某公路隧道衬砌结构计算书共18页文档

合集下载

xxx隧道衬砌台车结构计算书(建筑助手)

xxx隧道衬砌台车结构计算书(建筑助手)

XXXXXXXXXX引水隧道项目衬砌台车计算书编制:校核:审核:2017年10月xxxxx项目衬砌台车计算书1.计算依据1、《xxxxx施工图设计》2、《衬砌台车结构设计图》3、《钢结构设计规范》(GB 50017-2003)4、《混凝土结构设计规范》(GB 50010-2002)2. 概况xxxxx隧道衬砌模板系统及台车布置图如下图2.1-2.2。

隧道二衬模板由一顶模、两侧模组成,模板均由6mm钢板按照二衬外轮廓线卷制而成。

顶模模板拱架环向主肋采用I10工字钢,加工成R=1447mm,L=3650mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm;侧模模板拱架环向肋板采用1524mm长的I14工字钢,侧模环向肋板在隧洞腰线以上部分加工成加工成R=1447mm,L=527mm的圆弧拱形,腰线以下加工成R=3327mm,L=997mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm。

衬砌台车由顶拱支撑、台车门架结构、走行系统、顶升系统及侧模支撑系统组成,纵向共9m长。

顶拱支撑采用H200×200×8.0立柱,纵向焊接通长的∠45*45*6的角钢组成钢桁架,焊接于台车门市框架主横梁上,支撑顶模。

衬砌台车门式框架立柱采用H200×200×8.0型钢、横梁、纵梁均采用I20a工字钢焊接组成,其节点处焊接1cm厚的三角连接钢板缀片进行加固。

本衬砌台车与顶拱支撑焊接为一个整体。

进行顶模的安装及拆除时,在轨道两侧支垫20*20*60cm的枕木,枕木上安放千斤顶进行台车和顶拱支撑系统的整体升降。

侧模支撑系统的螺旋丝杆,每断面设置4个。

下部螺旋丝杆水平支承于台车的I20a 纵梁上,上部螺旋丝杆水平支撑于台车的I20a立柱上。

三角板与构件之间焊接为满焊,焊脚高度10mm;焊缝不允许出现咬边、未焊透、裂纹等缺陷。

隧道标准断面衬砌类型通用数量计算书

隧道标准断面衬砌类型通用数量计算书

第1页 共24页施工单合同号:XMTJ-监理单工程名一、Sma 型明二衬内轮1、Sma 型明2、Sma 型明3、4、Sma 型明编号规格单根长(mm)总长(m)单位重(Kg/m)总重(Kg)小计(Kg)N1Φ2228114140.57 2.98418.9N2Φ2223915119.58 2.98356.35N3Φ221164858.24 2.98173.56N4Φ221233161.66 2.98183.75N5Φ161000346 1.58546.68546.68N6φ8633462.090.396182.99N7φ8906126.840.39650.233461679.24730233.22140隧道设计数量计算书二衬外轮廓面积S2=π×(5.5+0.6)²/2+5.5×sin(108°14′33″-90°)×[5.5+0.6-5.5×cos(108°14′33″-90°)+1/2×5.5×cos(108°14′33″-90°)]×2=70.4609m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²仰拱外轮廓面积S4=π×(5.5+0.6)²/2+(5.5+0.6)×2×[(1.6+1.45+0.6)-(18+0.6)×(1-cos14°4′8″)] +π×(18+0.6)²/360°×14°4′8″×2-(18+0.6)²×sin14°4′8″×cos14°4′8″-S2=29.0858m ²Sma型明洞仰拱填充C15混凝土每延米数量:[1.45-0.34-18×(1-cos(ASIN(7.75/2/18)))]×7.75+18²×ASIN(7.75/2/18)-18²×(7.75/2/18)×cos(ASIN(7.75/2/18))=7.52m ³根数合计(Kg)51132.56光圆钢筋:5233.2255带肋钢筋:施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书二、Smb 型明二衬内轮1、Smb 型明2、Smb 型明3、4、5、Smb 型明Smb型明洞仰拱填充C15混凝土每延米数量:[1.45-0.34-18×(1-cos(ASIN(7.75/2/18)))]×7.75+18²×ASIN(7.75/2/18)-18²×(7.75/2/18)×cos(ASIN(7.75/2/18))=7.52m ³Smb型明洞外边墙C20混凝土每延米数量:(0.6×2+9.7×0.3)×9.7/2+(1.55×2+0.524)×5.245/2+(1.55+0.524)²×tan(14°4′8″)+ π×(18+0.6)²/360°×(14°4′8″)-(18-1.45)²/cos(14°4′8″)×sin(14°4′8″)/2 +[1.6×2+(5.5+0.6+0.6)×cos60°]×(5.5+0.6+0.6)×sin60°/2-π×(5.5+0.6)²/360°×(108°14′33″-60°)-π×(1.2+0.6)²/360°×(57°41′19″)-[π×(18+0.6)²/360°×(14°4′8″)-(18-1.2)×(18-1.45-1.6)×sin(14°4′8″)]=27.89m ³二衬外轮廓面积S2=π×(5.5+0.6)²/360°×(108°14′33″+90°)+5.5×sin(108°14′33″-90°)× [5.5+0.6-5.5×cos(108°14′33″-90°)+1/2×5.5×cos(108°14′33″-90°)]=70.3789m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²仰拱外轮廓面积S4=π×(5.5+0.6)²/360°×(108°14′33″+90°)+π×(1.2+0.6)²/360°×57°41′19″ +π×(18+0.6)²/360°×14°4′8″-1/2×(18-1.2)×(18-1.6-1.45)×sin14°4′8″+(5.5+0.6)×[(1.6+1.45+0.6)-(18+0.6)×(1-cos14°4′8″)]+π×(18+0.6)²/360°×14°4′8″ -1/2×(18+0.6)²×sin14°4′8″×cos14°4′8″-S2=28.122m ²施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书三、Smc 型明二衬内轮1、Smc 型明2、Smc 型明3、二衬外轮廓面积S2=π×(5.5+0.6)²/360°×108°14′33″×2=70.2969m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²仰拱外轮廓面积S4=π×(1.2+0.6)²/360°×57°41′19″×2+π×(18+0.6)²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=27.1583m ²Smc型明洞仰拱填充C15混凝土每延米数量:[1.45-0.34-18×(1-cos(ASIN(7.75/2/18)))]×7.75+18²×ASIN(7.75/2/18)-18²×(7.75/2/18)×cos(ASIN(7.75/2/18))=7.52m ³施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书四、S5a 型复二衬内轮1、S5a 型洞2、S5a 型洞3、S5a 型洞4、S5a 型洞奇数排每偶数排每5、洞身开挖轮廓面积S5=π×(5.5+0.5+0.25)²/2+π×(3.5+5.5+0.5+0.25)²/360°×(10°53′32″)×2-3.5²×tan10°53′32″+π×1.7²/360°×(64°8′7″)×2+π×(18+0.5+0.25)²/360°×(14°58′21″)×2 -(18.75-1.7)×(18-1.45-1.6+3.5×tan10°53′32″)×sin14°58′21″=103.3585m ²S5a型洞身初支钢筋网每延米数量:[π×(6+0.23)+π×(3.5+6+0.23)/180°×(10°53′32″)×2]/0.15×0.396 +取整([π×(6+0.23)+π×(3.5+6+0.23)/180°×(10°53′32″)×2-0.15]/0.15+1)×0.396=122.81Kg二衬外轮廓面积S2=π×(5.5+0.5)²/360°×108°14′33″×2=68.0109m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²仰拱外轮廓面积S4=π×(1.2+0.5)²/360°×57°41′19″×2+π×(18+0.5)²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=25.8949m ²施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书五、S5b 型复二衬内轮1、S5b 型洞2、S5b 型洞3、S5b 型洞4、S5b 型洞奇数排每偶数排每5、仰拱外轮廓面积S4=π×(1.2+0.5)²/360°×57°41′19″×2+π×(18+0.5)²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=25.8949m ²洞身开挖轮廓面积S5=π×(5.5+0.5+0.25)²/2+π×(3.5+5.5+0.5+0.25)²/360°×(10°53′32″)×2-3.5²×tan10°53′32″+π×1.7²/360°×(64°8′7″)×2+π×(18+0.5+0.25)²/360°×(14°58′21″)×2 -(18.75-1.7)×(18-1.45-1.6+3.5×tan10°53′32″)×sin14°58′21″=103.3585m ²S5b型洞身初支钢筋网每延米数量:[π×(6+0.23)+π×(3.5+6+0.23)/180°×(10°53′32″)×2]/0.2×0.396 +取整([π×(6+0.23)+π×(3.5+6+0.23)/180°×(10°53′32″)×2-0.2]/0.2+1)×0.396=92.01Kg二衬外轮廓面积S2=π×(5.5+0.5)²/360°×108°14′33″×2=68.0109m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书六、S5c 型复二衬内轮1、S5c 型洞2、S5c 型洞3、S5c 型洞4、S5c 型洞奇数排每偶数排每5、二衬外轮廓面积S2=π×(5.5+0.6)²/360°×108°14′33″×2=70.2969m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²仰拱外轮廓面积S4=π×(1.2+0.6)²/360°×57°41′19″×2+π×(18+0.6)²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=27.1583m ²洞身开挖轮廓面积S5=π×(5.5+0.6+0.27)²/2+π×(3.5+5.5+0.6+0.27)²/360°×(10°58′52″)×2-3.5²×tan10°58′52″+π×1.8²/360°×(64°0′16″)×2+π×(18+0.6+0.27)²/360°×(15°0′52″)×2 -(18.87-1.8)×(18-1.45-1.6+3.5×tan10°58′52″)×sin15°0′52″=107.8486m ²S5c型洞身初支钢筋网每延米数量:[π×(6.1+0.25)+π×(3.5+6.1+0.25)/180°×10°58′52″×2]/0.15×0.396 +取整([π×(6.1+0.25)+π×(3.5+6.1+0.25)/180°×10°58′52″×2-0.15]/0.15+1)×0.396=125.19Kg施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书七、S4a 型复二衬内轮1、S4a 型洞2、S4a 型洞3、S4a 型洞4、S4a 型洞5、S4a 型洞奇数排每偶数排每二衬外轮廓面积S2=π×(5.5+0.45)²/360°×108°14′33″×2=66.8821m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²仰拱外轮廓面积S4=π×(1.2+0.45)²/360°×57°41′19″×2+π×(18+0.45)²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=25.2726m ²洞身开挖轮廓面积S5=π×(5.5+0.45+0.24)²/2+π×(3.5+5.5+0.45+0.24)²/360°×(10°45′29″)×2 -3.5²×tan10°45′29″+π×1.67²/360°×(64°19′58″)×2+π×(18+0.45+0.24)²/360°×(14°54′33″)×2-(18.69-1.67)×(18-1.45-1.6+3.5×tan10°45′29″)×sin14°54′33″=101.1397m ²施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书八、S4b 型复二衬内轮1、S4b 型洞2、S4b 型洞3、S4b 型洞4、S4b 型洞5、S4b 型洞奇数排每偶数排每二衬外轮廓面积S2=π×(5.5+0.4)²/360°×108°14′33″×2=65.7628m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²仰拱外轮廓面积S4=π×(1.2+0.4)²/360°×57°41′19″×2+π×(18+0.4)²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=24.6566m ²洞身开挖轮廓面积S5=π×(5.5+0.4+0.22)²/2+π×(3.5+5.5+0.4+0.22)²/360°×(15°3′46″)×2-3.5²×tan15°3′46″+(3.5+5.5+0.4+0.22-3.5/cos15°3′46″)²×cos15°3′46″×sin15°3′46″+π×(1.2+0.4)²/360°×【ACOS{[0.9+1.6-(5.5-1.2)×sin(108°14′33″-90°)]/(1.2+0.4)}-14°4′8″】×2-[0.9+1.6-(5.5-1.2)×sin(108°14′33″-90°)]²×【tanACOS{[0.9+1.6-(5.5-1.2)×sin(108°14′33″-90°)]/(1.2+0.4)}-tan14°4′8″】+π×(18+0.4)²/360°×(14°4′8″)×2-(18-1.45+0.9)²×tan14°4′8″=96.0949m ²施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书九、S4c 型复1、S4c 型洞2、S4c 型洞3、S4c 型洞4、S4c 型洞奇数排每偶数排每5、6、S4c 型洞洞身开挖轮廓面积S3=π×(5.5+0.35+0.15)²/2+π×(3.5+5.5+0.35+0.15)²/360°×(15°30′28″)×2-3.5²×tan15°30′28″+(1.6+0.94-3.5×tan15°30′28″)×(9.5-3.5/cos15°30′28″)×sin(90-15°30′28″)-7.75×(0.94-0.1-0.24-0.15)=82.9601m ²二衬内轮廓面积S1=π×5.5²/360°×207°36′44″+(1.6-0.3)×√[5.5²-(1.6-0.3)²]/2+(1.6+0.94-0.415-0.7-0.1)×√[5.5²-(1.6+0.94-0.415-0.7-0.1)²]/2+(0.07+0.6+0.15+0.5+7.75/2)×0.1+(0.07+0.65+0.15+0.5+7.75/2)×0.1+(0.6+0.15+0.5+7.75/2)×0.7+(0.65+0.15+0.5+7.75/2)×0.5+[(1.6+0.94)/tan(25°44′1″)-0.415]×(0.415+0.64)-7.75×(0.94-0.1-0.24-0.15)=70.6693m ²二衬外轮廓面积S2=π×(5.5+0.35)²/360°×(180°+25°44′1″×2)+(1.6+0.94)×(5.5+0.35)×sin(90°-25°44′1″)-7.75×(0.94-0.1-0.24-0.15)=79.0251m ²S4c型洞身初支钢筋网每延米数量:取整{[π×(5.85+0.13)/180°×120°]/0.25+1}×1×0.888+[π×(5.85+0.13)/180°×120°]×4×0.888=89.76Kg(钢筋网仅布设拱顶120°范围内)施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书十、S3a型复1、S3a型洞2、S3a型洞3、S3a型洞奇数排每偶数排每4、S3a型洞5、6、7、S3a二衬内轮廓面积S1=π×5.5²/360°×207°36′44″+(1.6-0.3)×√[5.5²-(1.6-0.3)²]/2+(1.6+0.94-0.415-0.7-0.1)×√[5.5²-(1.6+0.94-0.415-0.7-0.1)²]/2+(0.07+0.6+0.15+0.5+7.75/2)×0.1+(0.07+0.65+0.15+0.5+7.75/2)×0.1+(0.6+0.15+0.5+7.75/2)×0.7+(0.65+0.15+0.5+7.75/2)×0.5+[(1.6+0.94)/tan(25°44′1″)-0.415]×(0.415+0.64)-7.75×(0.94-0.1-0.24-0.15)=70.6693m ²二衬外轮廓面积S2=π×(5.5+0.35)²/360°×(180°+25°44′1″×2)+(1.6+0.94)×(5.5+0.35)×sin(90°-25°44′1″)-7.75×(0.94-0.1-0.24-0.15)=79.0251m ²洞身开挖轮廓面积S3=π×(5.5+0.35+0.12)²/2+π×(3.5+5.5+0.35+0.12)²/360°×(15°33′29″)×2-3.5²×tan15°33′29″+(1.6+0.94-3.5×tan15°33′29″)×(9.47-3.5/cos15°33′29″)×sin(90-15°33′29″)-7.75×(0.94-0.1-0.24-0.15)=82.2416m ²S3a型洞身防水层土工布每延米数量:π×(5.5+0.35)/180°×(180°+25°44′1″×2)=24.35m ²S3a型洞身PVC防水板每延米数量:π×(5.5+0.35)/180°×(180°+25°44′1″×2)=24.35m ²施工单合同号:XMTJ-监理名隧道设计数量计算书十一、1、S3b 型洞2、S3b 型洞3、S3b 型洞奇数排每偶数排每4、S3b 型洞5、6、7、S3bS3b型洞身防水层土工布每延米数量:π×(5.5+0.35)/180°×(180°+25°44′1″×2)=24.35m²S3b型洞身PVC防水板每延米数量:π×(5.5+0.35)/180°×(180°+25°44′1″×2)=24.35m²二衬内轮廓面积S1=π×5.5²/360°×207°36′44″+(1.6-0.3)×√[5.5²-(1.6-0.3)²]/2+(1.6+0.94-0.415-0.7-0.1)×√[5.5²-(1.6+0.94-0.415-0.7-0.1)²]/2 +(0.07+0.6+0.15+0.5+7.75/2)×0.1+(0.07+0.65+0.15+0.5+7.75/2)×0.1+(0.6+0.15+0.5+7.75/2)×0.7+(0.65+0.15+0.5+7.75/2)×0.5+[(1.6+0.94)/tan(25°44′1″)-0.415]×(0.415+0.64)-7.75×(0.94-0.1-0.24-0.15)=70.6693m²二衬外轮廓面积S2=π×(5.5+0.35)²/360°×(180°+25°44′1″×2)+(1.6+0.94)×(5.5+0.35)×sin(90°-25°44′1″)-7.75×(0.94-0.1-0.24-0.15)=79.0251m²洞身开挖轮廓面积S3=π×(5.5+0.35+0.1)²/2+π×(3.5+5.5+0.35+0.1)²/360°×(15°35′31″)×2-3.5²×tan15°35′31″+(1.6+0.94-3.5×tan15°35′31″)×(9.45-3.5/cos15°35′31″)×sin(90-15°35′31″)-7.75×(0.94-0.1-0.24-0.15)=81.7644m²施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理隧道设计数量计算书。

