与圆相关的动态几何问题
圆中的重要几何模型-隐圆模型(解析版)精选全文完整版

圆中的重要几何模型-隐圆模型隐圆是各地中考选择题和填空题、甚至解答题中常考题,题目常以动态问题出现,有点、线的运动,或者图形的折叠、旋转等,大部分学生拿到题基本没有思路,更谈不上如何解答。
隐圆常见的有以下四种形式,动点定长、定弦对直角、定弦对定角、四点共圆(对角互补或等弦对等角),上述四种动态问题的轨迹是圆。
题目具体表现为折叠问题、旋转问题、角度不变问题等,此类问题综合性强,隐蔽性强,很容易造成同学们的丢分。
本专题就隐圆模型的相关问题进行梳理及对应试题分析,方便掌握。
模型1、动点定长模型(圆的定义)若P为动点,但AB=AC=AP,则B、C、P三点共圆,A圆心,AB半径圆的定义:平面内到定点的距离等于定值的所有点构成的集合.寻找隐圆技巧:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧.例1.(2020·四川中考真题)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.22-2C.22+2D.22【答案】B【分析】根据等腰直角三角形的性质得到斜边AB=42,由已知条件得到点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,于是得到结论.【详解】解:∵等腰直角三角形ABC的腰长为4,∴斜边AB=42,∵点P为该平面内一动点,且满足PC=2,∴点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,∵△ABC是等腰直角三角形,∴CM=12AB=22,∵PC=2,∴PM=CM-CP=22-2,故选:B.【点睛】本题考查线段最小值问题,涉及等腰三角形的性质和点到圆的距离,解题的关键是能够画出图形找到取最小值的状态然后求解.例2.(2020·江苏连云港市·中考真题)如图,在平面直角坐标系xOy中,半径为2的eO与x轴的正半轴交于点A,点B是eO上一动点,点C为弦AB的中点,直线y=34x-3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【答案】2【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE 的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴DE=OE2+OD2=32+42=5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MNOE=DMDE,∴MN3=35,∴MN=95,当点C与C′重合时,△C′DE的面积最小,△C′DE的面积最小值=12×5×95-1,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.例3.(2022·北京市·九年级专题练习)如图,四边形ABCD中,AE、AF分别是BC,CD的中垂线,∠EAF=80°,∠CBD=30°,则∠ABC=,∠ADC=.【答案】 40°; 60°【分析】连接AC,根据线段垂直平分线的性质可得AB=AC=AD,从而得到B、C、D在以A为圆心,AB为半径的圆上,根据圆周角定理可得∠DAC=2∠DBC=60°,再由等腰三角形的性质可得∠DAF=∠CAF=30°,即可求解.【详解】解:连接AC,∵AE、AF分别是BC、CD的中垂线,∴AB=AC=AD,∴B、C、D在以A为圆心,AB为半径的圆上,∵∠CBD=30°,∴∠DAC=2∠DBC=60°,∵AF⊥CD,CF=DF,∴∠DAF=∠CAF=30°,∴∠ADC=60°,∵AB=AC,BE=CE,∴∠BAE=∠CAE,又∵∠EAC=∠EAF-∠CAF=80°-30°=50°,∴∠ABC=∠ACE=90°-50°=40°.故答案为:40°,60°.【点睛】本题主要考查了圆周角定理,线段垂直平分线的性质,等腰三角形的性质,根据题意得到B、C、D在以A为圆心,AB为半径的圆上是解题的关键.例4.(2022·广东·汕头市一模)如图,在△ABC中,∠C=90°,AC=8,AB=10,D是AC上一点,且CD =3,E是BC边上一点,将△DCE沿DE折叠,使点C落在点F处,连接BF,则BF的最小值为.