人教版八年级数学上册知识点归纳
人教版八年级上册数学的知识点

人教版八年级上册数学的知识点主要包括以下几个方面:
一、数的开方与实数
1. 数的开方:了解平方根、算术平方根的概念以及求一个数的平方根的估算方法。
2. 实数:认识实数的概念,实数与数轴上的点一一对应的关系,实数的分类(有理数和无理数)。
二、整式的乘除与因式分解
1. 整式的乘除:掌握单项式、多项式的乘法,幂的运算性质,整式的除法等。
2. 因式分解:理解因式分解的概念和方法,如提取公因式法、公式法等。
三、一元一次方程与不等式
1. 一元一次方程:掌握一元一次方程的解法,包括合并同类项、移项、系数化为1等步骤。
2. 不等式:了解不等式的基本性质,掌握一元一次不等式的解法。
四、图形和几何
1. 平面几何图形的初步认识:了解点、线、面、角等基本概念,掌握基本图形的性质和判定(如线段的中垂线、角的平分线等)。
2. 三角形:掌握三角形的分类(等腰、直角、不等边等),认识三角形的基本性质(如内角和定理等)。
3. 空间几何:了解几何图形的三维模型和计算,如长方体、圆柱、圆锥等的体积和表面积。
五、概率初步
1. 概率的基本概念:了解概率的定义和计算方法,如频率估计概率等。
2. 生活中的概率问题:通过实例了解概率在生活中的应用,如彩票中奖的概率等。
以上是八年级上册数学的一些主要知识点,通过学习这些内容,学生可以掌握基本的数学知识和技能,为后续的学习打下坚实的基础。
人教版小学八年级上册数学知识点总结

人教版小学八年级上册数学知识点总结一、数与代数(一)二次根式1.二次根式的概念二次根式是指形如√a(a≥0)的数学表达式,其中a被称为被开方数。
当a>0时,二次根式有两个值,分别为正根和负根;当a=0时,二次根式的值为0。
2.二次根式的性质•非负性:对于任意实数a,√a的值总是非负的。
•乘方与开方互逆:对于任意非负实数a,有√(a^2) = a。
•运算性质:√(ab) = √a × √b(a≥0, b≥0);√(a/b) = √a / √b(a≥0, b>0)。
3.二次根式的化简与运算通过合并同类二次根式、利用二次根式的乘法法则进行化简和运算。
(二)一元二次方程1.一元二次方程的概念只含有一个未知数,且未知数的最高次数为2的方程称为一元二次方程。
一般形式为ax^2 + bx + c = 0(a≠0)。
2.一元二次方程的解法•直接开平方法:当一元二次方程可以化为x^2 = p或(x-m)^2 = p的形式时,可以直接开平方求解。
•配方法:通过配方将一元二次方程转化为完全平方的形式,然后开平方求解。
•公式法:对于一般形式的一元二次方程ax^2 + bx + c = 0,其解为x = [-b ± √(b^2 - 4ac)] / (2a)。
•因式分解法:将一元二次方程化为两个一次方程的乘积形式,然后分别求解。
3.一元二次方程的应用一元二次方程在实际问题中有广泛应用,如面积、体积、速度、时间等问题。
通过设立未知数,建立一元二次方程,然后求解未知数,可以得到实际问题的解。
(三)分式1.分式的概念一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。
分式是不同于整式的一类代数式。
2.分式的性质•分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
•分式的约分与通分:通过约分可以化简分式,通过通分可以比较分式的大小或进行分式的加减运算。
人教版八年级数学上册知识点

