h3,已知重锤质量为m,当地重力加速度为g,打点计时器打点周期为T.为验证此实验过程中机械能是否守恒,需要计算出从打下O点到打下F点的过程中,重锤重力势能的减少量ΔE p=________,动能的增加量ΔE k=________(用题中所给字母表示).(2)以各点到起始点的距离h为横坐标,以各点速度的平方v2为纵坐标建立直角坐标系,用实验测得的数据绘出v2-h图线,如图丙所示,该图象说明了________.丙(3)从v2-h图线求得重锤下落的加速度g=________ m/s2.(结果保留三位有效数字)四、计算题(共3小题,每小题10.0分,共30分)16.盘在地面上的一根不均匀的金属链重30 N,长1 m,从甲端缓慢提至乙端恰好离地时需做功10 J.如果改从乙端缓慢提至甲端恰好离地要做多少功?(取g=10 m/s2)17.一艘宇宙飞船绕地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示,太阳光可看作平行光,宇航员在A点测出地球的张角为α,已知地球的半径为R,地球质量为M,引力常量为G,求:(1)宇宙飞船离距地面的高度.(2)宇宙飞船的周期T.18.如图所示,斜面体ABC固定在水平地面上,小球p从A点静止下滑.当小球p开始下滑时,另一小球q从A点正上方的D点水平抛出,两球同时到达斜面底端的B处.已知斜面AB光滑,长度l=2.5 m,斜面倾角θ=30°.不计空气阻力,g取10 m/s2,求:(1)小球p从A点滑到B点的时间;(2)小球q抛出时初速度的大小.答案解析1.【答案】B【解析】由开普勒第二定律:行星与太阳的连线在相等时间内扫过的面积相等即rmv=c(常数),所以v=,v近∶v远=R2∶R1.2.【答案】BC【解析】经典力学适用于低速运动、宏观物体.电子是属于微观粒子,故A不适用;研究“嫦娥一号”飞船的高速发射,是低速运动、宏观物体.故B正确;研究地球绕太阳的运动,是低速运动、宏观物体.故C正确;强引力属于微观粒子之间的相互作用,故D不适用.3.【答案】C【解析】通过最高点时,小球受重力和杆的弹力F作用.假设弹力F和重力同向竖直向下,那么就有mg+F=m,带入数据得F=2 N,弹力大于0所以弹力方向与假设的方向相同,竖直向下,是拉力.答案C正确.4.【答案】D【解析】P=表明,功率不仅与物体做功的多少有关同时还与做功所用的时间有关,A选项错误;对于交通工具而言,由P=Fv可知,如果v为平均速度,则计算出的功率为平均功率,故C错误;P=Fv,当功率一定时,在一定阶段牵引力与速度成反比,但当牵引力等于阻力时,速度不变,牵引力也不再变化,D选项正确;当牵引力一定时,速度增加,功率也增加,在这种情况下牵引力F是不变的,B选项错误.5.【答案】B【解析】预备卫星在略低于工作卫星的轨道上,由开普勒第三定律=k知预备卫星的周期小于工作卫星的周期,由卫星的速度公式v=分析知,预备卫星的速度大于工作卫星的速度,由向心加速度公式a n==知,预备卫星的向心加速度大于工作卫星的向心加速度,A错误;地球同步卫星的周期为24 h,工作卫星的周期小于同步卫星的周期,由卫星的速度公式v=分析知,工作卫星的速度大于同步卫星的速度,由向心加速度公式a n =知,工作卫星的向心加速度大于同步卫星的向心加速度,B正确;预备卫星处于低轨道上,为了使该预备卫星进入工作卫星的轨道上,应考虑启动火箭发动机向后喷气,通过加速使其做离心运动,使卫星的轨道半径增大才能从较低轨道进入工作卫星的轨道,C错误.三个轨道平面都必须过地心,否则由于地球引力的作用,卫星不能稳定工作,D错误.6.【答案】B【解析】其他星球在该引力场中任意一点必定受到两星球的万有引力,方向应指向两星球,A、D错,由于两星球相互间引力场间的影响,其引力场线应是弯曲的,C错;故描述该引力场的引力场线分布图是图B.7.【答案】B【解析】物体做曲线运动时,速度方向一定变化,速度大小不一定变化,A错,B对.