《隧道衬砌计算》课件

《隧道衬砌计算》课件
用户可以通过ANSYS进行建模、加载 、求解和后处理,获取衬砌结构的应 力、应变和位移等分析结果。
离散元分析软件3D-σ
离散元分析软件3D-σ 是一款专门用于岩土 工程分析的软件。
该软件基于离散元法 ,能够模拟岩土材料 的离散特性,适用于 隧道衬砌与围岩相互
作用的分析。
3D-σ提供了丰富的颗 粒模型和接触模型, 可以模拟衬砌结构的 变形和破坏过程。
通过3D-σ软件,用户 可以方便地进行隧道 衬砌的稳定性分析、 位移场和应力场计算
等。
隧道设计软件理正岩土系列
隧道设计软件理正岩土系列是一款专 门针对隧道设计开发的软件。
理正岩土系列提供了简便的操作界面 和丰富的设计工具,可以帮助设计师
快速完成隧道衬砌的计算和设计。
该软件集成了衬砌计算、围岩支护、 断面设计等功能,适用于隧道施工前 的设计阶段。
01 有限元法是将衬砌结构离散化为有限个小的单元 ,通过求解这些单元的力学行为来得到整体结构 的受力状态。
02 有限元法具有适应性强、计算精度高的优点,可 以处理复杂的形状和边界条件。
02 有限元法需要较大的计算资源和时间,对于大规 模的衬砌结构计算可能存在效率问题。
边界元法
边界元法是一种基于边界积分方程的数值方法, 用于求解衬砌结构的受力行为。
计算结果
根据实际施工条件, 对衬砌结构进行了优 化设计,提高了水工 隧道的稳定性和安全 性。
04
隧道衬砌计算软件介绍
有限元分析软件ANSYS
有限元分析软件ANSYS是一款功能强 大的工程分析软件,广泛应用于隧道
衬砌计算。
ANSYS提供了丰富的单元库和材料模 型,适用于各种类型的衬砌结构和材
料。
该软件基于有限元法,可以对复杂的 结构进行离散化,并利用数学方法求 解结构的内力和变形。