人教版八年级数学上册知识点人教版八年级数学上册知识点概述一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正有理数、0和负有理数。
- 无理数:无限不循环小数称为无理数,如圆周率π。
2. 实数的运算- 加法、减法、乘法和除法的运算规则。
- 正数和负数的运算。
- 绝对值的概念及运算。
3. 估算和有效数字- 近似数的估算方法。
- 有效数字的计算和应用。
4. 实数的性质和比较大小- 实数的性质。
- 实数大小的比较方法。
二、代数表达式1. 代数式的概念- 单项式和多项式的定义。
- 同类项和合并同类项。
2. 代数式的运算- 整式的加减法。
- 乘法公式,包括平方差公式、完全平方公式等。
- 多项式的乘除法。
3. 因式分解- 提公因式法。
- 公式法。
- 十字相乘法。
三、方程与不等式1. 一元一次方程- 方程的建立和解法。
- 方程的解的检验。
2. 一元一次不等式- 不等式的概念和性质。
- 不等式的解集表示。
- 不等式的解法。
3. 二元一次方程组- 方程组的建立。
- 代入法和消元法解方程组。
四、几何1. 平行线与角- 平行线的判定和性质。
- 角的概念,包括同位角、内错角、同旁内角。
2. 三角形- 三角形的基本性质。
- 等腰三角形和等边三角形的性质。
- 三角形的内角和外角性质。
3. 四边形- 四边形的定义和分类。
- 矩形、菱形、正方形的性质。
4. 圆的基本性质- 圆的定义和圆心、半径、直径的概念。
- 弦、弧、切线的概念和性质。
五、统计与概率1. 统计- 数据的收集和整理。
- 频数和频率的概念。
- 统计图表的绘制,包括条形图、折线图和饼图。
2. 概率- 随机事件的概念。
- 概率的计算方法。
- 等可能事件的概率。
以上是人教版八年级数学上册的主要知识点概述。
在学习过程中,学生应该掌握每个知识点的定义、性质、公式和解题方法,以便能够熟练地解决相关问题。
教师和家长应鼓励学生通过练习题和实际应用来巩固和深化这些概念。
最新人教版八年级数学上册知识点总结归纳【最新整理】

最新人教版八年级数学上册知识点总结归纳【最新整理】复资料、知识分享】新人教版八年级上册数学知识点总结归纳第十一章三角形1.三角形的概念三角形是由不在同一直线上的三条线段首尾顺次相接组成的图形。
组成三角形的线段称为三角形的边,相邻两边的公共端点称为三角形的顶点,相邻两边所组成的角称为三角形的内角,简称三角形的角。
2.三角形中的主要线段1) 三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段称为三角形的角平分线。
2) 在三角形中,连接一个顶点和它对边的中点的线段称为三角形的中线。
3) 从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段称为三角形的高线,简称三角形的高。
3.三角形的稳定性三角形的形状是固定的,这个性质称为三角形的稳定性。
在生产生活中,需要稳定的东西一般都制成三角形的形状。
4.三角形的特性与表示三角形有下面三个特性:三角形有三条线段,三条线段不在同一直线上,三角形是封闭图形,首尾顺次相接。
三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
5.三角形的分类按边的关系分类:不等边三角形、三角形底和腰不相等的等腰三角形、等腰三角形、等边三角形。
按角的关系分类:直角三角形、锐角三角形、斜三角形、钝角三角形。
特殊的三角形:等腰直角三角形,两条直角边相等的直角三角形。
6.三角形的三边关系定理及推论1) 三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
2) 三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中,等角对等边,等边对等角,大角对大边,大边对大角。
八年级数学上册知识点汇总人教版

第十三章 轴对称
2.基本性质: ⑴对称的性质: ①不管是轴对称图形还是两个图形关于某条直线对称,对称轴 都是任何一对对应点所连线段的垂直平分线.
②对称的图形都全等.
⑵线段垂直平分线的性质:
①线段垂直平分线上的点与这条线段两个端点的距离相等.
②与一条线段两个端点距离相等的点在这条线段的垂直平分线 上.
⑷多项式÷多项式:用竖式.
第十四章 整式的乘除与分解因式
5.因式分解:把一个多项式化成几个整式的积的形式, 这种变形叫做把这个式子因式分解. 6.因式分解方法: ⑴提公因式法:找出最大公因式. ⑵公式法: ①平方差公式: a
2
b a b a b
2
2 2
②完全平方公式: a
第十三章 轴对称
⑸等边三角形的性质: ①等边三角形三边都相等. ②等边三角形三个内角都相等,都等于60° ③等边三角形每条边上都存在三线合一. ④等边三角 形是轴对称图形,对称轴是三线合一(3条).
第十三章 轴对称
3.基本判定: ⑴等腰三角形的判定: ①有两条边相等的三角形是等腰三角形. ②如果一个三角形有两个角相等,那么这两个角所对的边也相 等(等角对等边). ⑵等边三角形的判定:
第十一章 三角形
⑶多边形内角和公式:边形的内角和等于(n-2)· 180° ⑷多边形的外角和:多边形的外角和为360°. ⑸多边形对角线的条数:①从边形的一个顶点出发可以 引(n-3)条对角线,把多边形分成(n-2)个三角形.②n边 n( n 3) 形共有 条对角线. 2 (6)正多边形每个内角度数:用(n-2)· 180°除以n,每个 外角度数:360°除以n。
a b a b c c c
⑵异分母分式加减法则:异分母的分式相加减,先通分,化为 同分母的分式,然后再按同分母分式的加减法法则进行计算.
人教版八年级上册数学知识点总结归纳

