隧道洞门结构验算

合集下载

翼墙式隧道洞门设计方法

翼墙式隧道洞门设计方法

4.2翼墙式洞门检算方法(节选)4.2.1洞门检算参数1)隧道进口端围岩级别为Ⅴ级,故根据规范]1[来确定下列计算参数:计算摩擦角 45 ;重度3/kN 18m ;基底摩擦系数4.0 f ;基底控制压应力 a 3.0MP 。

2)建筑材料容重和容许应力:C25片石混凝土容重31m /23kN ;端、翼墙水泥砂浆砌片石容重32/k 22m N ;10M 水泥砂浆砌片石容许压应力a 5.1a MP ;10M 水泥砂浆砌片石容许拉应力 MPa l 2.0 。

3)检算条带根据隧道规范要求翼墙式洞门检算条带位置选取见图4-1和4-2。

翼墙条带:图4-1翼墙条示意带图m5.0b m 2a 端墙条带:图4-2端墙条带示意图4.2.2洞门翼墙检算1)翼墙检算参数补充:仰坡坡度 29 ,554.0tan ,墙倾角 20 ,364.0tan ,翼墙检算高度,翼墙宽度,条带宽度,水平距离。

图4-3洞门墙计算示意图m 6.1 B m121 H2)最危险的破裂面与垂直面之间的夹角:(4-12)(4-13)(4-14)式中: ——围岩计算摩擦角;——地面坡脚; ——洞门墙面倾角;a ——仰坡坡脚到洞门墙墙背距离;b ——条带宽度。

根据翼墙的已知检算参数及由公式4-12~4-14求取最危险破裂角:m39.1364.0554.01554.02h 010.61m1.3912 H )tan tan 1(tan )tan 1)(tan tan 1tan 1(tan )tan 1(tan tan 1tan A -tan tan tan tan 222AC]tan tan 1()tan tan )(tan tan 1[(tan tan )(tan 1(2)) A C 20010h h tan tan 1tan h Ha A H H a,,)tan tan 1)(tan()tan tan 1)(tan (tan02.061.10237.12A 686.0)554.0.36401(1)11()364.0554.01554.002.01(.5540936.0)11(364.0554.01554.00.02-364.0554.01tanH H ''' h htan tan h 'a''20)(21h H b E综上知最危险的破裂面与垂直面之间的夹角: 4.34 3)墙身检算:土压力计算:当a =0时,(4-15)(4-16)(4-17)式中: ——地层重度;b ——洞门墙计算条带宽度;当a 较小时,(4-18)(4-19)(4-20)(4-21)当a 较大时,(4-22)(4-23)(4-24)20021)(21H b h h H b EH H 936.0]554.01(02.0)364.01()364.0554.01[(554.01()11( ))CH H)h 0'' h h ( 221H b EkN 94.42]61.1039.1)39.121.6[(08.0185.0212E mH E MkN 86.222311.1221.5535.1101)(NE k 21.5508.05.161.10185.02108.039.1)39.121.6(185.02121 )(kN B bB M M 48.44708.254.422)2/1.05.1(5.12y y1 kN2.2116.15.01222b 12 B H P )tan(tan tan '08.0)554.0686.01(34.5)554.0364.01()364.0686.0(MPaMPa kPa C P a 5.1][12.032.11819.132.211232max(4-25)(4-26)以上属于较小情况,由公式4-17~4-21知:倾覆力矩:墙身自重:稳定力矩:基底水平,故采用公式4-1~4-2进行偏心检算:(满足)应力检算,采用公式4-7:(满足)4)基底检算:土压力计算:倾覆力矩:墙身自重:稳定力矩:截面偏心距,采用基底水平公式:m 2 a m21.6364.0686.02h ' m N 4.422)1.0128.0(2.2111.021yk H BP M )(kN 6.2376.15.05.1322b 1.5121 B H P )( )tan(1]tan tan 1)tan tan 1)(tan (tan ['' A m19.12.21176.1714.4220y P M M C m EH MkN 76.17131294.42310mB C B48.03.0m 39.019.18.02e m 27.06eBMPa MPa kPa B e B P 5.123.046.2266.12.061(6.16.237)61(11max 6.100.286.22248.44701y10MM K m 27.06eBm 48.03.014.094.08.02e 11B C B(满足)应力检验,基底水平采用公式4-6:综上所属翼墙基底应力满足要求。