道路工程隧道主体结构二次衬砌计算书

道路工程隧道主体结构二次衬砌计算书

道路工程隧道主体结构二次衬砌计算书目录1 参考规范............................................................................................................... - 1 -2 计算模型............................................................................................................... - 1 -3 计算参数............................................................................................................... - 2 -4 荷载计算............................................................................................................... - 3 - 4.1 结构自重............................................................................................................ - 3 -4.2 围岩压力............................................................................................................ - 3 -5 结构内力及安全系数........................................................................................... - 3 -6 衬砌配筋及裂缝验算........................................................................................... - 8 -7 结论....................................................................................................................... - 9 -隧道二次衬砌结构检算1 参考规范本次计算主要依据如下设计规范:(1)《公路隧道设计规范》(JTG D70—2004)(2)《混凝土结构设计规范》(GB50010—2002)(3)《城市桥梁荷载设计标准》(CJJ77—98)(4)《公路桥涵设计通用规范》(JTG D60—2004)(5)《混凝土结构耐久性设计规范》(GB/T 50476—2008)(6)《建筑边坡工程技术规范》(GB 50330-2002)2 计算模型衬砌结构计算采用荷载—结构法,荷载结构法原理认为,隧道开挖后地层的主要作用是对衬砌结构产生荷载,衬砌应能安全可靠地承受地层压力等荷载的作用。

某工程A隧洞5类围岩衬砌及配筋计算书

某工程A隧洞5类围岩衬砌及配筋计算书

某工程A隧洞5类围岩衬砌及配筋计算书某工程A隧洞5类(桩号干0+156.00~干1+111.00)衬砌内力和配筋计算书 2014年5月16日目录1 基本资料 (3)1.1 等别 (3)1.2 断面尺寸 (3)1.3 荷载 (3)1.4 计算工况和荷载组合 (3)2 计算方法 (4)2.1 参数取值 (4)2.2 计算简图 (6)3 理正计算结果 (6)4 衬砌配筋计算 (9)4.1 计算情况 (9)4.2 偏心受压计算 (10)4.2.1 取值 (10)4.2.2 配筋计算 (11)4.3 受弯计算 (13)4.4 计算结果 (13)5 抗裂验算 (14)5.1 计算公式 (14)5.2 计算情况 (15)5.3 偏心受压计算 (15)5.4 受弯计算 (15)6 斜截面抗剪验算 (16)6.1 计算公式 (16)6.2 计算情况 (16)6.3 偏心受压计算 (17)6.4 受弯计算 (17)7 配筋结果 (17)1 基本资料1.1 等别根据SL252—2000《水利水电工程等级划分及洪水标准》和GB50288—99《灌溉与排水工程设计规范》的规定,该工程属Ⅲ等(中型)工程。

渠系建筑物按5级设计。

渠系建筑物设计洪水重现期为10年(P=10 %)1.2 断面尺寸净断面尺寸2.0m ×2.4m (宽×高),底板、侧墙及顶拱衬砌厚度均为0.3m 。

1.3 荷载按5级建筑物设计,安全级别为Ⅲ级。

结构重要性系数9.00=γ,设计状况系数0.1=持久ψ、95.0=短暂ψ、85.0=偶然ψ,永久荷载分项系数05.1=G γ(0.95),可变荷载分项系数20.1=Q γ,偶然作用分项系数0.1=A γ,结构系数2.1=d γ。

按承载能力极限状态计算时荷载分项系数:衬砌自重作用分项系数1.05(有利)、0.95(不利)围岩压力作用分项系数1.0 外水压力作用分项系数1.0 灌浆压力作用分项系数1.31.4 计算工况和荷载组合检修期:围岩压力+衬砌自重+外水压力施工期:围岩压力+衬砌自重+外水压力+灌浆压力注:以检修期作为控制工况,施工期灌浆时采取必要的支护措施。