【答案】35-3##-3+35【分析】先由折叠判断出F的运动轨迹是为以D为圆心,CD的长度为半径的圆,当B、D、F共线且F在B、D之间时BF最小,根据勾股定理及圆的性质求出此时BD、BF的长度即可.【详解】解:由折叠知,F点的运动轨迹为:以D为圆心,CD的长度为半径的圆,如图所示,可知,当点B、D、F共线,且F在B、D之间时,BF取最小值,∵∠C=90°,AC=8,AB=10,∴BC=6,在Rt△BCD中,由勾股定理得:BD=CD2+BC2=32+62=35,∴BF=BD-DF=35-3,故答案为:35-3.【点睛】本题考查了折叠的性质、圆的性质、勾股定理解直角三角形的知识,该题涉及的最值问题属于中考常考题型,根据折叠确定出F点运动轨迹是解题关键.模型2、定边对直角模型(直角对直径)固定线段AB 所对动角∠C 恒为90°,则A 、B 、C 三点共圆,AB 为直径寻找隐圆技巧:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.例1.(2022·湖北·武汉九年级阶段练习)如图,AB 是⊙O 的直径,AB =4,C 为AB的三等分点(更靠近A 点),点P 是⊙O 上一个动点,取弦AP 的中点D ,则线段CD 的最大值为.【答案】3+1【分析】如图,连接OD ,OC ,首先证明点D 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点D 在CK 的延长线上时,CD 的值最大,利用勾股定理求出CK 即可解决问题.【详解】解:如图,连接OD ,OC ,∵AD =DP ,∴OD ⊥PA ,∴∠ADO =90°,∴点D 的运动轨迹为以AO 为直径的⊙K ,连接CK ,AC ,当点D 在CK 的延长线上时,CD 的值最大,∵C 为AB的三等分点,∴∠AOC =60°,∴△AOC 是等边三角形,∴CK ⊥OA ,在Rt △OCK 中,∵∠COA =60°,OC =2,OK =1,∴CK =OC 2-OK 2=3,∵DK =12OA =1,∴CD =3+1,∴CD 的最大值为3+1,故答案为:3+1.【点睛】本题考查圆周角定理、轨迹、勾股定理、点与圆的位置关系等知识,解题的关键是正确寻找点D 的运动轨迹,学会构造辅助圆解决问题.例2.(2022·山东泰安·中考真题)如图,四边形ABCD 为矩形,AB =3,BC =4.点P 是线段BC 上一动点,点M 为线段AP 上一点.∠ADM =∠BAP ,则BM 的最小值为()A.52B.125C.13-32D.13-2【答案】D【分析】证明∠AMD =90°,得出点M 在O 点为圆心,以AO 为半径的园上,从而计算出答案.【详解】设AD 的中点为O ,以O 点为圆心,AO 为半径画圆∵四边形ABCD 为矩形∴∠BAP +∠MAD =90°∵∠ADM =∠BAP∴∠MAD +∠ADM =90°∴∠AMD =90°∴点M 在O 点为圆心,以AO 为半径的园上连接OB 交圆O 与点N∵点B 为圆O 外一点∴当直线BM 过圆心O 时,BM 最短∵BO 2=AB 2+AO 2,AO =12AD =2∴BO 2=9+4=13∴BO =13∵BN =BO -AO =13-2故选:D .【点睛】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.例3.(2022·内蒙古·中考真题)如图,⊙O 是△ABC 的外接圆,AC 为直径,若AB =23,BC =3,点P 从B 点出发,在△ABC 内运动且始终保持∠CBP =∠BAP ,当C ,P 两点距离最小时,动点P 的运动路径长为.【答案】33π.【分析】根据题中的条件可先确定点P 的运动轨迹,然后根据三角形三边关系确定CP 的长最小时点P 的位置,进而求出点P 的运动路径长.【详解】解:∵AC 为⊙O 的直径,∴∠ABC =90°.∴∠ABP +∠PBC =90°.∵∠PAB =∠PBC ,∴∠PAB +∠ABP =90°.∴∠APB =90°.∴点P 在以AB 为直径的圆上运动,且在△ABC 的内部,如图,记以AB 为直径的圆的圆心为O 1,连接O 1C 交⊙O 1于点P ,连接O 1P ,CP .