洞门检算参考

洞门检算参考

3. 洞门结构的设计及检算3.1 洞门结构的设计洞门是隧道洞口用圬工砌筑并加以建筑装饰的支档结构物。

它联系衬砌和路堑,是整个隧道结构的主要组成部分,也是隧道进、出口的标志。

洞门的作用在于支挡洞口正面仰坡和路堑边坡,拦截仰坡上方的小量剥落、掉块,保持边、仰坡的稳定,并将坡面汇水引离隧道,保证洞口线路的安全。

另外,洞门是隧道唯一的外露部分,对它进行适当的建筑艺术处理,可以起到美化环境的作用。

根据洞口地形、地质及衬砌类型等不同的情况和要求,洞门的结构形式主要有环框式、端墙式、柱式、翼墙式、耳墙式、台阶式及斜交式。

3.1.1设计原则(1) 选用洞门结构形式时,应根据洞口的地形、地质条件及工程特点确定。

(2) 当线路中线与洞口地形等高线斜交,经技术经济比较不宜采用正交洞门,且围岩分类在III级以上时,可采用斜交式洞门,其端墙与线路中线的交角不应小于45°。

(3) 设置通风帘幕的洞门或通风道洞口与隧道洞门相连时,洞门的结构形式应结合通风设备和要求一并考虑。

(4) 位于城镇、风景区、车站附近的洞门,必要时应考虑与环境相协调和建筑美观的要求。

(5) 铁路重点隧道应考虑国防要求,按铁道部《铁路建设贯彻国防要求的规定》文件的相关规定办理。

3.1.2洞门设计根据西格二线八号隧道沿线地形、地质状况,并结合隧道设计专业事前指导书,在确定进、出口洞门位置的基础上,拟定龙池山隧道进口和出口均采用台阶式洞门,边、仰坡坡度均为1:1.25,开挖方式为乙式,进、出口洞门各部分尺寸参照洞门标准图及隧道净空加宽来确定。

隧道进、出口洞门图分别见附录一中的图LCST-03。

3.2 洞门结构的检算洞门是支挡洞口正面仰坡和路堑边坡的结构物,因此洞门的端墙和挡墙均可视为墙背承受土压力的挡土墙结构,根据挡土墙理论设计。

3.2.1计算原理及方法根据《铁路隧道设计规范》的规定,洞门墙计算时,应按照表3.1的要求,与挡土墙一样用容许应力法检算其强度,并检算其绕墙趾倾覆及沿基底滑动的稳定性。

隧道设计衬砌计算范例(结构力学方法)

隧道设计衬砌计算范例(结构力学方法)

1.1工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。

二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。

1.2工程地质条件1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。

隧道中部地势较高。

隧址区地形地貌与地层岩性及构造条件密切相关。

由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。

隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。

主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。

1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。

由于山系屏障,二郎山东西两侧气候有显著差异。

东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。

全年分早季和雨季。

夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。

第6章隧道结构计算

第6章隧道结构计算
φ— 构件的纵向弯曲系数,对隧道衬砌拱圈及墙背紧密回填的边 墙可取1;
α— 轴向力偏心影响系数。 1 1.5 e0 h
抗拉控制检算
大偏心判断准则:
e0 0.2h
此时承载能力由抗拉强度控制:
KN 1.75Rlbh
6e0 1 h
式中: Rl — 混凝土的抗拉极限强度,
其它符号意义同前。
6.5 衬砌截面强度验算
6.4 隧道洞门计算
1.洞门墙墙身抗压承载能力计算(承载能力极限状态)
2.洞门墙墙身抗裂承载能力计算(正常使用极限状态)
6.4 隧道洞门计算
3.洞门墙地基承载能力计算
4.抗倾覆计算 5.抗滑动计算
6.5 衬砌截面强度验算
6.5.1 检算内容
(1)安全系数检算 (2)偏心检算
6.5.2 适用范围
铁路隧道拼装式衬砌、复合式衬砌 双线隧道整体式衬砌 公路隧道衬砌结构
6.5.3 安全系数检算
(1) 允许安全系数 混凝土和石砌结构的强度安全系数
圬工种类及 荷载组合
破坏原因
混凝土
主 附主 要 加要 荷 荷、 载载
石砌体 主 附主 要 加要 荷 荷、 载载钢筋ຫໍສະໝຸດ 凝土主附主要
加要