做曲线运动的物体的合外力或加速度既可能变,也有可能不变,C、D错.8.【答案】D【解析】物体做匀速圆周运动时,线速度大小恒定,方向沿圆周的切线方向,在不断地改变,故选项A错误;角速度ω==rad/s=rad/s,选项B错误;线速度与角速度的关系为v=ωr,由该式可知,r一定时,v∝ω,选项C 错误;由线速度的定义可得,在转动一周时有v=,选项D正确.9.【答案】C【解析】同步卫星和地球赤道上的物体的角速度相同,即ωA=ωB,A错误.由v=ωr,a=ω2r知,v A>v B,a A>a B,B错误,C正确.因为不知道卫星A与物体B的质量,无法比较F A、F B的大小,D错误.10.【答案】C【解析】若使飞船与空间实验室在同一轨道上运行,飞船加速,所需向心力变大,则飞船将脱离原轨道而进入更高的轨道,不能实现对接,A错误;若使飞船与空间实验室在同一轨道上运行,空间实验室减速,所需向心力变小,则空间实验室将脱离原轨道而进入更低的轨道,不能实现对接,B错误;要想实现对接,可使飞船在比空间实验室半径较小的轨道上加速,然后飞船将进入较高的空间实验室轨道,逐渐靠近空间实验室后,两者速度接近时实现对接,C正确,同理D错误.11.【答案】ABD【解析】物体沿曲线从点A运动到点B(点B除外)的过程中,其所受恒力F的方向必定指向曲线的内侧.当运动到B点时,因恒力反向,由曲线运动的特点“物体以后运动的曲线轨迹必定向合外力方向弯曲”可知:物体以后的运动只可能沿Bc运动.故本题正确选项为A、B、D. 12.【答案】BD【解析】因物体做匀减速直线运动,a的方向与v的方向相反,故F1对物体做负功,A错误;F2与v的方向相同,做正功,B正确;F3与v 的方向相反,做负功,C错误;物体做匀减速直线运动时,物体所受合外力的方向与运动方向相反,做负功,故D正确.13.【答案】BD【解析】物体的速度发生了变化,则合外力一定不为零,加速度也一定不为零,B、D正确;物体的速度变化,可能是大小不变、方向变化,故动能不一定变化,合外力不一定做功,A、C 错误.14.【答案】BCD【解析】由于是轻杆,即使小球在最高点速度为零,小球也不会掉下来,因此v的极小值是零,A错;v由零逐渐增大,由F向=可知,F向也增大,B对;当v=时,F向==mg,此时杆恰对小球无作用力,向心力只由其自身重力提供;当v由增大时,则=mg+F,故F=m-mg,杆对球的力为拉力,且逐渐增大;当v由减小时,杆对球的力为支持力.此时,mg-F′=,F′=mg-m ,支持力F′逐渐增大,杆对球的拉力、支持力都为弹力,所以C、D也对,故选B、C、D.15.【答案】(1)mgh2【解析】(1)重锤重力势能的减少量ΔE p=mgh2,动能增加量ΔE k=.(2)当物体自由下落时,只有重力做功,物体的重力势能和动能互相转化,机械能守恒.(3)由mgh=mv2可知题图的斜率表示重力加速度g的2倍,为求直线的斜率,可在直线上取两个距离较远的点,如(25.5×10-2,5.0)、(46.5×10-2,9.0),则g==×≈9.52 m/s2.16.【答案】20 J【解析】设绳子的重心离乙端距离为x,则当乙端刚离开地面时有mgx=10 J,可得:x=m.则绳子的重心离甲端为m,可知从乙端缓慢提至甲端恰好离地要做功W=mg(1-x)=20 J.17.【答案】(1).(2)2π【解析】(1)设飞船做圆周运动的半径为r,距离地面的高度为h.由几何关系知sin=①距离地面的高度为h=r-R②由①②解得h=R(2)由万有引力提供做圆周运动所需的向心力得G=m()2r③由①③解得T=2π18.【答案】(1)1 s(2)m/s【解析】(1)设小球p从斜面上下滑的加速度为a,由牛顿第二定律得:a==g sinθ①设下滑所需时间为t1,根据运动学公式得l=at12②由①②得t1=③代入数据得t1=1 s;④(2)对小球q:水平方向位移x=l cosθ=v0t2⑤依题意得t2=t1⑥由④⑤⑥得v0==m/s.。

相关文档
最新文档