人教版八年级上册数学知识点总结归纳一、三角形1. 三角形的概念及分类-由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
-按角分类:锐角三角形、直角三角形、钝角三角形。
-按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。
2. 三角形的三边关系-三角形任意两边之和大于第三边,任意两边之差小于第三边。
3. 三角形的内角和与外角和-三角形内角和为180°。
-三角形的外角等于与它不相邻的两个内角之和。
三角形外角和为360°。
4. 三角形的高、中线、角平分线-从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
-三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
-三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
二、全等三角形1. 全等三角形的概念及性质-能够完全重合的两个三角形叫做全等三角形。
-全等三角形的对应边相等、对应角相等。
2. 全等三角形的判定- “边边边”(SSS):三边对应相等的两个三角形全等。
- “边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
- “角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
- “角角边”(AAS):两角和其中一个角的对边对应相等的两个三角形全等。
- “斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
三、轴对称1. 轴对称图形和轴对称-如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
-把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
2. 线段的垂直平分线-经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
-线段垂直平分线上的点与这条线段两个端点的距离相等。
人教版初二上册数学知识点汇总

人教版初二上册数学知识点汇总人教版初二上册数学知识点一、变量与函数[变量和常量]在一个变化过程中,数值发生变化的量,我们称之为变量,而数值始终保持不变的量,我们称之为常量。
[函数]一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数。
如果当时,那么叫做当自变量的值为时的函数值。
[自变量取值范围的确定方法]1、自变量的取值范围必须使解析式有意义。
当解析式为整式时,自变量的取值范围是全体实数;当解析式为分数形式时,自变量的取值范围是使分母不为0的所有实数;当解析式中含有二次根式时,自变量的取值范围是使被开方数大于等于0的所有实数。
2、自变量的取值范围必须使实际问题有意义。
[函数的图像]一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.[描点法画函数图形的一般步骤]第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
[函数的表示方法]列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
[正比例函数]一般地,•形如y=•kx•(k•是常数, k ≠0 )的函数,•叫做正比例函数(proportional function),其中k叫做比例系数.[正比例函数图象和性质]一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点和(1,k)的直线.我们称它为直线y=kx.•当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1) 解析式:y=kx(k是常数,k≠0)(2) 必过点:(0,0)、(1,k)(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4) 增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴[正比例函数解析式的确定]——待定系数法1. 设出含有待定系数的函数解析式y=kx(k ≠0)2. 把已知条件(一个点的坐标)代入解析式,得到关于k的一元一次方程3. 解方程,求出系数k4. 将k的值代回解析式二、一次函数[一次函数]一般地,形如y=kx+b(k、b是常数,k 0)函数,叫做一次函数. 当b=0时,y=kx+b即y=kx,所以正比例函数是一种特殊的一次函数.[一次函数的图象及性质]一次函数y=kx+b的图象是经过(0,b)和(- ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b是常数,k 0)(2)必过点:(0,b)和(- ,0)(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限直线经过第一、二、三象限直线经过第一、三、四象限直线经过第一、二、四象限直线经过第二、三、四象限(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b 个单位;当b<0时,将直线y=kx的图象向下平移b个单位.[直线y=k1x+b1与y=k2x+b2的位置关系](1)两直线平行:k1=k2且b1 b2(2)两直线相交:k1 k2(3)两直线重合:k1=k2且b1=b2[确定一次函数解析式的方法](1)根据已知条件写出含有待定系数的函数解析式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数解析式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数解析式中得出结果.[一次函数建模]函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题. 建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题.正比例函数的图象和一次函数的图象在赋予实际意义时,其图象大多为线段或射线. 这是因为在实际问题中,自变量的取值范围是有一定的限制条件的,即自变量必须使实际问题有意义.从图象中获取的信息一般是:(1)从函数图象的形状判定函数的类型;(2)从横、纵轴的实际意义理解图象上点的坐标的实际意义.解决含有多个变量的问题时,可以分析这些变量的关系,选取其中某个变量作为自变量,再根据问题的条件寻求可以反映实际问题的函数.三、用函数观点看方程(组)与不等式[一元一次方程与一次函数的关系]任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.[一次函数与一元一次不等式的关系]任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.[一次函数与二元一次方程组](1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y= 的图象相同.(2)二元一次方程组的解可以看作是两个一次函数y= 和y= 的图象交点.三个重要的`数学思想1.方程的思想。
人教版八年级上册数学知识点汇总