荷、


(钢筋)混凝土或石砌
设围岩垂直压力大于 侧向压力, 则存在拱顶 脱离区,两侧 抗力区。
6.2 结构力学方法
6.2.3 隧道衬砌荷载分类
(1) 主动荷载 主要荷载:围岩压力、支护结构自重、回填土荷载、地下 静水压力及车辆活载等。 附加荷载:冻胀压力、地震力等。 (2) 被动荷载 被动荷载是指围岩的弹性抗力,计算有共同变形理论和局 部变形理论。
直刚法计算流程

隧道洞门设计

隧道洞门设计

**隧道端洞门设计一,技术标准及执行规范1.技术标准设计行车速度:40km/h隧道主洞建筑限界净宽:1.50+0.25+2×3.5+0.25+1.50=10.50m隧道建筑限界净高:5.0m路基宽:8.5m2.遵循规范《公路工程技术标准》JTG B01-2003《公路隧道设计规范》JTG D70-2004《公路隧道通风照明设计规范》JTJ026.1-1999《公路工程抗震设计规范》JTJ004-89《锚杆喷射混凝土支护技术规范》GB50086-2001《地下工程防水技术规范》GB50108-2001二、工程概况根据隧道需风量分析确定,本隧道采用自然通风。

隧道内的供电照明负荷和应急照明按一级负荷考虑。

1、地形、地貌隧道区地貌属于丘陵低山地貌。

隧道地处山体的左侧山坡地段,地形起伏较大,山高坡陡,山体走向近SN向,隧道走向与其基本平行。

在隧道的进出口地段发育路线走向呈小角度相交的小冲沟,呈“U”字型沟谷。

隧道轴线通过路段地面标高222~310m,相对高差约88m,隧道顶板上覆围岩最大厚度约87.0m。

地形坡度25~55°左右。

山坡植被稀少,主要为灌木丛,坡面多出露基岩。

隧道通城端洞口段地处冲沟附近的G106底下,地形较平缓,覆盖层较厚,洞口轴线与地形等高线呈小角度相交。

黄泥界端洞口段地处SN向冲沟内的G106底下,地形较缓,基岩裸露,洞口轴线与地形等高线呈小角度相交。

2.围岩分级根据野外地质调查结合岩块室内岩石试验成果可知,该隧道片岩和花岗岩均为强风化,饱和抗压极限强度Rb小于30Mpa,为软质岩,岩石抗风化能力弱。

根据计算结果,强风化片岩和花岗岩围岩分级均为Ⅴ级。

3.水文地质根据调查,隧道区的山体上未发现地表水体,亦未发现地下水出露点。

根据钻孔内抽水试验可知:其地下水量<0.20t/d,但雨季受降雨影响,地表水将沿陡裂隙下渗,富集在F断层内,严重影响洞室的稳定,施工时应特别注意。

端墙式洞门计算

端墙式洞门计算

3.1 . 洞门结构设计计算3.1 .1 计算参数计算参数如下:(1)边、仰坡坡度 1:0.5;(2)仰坡坡脚& =63.5°, tan& =2,a =6°;(3)地层容重丫 =22kN/m3;(4)地层计算摩擦角© =70 °;( 5) 基底摩擦系数 0.6;(6) 基底控制应力[(T ]=0.8Mpa3.1 .2建筑材料的容重和容许应力(1)墙端的材料为水泥砂浆片石砌体,片石的强度等级为Mu100,水泥砂浆的强度等级为 M10。

(2)容许压应力[(T a]=2.2MPa,重度丫 t=22KN/ m3。

3.1.3 洞门各部尺寸的拟定根据《公路隧道设计规范》(JTJ026-90),结合洞门所处地段的工程地质条件,拟定洞门翼墙的高度:H=12m;其中基底埋入地基的深度为 1,0m,洞门翼墙与仰坡之间的水沟的沟底至衬砌拱顶外缘的高度 1.38m,洞门翼墙与仰坡间的的水沟深度为0.5m,洞门墙顶高出仰坡坡脚0.7m,洞口仰坡坡脚至洞门墙背的水平距离为1.5m,墙厚2.0m,设计仰坡为1:1,具体见图纸。