衬砌结构计算

衬砌结构计算

衬砌结构计算一、基本资料某公路隧道,结构断面尺寸如下图,内轮廓半径为5.4m,二衬厚度为0.45m。

围岩为V 级,重度为19kN/m3,围岩弹性抗力系数为1.6×510kN/m3,二衬材料为C25 混凝土,弹性模量为28.5GPa,重度为23 kN/m3x0y二、荷载确定1.根据式(1-21),围岩竖向均布压力:q=0.45*1-s2*γ*ω式中:s---围岩级别,此处s=5;γ---围岩重度,此处γ=19KN/m ³ω---跨度影响系数,ω=1+i(m l -5),毛洞跨度m l =(5.4+0.45)*2+2*0.06=11.82m,其中0.06m 为一侧平均超挖量,m l =5—15m 时,i=0.1,此处ω=1+0.1*(11.82-5)=1.682所以,有:q=0.45*1-52*19*1.682*0.5=115.04875(kPa) 此处超挖回填层重忽略不计2.围岩水平均布压力:e=0.4q=0.4*115.04875=46.0195(kPa)三.衬砌几何要素 1.衬砌几何尺寸 内轮廓线半径1r =5.4m 外轮廓线半径1R =5.85m 拱轴线半径'1r =5.625m2.半拱轴线长度S 及分段轴长△S半拱轴线长度S=°180θπ'1r =°180°104* *5.625=10.210(m) 将半拱轴线等分为8段,每段轴长为:△S=8S =8210.10=1.27625(m)3.各分块接缝(截面)中心几何要素i α=8104ii 1y ='1r (1-cos i α) i 1x ='1r sin i αE1Q1Q2Q3Q4Q5Q6Q7E2E3E4E5E6E7E8G3G4G1G5G6G2G7G8R4R5R6R7R8qb1b2b3b4b5b6b7b8h1h2h3h4h5h6h7h8附图 衬砌结构计算图示四.计算位移 1.单位位移用辛普生法近似计算,按计算列表进行。

隧道衬砌结构计算图文PPT教案

隧道衬砌结构计算图文PPT教案

q d0
2021/8/4
20
另一部分近似按对称分布的三角
Δq
形荷载计算,即
q
q
dn
cosfn
d0
或者再简化为:
q dn d0
d0
φn
图6-4 拱圈自重化为均布荷载和三角形荷载
式中 q——三角形荷载边缘处最大荷载强度(kN/m2);
f n ——拱脚截面与竖直线间夹角。
当拱圈为半圆拱时,该种计算方法并不适用,因为当f n=90°时, cos fn =0,则q趋于无穷大。
取较低值; 4)洞口、浅埋、傍山隧道地段取较低值 3.表列数值适用于洞径15m以下的隧道。不适用于黄土、
冻土及其他特殊土(膨胀土)隧道
在Ⅰ~Ⅴ级围岩中,复合式衬砌的初期支护应主要按工程类比法设 计。其中Ⅳ、Ⅴ级围岩的支护参数应通过计算确定。复合式衬砌中的二
次衬砌,Ⅰ~Ⅲ级围岩中为安全储备,并按构造要求设计;Ⅳ、Ⅴ级围 岩中为承载结构,可采用地层结构法来计算内力和变形。
隧道衬砌结构计算图文
会计学
1
第06章 隧道衬砌结构计算
6.1 概述
2021/8/4
2
6.1 概述
隧道结构工程特性、设计原则和方法与地面结构完全不同,隧道结 构是由周边围岩和支护结构两者组成共同的并相互作用的结构体系。各 种围岩都是具有不同程度自稳能力的介质,周边围岩在很大程度上是隧 道结构承载的主体,其承载能力必须加以充分利用。隧道衬砌的设计计 算必须结合围岩自承能力进行,对隧道衬砌的要求除必须保证有足够的 净空外,还要求有足够的强度,以保证在使用年限内结构物有可靠的安 全度。
200~500 100~200
<100
1.表中数值系根据部分水利工程现场试验资料和部份铁路 工程承载力试验资料的结果,经分析、归纳统计得出