第一章勾股定理1.勾股定理o直角三角形两直角边的平方和等于斜边的平方,即a2+b2=c2(其中a、b为直角边,c为斜边)。
o应用:用于直角三角形中的边长计算、证明等。
2.一定是直角三角形吗o如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形一定是直角三角形。
3.勾股定理的应用o应用于解决实际问题中的直角三角形边长计算。
第二章实数1.认识无理数o有理数:可以表示为有限小数或无限循环小数的数。
o无理数:无限不循环小数,如2、π等。
2.平方根o算数平方根:一个正数x的平方等于a,则x是a的算数平方根。
o平方根:一个数x的平方等于a,则x是a的平方根,正数有两个平方根,互为相反数;0的平方根是0本身;负数没有平方根。
3.立方根o立方根:一个数x的立方等于a,则x是a的立方根。
o每个数都有一个立方根,正数的立方根是正数,0的立方根是0,负数的立方根是负数。
4.估算与开方o估算:对复杂小数进行近似计算。
o用计算机开平方或立方。
5.实数o实数是有理数和无理数的统称,可以在数轴上表示。
第三章位置与坐标1.确定位置o在平面内,确定一个物体的位置一般需要两个数据(横坐标和纵坐标)。
2.平面直角坐标系o由两条互相垂直且有公共原点的数轴组成。
o通常地,两条数轴分别置于水平位置(x轴)与竖直位置(y轴),取向右与向上的方向分别为正方向。
3.轴对称与坐标变化o关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
第四章一次函数1.函数o如果在一个变化过程中有两个变量x和y,且对于x的每一个值,y都有唯一确定的值,则称y是x的函数。
2.一次函数o形式为y=kx+b(k、b为常数,k ≠ 0)的函数称为一次函数。
o当b = 0时,称为正比例函数y=kx。
3.一次函数的图像及性质o图像是一条直线,经过点(0, b)和(−kb,0)。
o当k > 0时,y随x的增大而增大;当k < 0时,y随x的增大而减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学上册知识点归纳
一、有理数
1.有理数的含义
有理数包括正、负整数和正、负分数,用于表示数量大小和大小比较。
2.有理数的比较大小
有理数的大小比较需要转化为相同分母再进行比较,也可以通过数轴来比较。
3.有理数的加减乘除
有理数的加减乘除运算需要注意符号和分数的约分。
二、代数式
1.代数式的定义
含有未知量和运算符号的式子称为代数式,通常用字母表示未知量。
2.代数式的化简
代数式的化简需要运用因式分解、公因式提取等方法。
3.代数式的展开
代数式的展开需要运用乘法公式、同底数幂规律等方法。
三、一次函数
1.一次函数的定义
一次函数是指函数的最高次数为1的函数,通常表示为y=kx+b。
2.一次函数图像的性质
一次函数的图像是直线,可以通过截距和斜率来确定其位置和性质。
3.一次函数的应用
利用一次函数可以解决很多线性方程和实际问题,如直线运动、比例关系等。
四、平方根
1.平方根的定义
对于正实数a,其平方根b满足b²=a,即b是a的正平方根。
2.平方根的性质
平方根具有非负性、单调性、开方运算和分配律等性质。
3.平方根的应用
平方根可以用于求解勾股定理、面积和体积等计算问题。
五、二次根式
1.二次根式的定义
含有形如a√b(a和b均为实数,且b>0)的式子称为二次根式。
2.二次根式的化简
二次根式的化简需要运用有理化分母和分解质因数等方法。
3.二次根式的应用
二次根式可以用于求解勾股定理、面积和体积等计算问题,也常见于三角函数的定义式中。
以上是人教版八年级数学上册的知识点归纳,涉及到有理数、代数式、一次函数、平方根和二次根式等内容,对学习和掌握初中数学知识有很大帮助。