3.2. 洞门验算3.2.1 洞门土压力计算根据《公路隧道设计规范》(JTJ026-90),洞门土压力计算图示具体见图 3.2图3-4洞门土压力计算简图最危险滑裂面与垂直面之间的夹角: tan 2tan tan (1 tan 2)(tan tan )(tan tan )(1tan tan ) 2 tan (1 tan ) tan (1 tan tan )式中: 一一围岩计算摩擦插脚& ――洞门后仰坡坡脚;a ——洞门墙面倾角代入数值可得:2 I 2tanw = ta 门7° tan6tan63.5 ^(1 tan 70 )(tan70 tan63.5)(tan70 tan6)(1 tan6 tan63.5)tan63.5(1 tan 70) tan70(1 tan6 tan63.5)=0.266故:w=14.89°根据《公路隧道设计规范》(JTG —2004), 土压力为;1 2E 2 [H 2 h °(h h °)]b(tan tan )(1 tan tan )tan( )(1 tan tan )式中: E ――土压力(kN );h atan tantanw地层重度(kN/m3)入一一侧压力系数;3 -- 墙背土体破裂角;b ――洞门墙计算条带宽度(m ),取b=1m ;E -- 土压力计算模式不确定系数,可取E =0.6把数据代入各式,得:止匕89 tan6)(1 仙6^63.5)=0.0559tan(14.89 63.5 )(1 tan 14.89 tan63.5 )由三角关系可得:h 。

隧道洞门与洞门结构

隧道洞门与洞门结构
----隧道明洞结构
- 偏压斜墙式拱形明洞
• 适用于地形倾斜,低侧处路堑外侧有较宽敞的地面供回填土石,以增
加明洞抵抗侧向压力的能力。
• 承受偏压荷载,拱圈为等截面,内侧边墙为等厚直墙式,外侧边墙不
等厚斜墙式。
- 半路堑单压式拱形明洞
• 受单侧的压力,结构内轮廓与隧道一致,左右对称,结构截面左右不
同,内侧边墙为等厚直墙,外墙需要相对地加大,而且必须把基础放在 稳固的基岩上
---洞门结构的构造
- 拱形明洞门
- 拱形明洞门可分为路堑式和半路堑式两类。路堑式明洞门有端墙式 (常用柱式)和翼墙式两种,与一般隧道门形式相类似
柱式拱形明洞门路堑式
翼墙式拱形明洞门路堑式
隧道洞门与洞门结构
---洞门结构的构造
- 半路堑式明洞门多用于傍山线路,其山侧与原地层相接,为了适应 傍山、横向地面坡陡的地形,一般也多以台阶形式加高端墙,并在山 侧设置挡墙支挡边坡,降低开挖高度,
• 当线路位于有可能被淹没的河滩上或水库回水影响
范围以内时,隧道洞口标高应在洪水位以上,并加上 波浪的高度,以防洪水倒灌到隧道中去
隧道洞门与洞门结构
----隧道洞口位置的选定
•为了保证洞口的稳定和安全,边坡及仰坡均不宜开挖过高,不
使山体扰动太甚,也不使新开出的暴露面太大。一般情况下,设
计各类围岩中隧道洞口上方的仰坡和路堑的边坡控制高度和坡度 可参考下表
---明洞的构造
- 棚洞:当山坡的坍方、落石数量
较少,山体侧向压力不大,或因受地质、 地形限制,难以修建拱式明洞时可采用 棚式明洞。
棚式明洞常见的结构形式有盖 板式、刚架式和悬臂式三种。
- 盖板式棚洞
•盖板式棚洞是由内墙、外墙及

隧道工程验收中实体检测实施细则0227

隧道工程验收中实体检测实施细则0227

区间隧道工程实体检测实施细则区间隧道可分为暗挖隧道区间及盾构隧道区间。

为满足隧道单位工程验收要求,对实体检测实施规定。

第一部分暗挖隧道区间暗挖隧道可分为正线隧道、联络通道及风井、风道。

一、正线隧道(一)衬砌厚度及壁后空洞检测:1、检测方法:地质雷达法或声波法。

2、检测频率:隧道竣工验收时质量检测应纵向布线,必要时可横向布线。

(1)纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布1条。

(2)横向布线线距8~12m;采用点测时每断面不少于5个点。

(检测依据:《铁路隧道衬砌质量无损检测规程》TB10223-2004第4.2.1条第2点:隧道竣工验收时质量检测应纵向布线,必要时可横向布线。

纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布1条;横向布线线距8~12m;采用点测时每断面不少于5个点。