∵CP ≥O 1C -O 1P ,∴当点O 1,P ,C 三点共线时,即点P 在点P 处时,CP 有最小值,∵AB =23∴O 1B =3在Rt ΔBCO 1中,tan ∠BO 1C =BC O 1B =33= 3.∴∠BO1C =60°.∴BP =60π×3180=33π.∴.C ,P 两点距离最小时,点P 的运动路径长为33π.【点睛】本题主要考查了直径所对圆周角是直角,弧长公式,由锐角正切值求角度,确定点P 的路径是解答本题的关键.模型3、定边对定角模型(定弦定角模型)固定线段AB 所对同侧动角∠P =∠C ,则A 、B 、C 、P 四点共圆根据圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角都相.寻找隐圆技巧:AB 为定值,∠P 为定角,则P 点轨迹是一个圆.例1.(2021·广东·中考真题)在△ABC 中,∠ABC =90°,AB =2,BC =3.点D 为平面上一个动点,∠ADB =45°,则线段CD 长度的最小值为.【答案】5-2【分析】由已知∠ADB =45°,AB =2,根据定角定弦,可作出辅助圆,由同弧所对的圆周角等于圆心角的一半可知,点D 在以O 为圆心OB 为半径的圆上,线段CD 长度的最小值为CO -OD .【详解】如图:以12AB 为半径作圆,过圆心O 作ON ⊥AB ,OM⊥BC ,以O 为圆心OB 为半径作圆,则点D 在圆O 上,∵∠ADB =45°∴∠AOB =90°∵AB =2AN =BN =1∴AO =12+12=2∵ON =OM =12AB =1,BC =3∴OC =12+(3-1)2=5∴CO -OD =5-2线段CD 长度的最小值为:5-2.故答案为:5-2.【点睛】本题考查了圆周角与圆心角的关系,圆外一点到圆上的线段最短距离,勾股定理,正确的作出图形是解题的关键.例2.(2022·浙江湖州·中考真题)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连接PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是()A.42B.6C.210D.35【答案】C 【分析】根据同弧所对的圆周角等于所对圆心角的一半,过点M 、N 作以点O 为圆心,∠MON =90°的圆,则点P 在所作的圆上,观察圆O 所经过的格点,找出到点M 距离最大的点即可求出.【详解】作线段MN 中点Q ,作MN 的垂直平分线OQ ,并使OQ =12MN ,以O 为圆心,OM 为半径作圆,如图,因为OQ 为MN 垂直平分线且OQ =12MN ,所以OQ =MQ =NQ ,∴∠OMQ =∠ONQ =45°,∴∠MON =90°,所以弦MN 所对的圆O 的圆周角为45°,所以点P 在圆O 上,PM 为圆O 的弦,通过图像可知,当点P 在P 位置时,恰好过格点且P M 经过圆心O ,所以此时P M 最大,等于圆O 的直径,∵BM =4,BN =2,∴MN =22+42=25,∴MQ =OQ =5,∴OM =2MQ =2×5=10,∴P M =2OM =210,故选C .【点睛】此题考查了圆的相关知识,熟练掌握同弧所对的圆周角相等、直径是圆上最大的弦,会灵活用已知圆心角和弦作圆是解题的关键.例3.(2022·广西贵港·中考真题)如图,在边长为1的菱形ABCD 中,∠ABC =60°,动点E 在AB 边上(与点A 、B 均不重合),点F 在对角线AC 上,CE 与BF 相交于点G ,连接AG ,DF ,若AF =BE ,则下列结论错误的是()A.DF =CEB.∠BGC =120°C.AF 2=EG ⋅ECD.AG 的最小值为223【答案】D 【分析】先证明△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,得DF =CE ,判断A 项答案正确,由∠GCB +∠GBC =60゜,得∠BGC =120゜,判断B 项答案正确,证△BEG ∽△CEB 得BE GE=CE BE ,即可判断C 项答案正确,由∠BGC =120°,BC =1,得点G 在以线段BC 为弦的弧BC 上,易得当点G 在等边△ABC 的内心处时,AG 取最小值,由勾股定理求得AG =33,即可判断D 项错误.