隧道结构计算书

隧道结构计算书
、e2 ,中墙顶至隧 主要受地层竖向土压力荷载 q1、q2 ,地层侧向土压力 e1、e2 和 e1
道拱顶高度为 h’的竖向土压力 q z ,侧向土压力 e3、e4 。 由于 hq<H1≤Hp 和 hq<H2≤Hp,所以此处作用在隧道支护结构上的竖向均布荷 载( q1、q2和qz )为: 浅埋连拱隧道顶部竖向压力 q1和q2 为:
4 基于地层-结构法的隧道施工过程模拟分析(二维) ............................. - 13 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 概述..................................................................................................................... - 13 计算模型 ............................................................................................................. - 14 围岩位移场和应力场分析 ................................................................................. - 15 中隔墙及其基础力学性态分析 ......................................................................... - 18 锚杆受力分析 ..................................................................................................... - 18 临时支护受力分析 ............................................................................................. - 19 初期支护受力分析 ............................................................................................. - 20 二次衬砌受力分析 ............................................................................................. - 21 -
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一基本资料 (1)二荷载确定 (1)2.1围岩竖向均布压力 (1)2.2围岩水平均布力 (1)三衬砌几何要素 (1)3.1衬砌几何尺寸 (1)3.2半拱轴线长度S及分段轴长△S (2)3.3割分块接缝重心几何要素 (2)四计算位移 (2)4.1单位位移 (2)4.2载位移——主动荷载在基本结构中引起的位移 (2)4.3载位移——单位弹性抗力及相应的摩擦力引起的位移 (8)4.4墙低(弹性地基上的刚性梁)位移 (12)五解力法方程 (12)σ=)分别产生的衬砌内力 (13)六计算主动荷载和被动荷载(1h七最大抗力值的求解 (14)八计算衬砌总内力 (14)九衬砌截面强度检算(检算几个控制截面) (15)9.1拱顶(截面0) (15)9.2截面(7) (18)9.3墙低(截面8)偏心检查 (18)十内力图18一 基本资料高速公路隧道,结构断面如图1所示,围岩级别为V 级,容重318kN /m ϒ=,围岩的弹性抗力系数630.1510kN /K m =⨯,衬砌材料C20混凝土,弹性模量72.9510kPa h E =⨯,容重323kN /m ϒ=。

图1 衬砌结构断面二 荷载确定2.1 围岩竖向均布压力: 10.452s q ωγ-=⨯式中:s ——围岩级别,此处s=5;ϒ——围岩容重,此处ϒ=18kN/㎡;ω——跨度影响系数,ω=1+i(B m -5),毛洞跨度B m =12.02m ,B m =5~15时,i=0.1,此处: ω=1+0.1×(12.02-5)=1.702所以,有:510.45218 1.702220.5792q kPa -=⨯⨯⨯=考虑到初期之处承担大部分围岩压力,而二次衬砌一般作为安全储备,故对围岩压力进行折减,对于本隧道按照45%折减,即q 45%0.45220.579299.2606q kPa =⨯=⨯=2.2 围岩水平均布力:e =0.4×q=0.4×99.2606=39.7043kPa三 衬砌几何要素3.1衬砌几何尺寸内轮廓半径 r 1=5.56m ;内径r 1 所画圆曲线的终点截面与竖直轴的夹角1ϕ=100°; 截面厚度d=0.45m 。

外轮廓线半径:R 1=5.56+0.45=6.01m 拱轴线半径:1r '=5.56+0.45×0.45=5.7625 拱轴线各段圆弧中心角:1θ=100°3.2 半拱轴线长度S 及分段轴长△S分段轴线长度:1111005.762510.0575180180S r m θππ'==⨯⨯=︒半拱轴线长度为:S=S 1=10.0575m 将半拱轴线等分为8段,每段轴长为:3.3 割分块接缝重心几何要素(1)与竖直轴夹角i α角度闭合差=0。

各接缝中心点坐标可由图1中直接量出。

四 计算位移图2 衬砌结构计算图4.1 单位位移用辛普生法近似计算,按计算列表进行。

单位位移的计算见表1 单位位移计算如下: 计算精度校核为: 闭合差0∆=。

4.2 载位移——主动荷载在基本结构中引起的位移(1)每一楔块上的作用力竖向力:Q i iqb式中:b i ——衬砌外缘相邻两截面之间的水平投影长度,由图2量得:单位位移计算表表1注:1. I—截面惯性矩,3bI,12db=取单位长度。

2.不考虑轴力的影响第 5 页自重力:i d 10.1833i h G S γ=⨯∆⨯=式中:d i ——接缝i 的衬砌截面厚度,本设计为等厚度衬砌; 作用在各楔体上的力均列入表2,各集中力均通过相应的图形的行心。

(2)外荷载在基本结构中产生的内力。

楔体上各集中力对下一接缝的力臂由图2中量得,分别记为,,q e g a a a 内力按照下式计算(见图3)。

弯矩:001,11()ip i p i i q g e i i M M x Q G y E Qa Qa Qa X ---=-∆+-∆---∑∑轴力:0sin ()cos ipi i iiN a Q G a E =+-∑∑式中:,i i x y ∆∆--相邻两接缝中心点的坐标增值00,2.ip ip M N 的计算见表及表3 图3内力00ip ipM N 、计算图示 载位移0p N 计算表 表3载位移0M的计算表表2 p第 7 页基本结构中,主动荷载产生弯矩的校核为:8802208880000888812.019812.0198M ()99.2606(5.6982)1606.6483242439.7043M 6.0501726.6623 ,M ()925.426322M M +M +M 1606.6483726.6623925.4263=3258.7369q e g i i gi p q e g B B qx e H G x x a =--=-⨯⨯-=-=-=-⨯=-=---=-==----∑ 另一方面,从表2中得到08M 5014.8882p =-闭合差5014.88823258.7369100%0.35%5014.8882-∆=⨯=(3)主动荷载位移(计算过程见表4)。