需确定回填空洞规模和范围时,应加密测线或测点。

)(二)衬砌主筋间距及保护层厚度检测:1、检测方法:采用钢筋保护层厚度测定仪检测。

2、检测频率:每100m衬砌的拱部、边墙各抽测不少于6根主筋;隧道洞门、端翼墙各不少于10根主筋.对每根钢筋,应选择有代表性的不同部位量测3点取平均值。

(检测依据:《铁路混凝土工程施工质量验收标准》TB10424-2010第10.0.3条第3点:隧道:每100m衬砌的拱部、边墙、仰拱(底板)各不少于1处,隧道洞门、端翼墙各不少于3处,每处不少于10个点。

《混凝土结构工程施工质量验收规范》GB50204-2015第E.0.2条:对选定的板类构件,应抽取不少于6根纵向受力钢筋的保护层厚度进行检验。

对每根钢筋,应选择有代表性的不同部位量测3点取平均值。

)(三)衬砌实体强度检测:1、检测方法:普通回弹法、超声回弹综合法、钻芯法。

2、检测频率:每100m,拱墙抽测一处,每处10个测区。

(参考加10.0.3第3点)(检测依据:由于该检测项目抽检频率无任何规范要求,所以参考《铁路混凝土工程施工质量验收标准》TB10424-2010第10.0.3条第3点:隧道:每100m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.4 隧道洞门结构设计
1、计算假设及相关规定
洞门的端墙和翼墙均可视为墙背承受土压力的挡土墙结构,根据挡土墙理论设计。

本端墙式洞门按计算挡土墙的方法分别核算各不同墙高截面的稳定性和强度,以此决定端墙的厚度和尺寸。

为简化洞门墙的计算方法和便于施工,只检算端墙最大受力部位的稳定性和强度,据此确定整个端墙的厚度和尺寸,这样虽增加了一些圬工量,但从施工观点看.却是合理的。

由于洞门端墙紧靠衬砌,又嵌入边坡内,故其受力条件较挡土墙为好。

此有利因素可作为安全储备.在计算中是不予考虑的。

洞门翼墙与端墙一样,也可采用分条方法取条带计算。

由于翼墙与端墙是整体作用的;故在计算端墙时,应考虑翼墙对端墙的支撑作用。

计算时先检算翼墙本身的稳定性和强度,然后再检算端墙最大受力部位的强度及其与翼墙一起的滑动稳定。

在计算翼墙时,翼墙与端墙连结面的抗剪作用是不考虑的。

按挡土墙结构计算洞门墙时,设计是按极限状态验算其强度,并验算绕墙趾倾覆及沿基底滑动的稳定性。

验算时依据下表的规定,并应符合《公路路基设计规范》、《公路砖石及混凝土桥涵设计规范》、《公路桥涵地基与基础设计规范》的有关规定。

洞门验算表如表5.2所示:
表5.2 洞门墙的主要检算规定表
墙身截面荷载效应值Sd ≤结构抗力效应值Rd(按
极限状态计算)
墙身截面荷载效应
值Sd
≤结构抗力效应值
Rd(按极限状态计
算)
墙身截面偏心距e ≤0.3倍截面厚度滑动稳定安全系数K
O
≥1.3
基底应力ζ≤地基容许承载倾覆稳定安全系数
Ko
≥1.6
基底偏心距e 岩石地基≤H/5~B/4;土质地基≤B/6(B为墙底厚度)
洞门设计计算参数数按现场试验资料采用。

缺乏的试验资料,参照表5.3选用。

表5.3 洞门设计计算参数数表
仰坡坡率计算摩擦角φ(O) 重度γ(kN/m3) 基底摩擦系数f 基底控制压应力(MPa) 1:0.5 70 25 0.60 0.80
1:0.75 60 24 0.50 0.60
1:1 50 20 0.40 0.40~0.35
1:1.25 43~45 18 0.40 0.30~0.2s
1:1.5 38~40 17 0.35~0.40 0.25
2、洞门结构计算
1)、计算数据
①、地质特征:
Ⅴ级围岩,端墙背后采用粗颗粒土回填。

地层容重r=17KN/m3
地层计算摩擦角Ф=40°
基底摩擦系数f=0.40
基底设计控制压应力[ζ]=0.25 Mpa
②、建筑材料容重:
C25钢筋混凝土容重r=25KN/m3
③、洞门主要验算:
洞门结构按挡土墙计算允许应力,并验算绕墙趾倾覆及基底滑动的稳定性。