【详解】解:∵四边形ABCD 是菱形,∠ABC =60°,∴AB =AD =BC =CD ,∠BAC =∠DAC =12∠BAD =12×(180°-∠ABC )=60°=∠ABC ,∴△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,∴DF =CE ,故A 项答案正确,∠ABF =∠BCE ,∵∠ABC =∠ABF +∠CBF =60゜,∴∠GCB +∠GBC =60゜,∴∠BGC =180゜-60゜=180゜-(∠GCB +∠GBC )=120゜,故B 项答案正确,∵∠ABF =∠BCE ,∠BEG =∠CEB ,∴△BEG ∽△CEB ,∴BE GE=CE BE ,∴BE 2=GE ∙CE ,∵AF =BE ,∴AF 2=GE ∙CE ,故C 项答案正确,∵∠BGC =120°,BC =1,点G 在以线段BC 为弦的弧BC 上,∴当点G 在等边△ABC 的内心处时,AG 取最小值,如下图,∵△ABC 是等边三角形,BC =1,∴BF ⊥AC ,AF =12AC =12,∠GAF =30゜,∴AG =2GF ,AG 2=GF 2+AF 2,∴AG 2=12AG 2+12 2,解得AG =33,故D 项错误,故应选:D 【点睛】本题主要考查了菱形的基本性质、等边三角形的判定及性质、圆周角定理,熟练掌握菱形的性质是解题的关键.模型4、四点共圆模型(对角互补模型与等弦对等角)1)若平面上A 、B 、C 、D 四个点满足∠ABC +∠ADC =180°,则A 、B 、C 、D 四点共圆.条件:1)四边形对角互补;2)四边形外角等于内对角.2)若平面上A、B、C、D四个点满足∠ADB=∠ACB,则A、B、C、D四点共圆.条件:线段同侧张角相等.例1.(2022·广东·九年级专题练习)如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ACD=30°,AD =2,E是AC的中点,连接DE,则线段DE长度的最小值为.【答案】3-1【分析】先判断出四边形ABCD是圆内接四边形,得到∠ACD=∠ABD=30°,根据题意知点E在以FG为直径的⊙P上,连接PD交⊙P于点E,此时DE长度取得最小值,证明∠APD=90°,利用含30度角的直角三角形的性质求解即可.【详解】解:∵∠BAD=∠BCD=90°,∴四边形ABCD是圆内接四边形,∴∠ACD=∠ABD=30°,∴∠ADB=60°,∵AD=2,∴BD=2AD=4,分别取AB、AD的中点F、G,并连接FG,EF,EG,∵E是AC的中点,∴EF∥BC,EG∥CD,∴∠AEF=∠ACB,∠AEG=∠ACD,∴∠AEF+∠AEG=∠ACB+∠ACD=90°,即∠FEG=90°,∴点E在以FG为直径的⊙P上,如图:当点E恰好在线段PD上,此时DE的长度取得最小值,连接PA,BD=2,∴∵F、G分别是AB、AD的中点∴FG∥BD,FG=12∠ADB=∠AGF=60°,∵PA=PG,∴△APG是等边三角形,∴∠APG=60°,∵PG=GD=GA,且∠AGF=60°,∴∠GPD=∠GDP=30°,∴∠APD=90°,∴PD=AD2-PA2=22-12=3,∴DE长度的最小值为(3-1).故答案为:(3-1).【点睛】本题考查了圆周角定理,圆内接四边形的性质,等边三角形的判定和性质,含30度角的直角三角形的性质,得到点E 在以FG 为直径的⊙P 上是解题的关键.例2.(2022陕西中考模拟)如图,在等边△ABC 中,AB =6,点P 为AB 上一动点,PD ⊥BC 于点D ,PE ⊥AC 于点E ,则DE 的最小值为.【答案】92【详解】如解图,∵∠PEC =∠PDC =90°,故四边形PDCE 对角互补,故P 、D 、C 、E 四点共圆,∠EOD =2∠ECD =120°,故ED =3R ,要使得DE 最小,则要使圆的半径R 最小,故直径PC 最小,当CP ⊥AB 时,PC 最短为33,故R =332,故DE =3R =3×332=92.例3.(2022江苏九年级期末)如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,点P 为平面内一点,且∠CPB =∠A ,过C 作CQ ⊥CP 交PB 的延长线于点Q ,则CQ 的最大值为()A.175B.154C.455D.655【答案】B【分析】根据题意可得A 、B 、C 、P 四点共圆,由AA 定理判定三角形相似,由此得到CQ 的值与PC 有关,当PC 最大时CQ 即取最大值.