主动荷载位移计算表 表4计算精度校核:1p 2p 0.13110.56270.6938∆+∆=--=- 闭合差: 0∆=4.3 载位移——单位弹性抗力及相应的摩擦力引起的位移(1)各接缝处的抗力强度抗力上零点假定在接缝3,337.5b αα=︒= 最大抗力值假定在接缝6,675h αα=︒=最大抗力值以上各截面抗力强度按下式计算:查表1,算得 34560,0.3845,0.7401,;h h h σσσσσσσ==== 最大抗力值以下各截面抗力强度按下式计算: 式中:由图2中量得:''78y 1.4171,y 2.8241;m m == 则:22'78'(1)0.8274,0;i h h hy yσσσσ=-==按比例将所求得抗力绘于图2上。

(2)各楔体上抗力集中力'i R 按下式计算:'1()2i ii i R S σσ-+=∆外式中:i S ∆外—表示楔体i 外缘长度,可以通过量取夹角,用弧长公式求得,'i R 的方向垂直于衬砌外缘,并通过楔体上抗力图形的形心。

(3)抗力集中力玉摩擦力的合力i R按下式计算:i R R =式中:μ—围岩于衬砌间的摩擦系数,此处取0.2μ= 。

则:'1.0198i i R R =其作用方向与抗力集中力的夹角0arctan 11.0399βμ==;由于摩擦力的方向与衬砌位移方向相反,其方向向上。

将i R 得方向线延长,使之交于竖直轴,量取夹角,将i R 分解为水平和竖直两个分力:sin ,cos ;H i k V i k R R R R ψψ==以上计算结果列入表5中。

弹性抗力及摩擦力计算表 表5(4)计算单位抗力及其相应的摩擦力在基本结构中产生的内力弯矩:0i j ji M R r σ=-∑ 轴力:0sin cos i i v i H N R R σαα=-∑∑式中:ji r —力j R 至接缝中心点i k 的力臂,由图2量得。

计算见表6及表7.N σ计算表 表7M计算表表6 σ第 11 页(5)单位抗力及相应摩擦力产生的载位移。

计算见表8.单位抗力及相应摩擦力产生的载位移计算表 表8校核为: 闭合差:0;∆=4.4 墙低(弹性地基上的刚性梁)位移单位弯矩作用下的转角:4681131.6872 8.7791100.1510a KI β-==⨯⨯ 主动荷载作用下的转角:单位抗力及相应摩擦力作用下的转角:五 解力法方程衬砌矢高计算力法方程的系数为:以上将单位抗力及相应摩擦力产生的位移乘以h σ,即为被动荷载的载位移。

求解方程为:式中:11296.21, 2.1743;p X X σ==- 式中:2481.12p X =,2 2.0401X σ=以上解的12,X X 值应带入原方程,校核计算。

六计算主动荷载和被动荷载(1hσ=)分别产生的衬砌内力计算公式为:计算过程列入表9、10。

主、被动荷载作用下衬砌弯矩计算表表9y[M)y[()hMσσ0.0000 294.2073 0.0000 -2.4743主、被动荷载作用下衬砌轴力计算表表10cos)α2.0421七 最大抗力值的求解首先求出最大抗力方向内的位移。

考虑到接缝5的径向位移与水平方向有一定的偏离,因此修正后有: 计算过程列入表11,位移值为: 最大抗力值为:最大抗力位移修正计算表 表11八 计算衬砌总内力按下式计算衬砌总内力:p h p h M M M N N N σσσσ=+⎧⎪⎨=+⎪⎩计算过程列入表12.计算精度的校核为以下内容:根据拱顶切开点的相对转角和相对水平位移应为零的条件来检查: 式中:844.344810(5320.483) 2.680310h S ME I--∆=⨯⨯-=-⨯∑ 闭合差:0∆=式中:8343a 4.344810(40530.909) 1.8163107.6179 2.482710 1.816310h S MyE I f β----∆=⨯⨯-=-⨯=⨯⨯=⨯∑闭合差:0∆=九 衬砌截面强度检算(检算几个控制截面)9.1 拱顶(截面0)e=0.0880m<0.45d=0.2025m (可) 又有:e=0.0880m<0.2d=0.09m0.08800.19544,0.45e d ==可得 式中:R α—混凝土极限抗压强度,取41.910kPa⨯衬砌总内力计算表表12第 17 页9.2 截面(7)e=0.0051m<0.2d=0.09m9.3 墙低(截面8)偏心检查其他各截面偏心距均小于0.45d .十内力图将内力计算结果按比例绘制成弯矩图M与轴力图N,如图4所示。

图4 衬砌结构内力图。

相关文档
最新文档