验算符合下列标准:
墙身截面荷载效应Sd ≤结构抗力效应值Rd
墙身截面偏心距e ≤0.3截面宽度
基底应力ζ≤地基允许承载力
基底偏心距e岩石基底≤B/4,土质≤B/6
滑动稳定系数K
≥1.3
c
≥1.6
倾覆稳定系数K
2)、土压力计算:
①、计算及基本数据
大哗山隧道苍梧段洞口处设计台阶式洞门,计算方法蕾丝端墙式,尺寸拟定
墙厚B=1.6m,墙背倾角α=6°,墙高高H=11.88米,仰坡坡角ε=30°,围岩计
算摩擦角Ф=40°,基底摩擦系数f=0.4, tanα =0.1, tanε=0.577, tanФ
=0.84,
洞口仰坡坡脚至洞门墙背的水平距离为a=1m 洞门墙计算条带宽度b=1m
②、 土压力计算
最危险破裂面与垂直面之间的夹角
)
tan tan -1(tan -)tan tan )tan tan -1)(tan )(tan tan -tan tan 1(-tan tan tan tan 222εαφφεεααφεφφεαφω+(1+)(++=
=1.35 (ω=53.5°)
α
ωtan -tan 'a
h ==1/(1.35-0.1)=0.8 m
)
tan tan -1)(tan()tan tan -1)(tan -(tan εωφωεααωλ+==0.057
εa h tan 0==0.577m
[]
ξb h h h H γλE ×+×=
)-(2
1
0'02=41.07KN(每延米) 式中: E ——土压力(kN ); γ——地层重度(kN/m 3) λ——侧压力系数; ω——墙背土体破裂角;
b ——洞门墙计算条带宽度(m ),取b=1m ; ξ——土压力计算模式不确定系数,可取ξ=0.6。

③、 端墙稳定性、强度验算
由于土压力和冻胀力不同时考虑,这里我们考虑土压力的计算。

端墙自重:G=11.88×1.6×1×25=475.2KN
力臂:y 1 =21×1.0+tan6°×2
1
×11.88=1.12m
y 2=31
×11.88=3.96m
土压力大小:E =41.07 KN (每延米) 抗倾覆稳定性验算: K O =
2
1
Ey Gy =3.27> 1.6 (满足) 故抗倾覆稳定性满足要求
抗滑稳定性验算:
()()
52.37630cos 07.41cos 00=-⨯=-=αδE E X KN ()()
7.16630sin 07.41sin 00=-⨯=-=αδE E y KN ()=⨯+=
x
y
E f
E G K ε 5.24>1.3(满足)
式中: δ——墙背摩擦角 δ=30︒
故抗滑稳定性满足要求 基底偏心距验算:
全墙稳定力系对墙趾的总力矩
∑M Y =G ×(B/2+0.5×Htan α)= 475.2×(1.6/2+0.5×11.88×0.1)=662.4KN.M 全墙倾覆力系对墙趾的总力矩
∑M 0=E ×H/3=41.07×11.88/3=162.64KN.M 总竖向荷载
∑N=G ×cos α+E X ×sin α
=475.2×cos6°+37.52×sin6°=479.12
∑N 对脚趾的力臂
()
04.112
.47964
.1624.662=-=
∑∑-∑=
N
M M C O y
e=B/2-C=1.6/2-0.703=0.05<B/4=0.4 (满足)
各项指标都达到标准,设计尺寸合理,受力符合要求,尺寸建议按以上数据取值。

综上计算,出口洞门端墙设计符合标准。

E x 对墙趾的力臂:
m H
Z X 96.33/88.113
===
E y 对墙趾的力臂:
()m H B Z y 996.1396.06.13
tan =+=+

G 对墙趾的力臂:
m H B Z G 394.12
188
.16.12tan =+=+=
α m KN Z E Z G M y y G y ⋅=⨯+⨯=⨯+⨯=∑76.695996.17.16394.12.475
m KN Z E M x x O ⋅=⨯==∑58.14896.352.37
m KN E G N y ⋅=+=+=∑9.4917.162.475
=∑∑-∑=
N
M M Z O
y N (695.76-148.58)/491.9=1.11
11.011.12
2-=-=e
合力在中心线的左侧
97.24
11.0=<
=B
e 计算结果满足要求。

相关文档
最新文档