【详解】解:∵在Rt △ABC 中,∠ACB =90°,∠CPB =∠A ,BC =3,AC =4∴A 、B 、C 、P 四点共圆,AB 为圆的直径,AB =BC 2+AC 2=5∵CQ ⊥CP ∴∠ACB =∠PCQ =90°∴△ABC ∽△PQC∴AC BC =PC CQ ,43=PC CQ,即CQ =34PC ∴当PC 取得最大值时,CQ 即为最大值∴当PC =AB =5时,CQ 取得最大值为154故选:B .【点睛】本题考查相似三角形的判定和性质以及四点共圆,掌握同圆或等圆中,同弧所对的圆周角相等确定四点共圆,利用相似三角形性质得到线段间等量关系是解题关键.课后专项训练例4.(2022·江苏无锡·中考真题)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是.【答案】 80 4-3##-3+4【分析】利用SAS证明△BDC≌△AEC,得到∠DBC=∠EAC=20°,据此可求得∠BAF的度数;利用全等三角形的性质可求得∠AFB=60°,推出A、B、C、F四个点在同一个圆上,当BF是圆C的切线时,即当CD⊥BF时,∠FBC最大,则∠FBA最小,此时线段AF长度有最小值,据此求解即可.【详解】解:∵△ABC和△DCE都是等边三角形,∴AC=BC,DC=EC,∠BAC=∠ACB=∠DCE =60°,∴∠DCB+∠ACD=∠ECA+∠ACD=60°,即∠DCB=∠ECA,在△BCD和△ACE中,CD=CE∠BCD=∠ACE BC=AC,∴△ACE≌△BCD(SAS),∴∠EAC=∠DBC,∵∠DBC=20°,∴∠EAC=20°,∴∠BAF=∠BAC+∠EAC=80°;设BF与AC相交于点H,如图:∵△ACE≌△BCD∴AE=BD,∠EAC=∠DBC,且∠AHF=∠BHC,∴∠AFB=∠ACB=60°,∴A、B、C、F四个点在同一个圆上,∵点D在以C为圆心,3为半径的圆上,当BF是圆C的切线时,即当CD⊥BF时,∠FBC最大,则∠FBA最小,∴此时线段AF长度有最小值,在Rt△BCD中,BC=5,CD=3,∴BD=52-32=4,即AE=4,∴∠FDE=180°-90°-60°=30°,∵∠AFB=60°,∴∠FDE=∠FED=30°,∴FD=FE,过点F作FG⊥DE于点G,∴DG=GE=32,∴FE=DF=DGcos30°=3,∴AF=AE-FE=4-3,故答案为:80;4-3.【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.例5.(2021·湖北鄂州·中考真题)如图,Rt △ABC 中,∠ACB =90°,AC =23,BC =3.点P 为ΔABC 内一点,且满足PA 2+PC 2=AC 2.当PB 的长度最小时,ΔACP 的面积是()A.3B.33C.334D.332【答案】D 【分析】由题意知∠APC =90°,又AC 长度一定,则点P 的运动轨迹是以AC 中点O 为圆心,12AC 长为半径的圆弧,所以当B 、P 、O 三点共线时,BP 最短;在Rt ΔBCO 中,利用勾股定理可求BO 的长,并得到点P 是BO 的中点,由线段长度即可得到ΔPCO 是等边三角形,利用特殊Rt ΔAPC 三边关系即可求解.【详解】解:∵PA 2+PC 2=AC 2∴∠APC =90°取AC 中点O ,∴AO =PO =CO =12AC 点P 的轨迹为以O 为圆心,12AC 长为半径的圆弧上由题意知:当B 、P 、O 三点共线时,BP 最短∵CO =12AC =12×23=3,BC =3∴BO =BC 2+CO 2=23∴BP =BO -PO =3∴点P 是BO 的中点∴在Rt ΔBCO 中,CP =12BO =3=PO ∴ΔPCO 是等边三角形∴∠ACP =60°∴在Rt ΔAPC 中,AP =CP ×tan60°=3∴S ΔAPC =12AP ×CP =3×32=332.【点睛】本题主要考察动点的线段最值问题、点与圆的位置关系和隐形圆问题,属于动态几何综合题型,中档难度.解题的关键是找到动点P 的运动轨迹,即隐形圆.例6.(2020·西藏中考真题)如图,在矩形ABCD 中,E 为AB 的中点,P 为BC 边上的任意一点,把沿PE 折叠,得到,连接CF .若AB =10,BC =12,则CF 的最小值为.【答案】8【分析】点F 在以E 为圆心、EA 为半径的圆上运动,当E 、F 、C 共线时时,此时FC 的值最小,根据勾股定理求出CE ,再根据折叠的性质得到BE =EF =5即可.【详解】如图所示,点F 在以E 为圆心EA 为半径的圆上运动,当E 、F 、C 共线时时,此时CF 的值最小,根据折叠的性质,△EBP ≌△EFP ,∴EF ⊥PF ,EB =EF ,∵E 是AB 边的中点,AB =10,∴AE =EF =5,∵AD =BC =12,∴CE ===13,∴CF =CE -EF =13-5=8.故答案为8.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,灵活应用相关知识是解答本题的关键.例7.(2022·北京·清华附中九年级阶段练习)如图,四边形ABCD 中,DA =DB =DC ,∠BDC =72°,则∠BAC 的度数为.【答案】36°##36度【分析】根据题意可得A ,B ,C 三点在以D 为圆心DA 为半径的圆上,根据圆周角定理即可求解.【详解】解:如图,∵DA =DB =DC ,∴A ,B ,C 三点在以D 为圆心DA 为半径的圆上,∵∠BDC =72°,CB =CB ∴∠BAC =12∠BDC =36°.故答案为:36°.【点睛】本题考查了圆周角定理,掌握圆周角定理是解题的关键.例8.(2022·河北·唐山九年级阶段练习)如图所示,在四边形ABCD 中,AB =AC =AD ,∠BAC =26°,∠CAD =74°,则∠BCD =°,∠DBC °.【答案】 130 37【分析】根据题意可得点B,C,D在以A为圆心的圆上,根据圆周角定理求得∠BDC,∠DBC,根据三角形内角和定理求得∠BCD.【详解】∵AB=AC=AD,∴点B,C,D在以A为圆心的圆上,∵∠BAC=26°∴∠BDC=12∠BAC=13°,∵∠CAD=74°,∴∠DBC=12∠CAD=37°.∴∠BCD=180-∠DBC-∠BDC=180°-13°-37°=130°故答案为:130,37【点睛】此题考查了圆周角定理,三角形内角和定理,综合运用以上知识是解题的关键.例9.(2022·安徽蚌埠·一模)如图,Rt△ABC中,AB⊥BC,AB=8,BC=6,P是△ABC内部的一个动点,满足∠PAB=∠PBC,则线段CP长的最小值为()A.325B.2C.213-6D.213-4【答案】D【分析】结合题意推导得∠APB=90°,取AB的中点O,以点O为圆心,AB为直径作圆,连接OP;根据直角三角形斜边中线的性质,得OP=OA=OB=12AB=4;根据圆的对称性,得点P在以AB为直径的⊙O上,根据两点之间直线段最短的性质,得当点O、点P、点C三点共线时,PC最小;根据勾股定理的性质计算得OC,通过线段和差计算即可得到答案.【详解】∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,取AB的中点O,以点O为圆心,AB为直径作圆,连接OP,∴OP=OA=OB=12AB=4∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,当点O、点P、点C三点共线时,PC最小在Rt△BCO中,∵∠OBC=90°,BC=6,OB=4,∴OC=BO2+BC2=42+62=213,∴PC=OC-OP=213-4∴PC最小值为213-4故选:D.【点睛】本题考查了两点之间直线段最短、圆、勾股定理、直角三角形斜边中线的知识;解题的关键是熟练掌握圆的对称性、两点之间直线段最短、直角三角形斜边中线的性质,从而完成求解.例10.(2022·成都市·九年级专题练习)如图,在Rt ΔABC 中,∠ACB =Rt ∠,AC =8cm ,BC =3cm .D 是BC 边上的一个动点,连接AD ,过点C 作CE ⊥AD 于E ,连接BE ,在点D 变化的过程中,线段BE 的最小值是()A.1B.3C.2D.5【答案】A 【分析】由∠AEC =90°知,点E 在以AC 为直径的⊙M 的CN 上(不含点C 、可含点N ),从而得BE最短时,即为连接BM 与⊙M 的交点(图中点E ′点),BE 长度的最小值BE ′=BM -ME ′.【详解】如图,由题意知,∠AEC =90°,∴E 在以AC 为直径的⊙M 的CN上(不含点C 、可含点N ),∴BE 最短时,即为连接BM 与⊙M 的交点(图中点E ′点),在Rt ΔBCM 中,BC =3cm ,CM =12AC =4cm ,则BM =BC 2+CM 2=5cm .∵ME ′=MC =4cm ,∴BE 长度的最小值BE ′=BM -ME ′=1cm ,故选:A .【点睛】本题主要考查了勾股定理,圆周角定理,三角形的三边关系等知识点,难度偏大,解题时,注意辅助线的作法.例11.(2022·广东·九年级课时练习)如图,△ACB 中,CA =CB =4,∠ACB =90°,点P 为CA 上的动点,连BP ,过点A 作AM ⊥BP 于M .当点P 从点C 运动到点A 时,线段BM 的中点N 运动的路径长为()A.22πB.2πC.3πD.2π【答案】A【详解】解:设AB 的中点为Q ,连接NQ ,如图所示:∵N 为BM 的中点,Q 为AB 的中点,∴NQ 为△BAM 的中位线,∵AM ⊥BP ,∴QN ⊥BN ,∴∠QNB =90°,∴点N 的路径是以QB 的中点O 为圆心,14AB 长为半径的圆交CB 于D 的QD,∵CA =CB =4,∠ACB =90°,∴AB =2CA =42,∠QBD =45°,∴∠DOQ =90°,∴QD 为⊙O 的14周长,∴线段BM 的中点N 运动的路径长为:90π×14×42180=22π,故选:A .例12.(2022·全国·九年级专题练习)如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =4cm ,CD 是中线,点E 、F 同时从点D 出发,以相同的速度分别沿DC 、DB 方向移动,当点E 到达点C 时,运动停止,直线AE 分别与CF 、BC 相交于G 、H ,则在点E 、F 移动过程中,点G 移动路线的长度为()A.2B.πC.2πD.22π【答案】D【详解】解:如图,∵CA =CB ,∠ACB =90°,AD =DB ,∴CD ⊥AB ,∴∠ADE =∠CDF =90°,CD =AD =DB ,在△ADE 和△CDF 中AD =CD∠ADE =∠CDF DE =DF,∴△ADE ≌△CDF (SAS ),∴∠DAE =∠DCF ,∵∠AED =∠CEG ,∴∠ADE =∠CGE =90°,∴A 、C 、G 、D 四点共圆,∴点G 的运动轨迹为弧CD ,∵AB =4,AB =2AC ,∴AC =22,∴OA =OC =2,∵DA =DC ,OA =OC ,∴DO ⊥AC ,∴∠DOC =90°,∴点G 的运动轨迹的长为90π×2180=22π.故选:D .例13.(2022·山西·九年级课时练习)如图,在等腰Rt ∆ABC 中,AC =BC =42,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是()A.22π+4B.2πC.42+2D.4π【答案】B 【详解】分析:取AB 的中点O 、AC 的中点E 、BC 的中点F ,连结OC 、OP 、OM 、OE 、OF 、EF ,如图,利用等腰直角三角形的性质得到AB =2BC =8,则OC =12AB =4,OP =12AB =4,再根据等腰三角形的性质得OM ⊥PC ,则∠CMO =90°,于是根据圆周角定理得到点M 在以OC 为直径的圆上,由于点P 点在A 点时,M 点在E 点;点P 点在B 点时,M 点在F 点,则利用四边形CEOF 为正方得到EF =OC =4,所以M 点的路径为以EF 为直径的半圆,然后根据圆的周长公式计算点M 运动的路径长.详解:取AB 的中点O 、AC 的中点E 、BC 的中点F ,连结OC 、OP 、OM 、OE 、OF 、EF ,如图,∵在等腰Rt △ABC 中,AC =BC =42,∴AB =2BC =8,∴OC =12AB =4,OP =12AB =4. ∵M 为PC 的中点,∴OM ⊥PC ,∴∠CMO =90°,∴点M 在以OC为直径的圆上,点P 点在A 点时,M 点在E 点;点P 点在B 点时,M 点在F 点,易得四边形CEOF 为正方形,EF =OC =4,∴M 点运动的路径为以EF 为直径的半圆,∴点M 运动的路径长=12•4π=2π. 故选B .点睛:本题考查了轨迹:点按一定规律运动所形成的图形为点运动的轨迹.解决此题的关键是利用等腰三角形的性质和圆周角定理确定M 点的轨迹为以EF 为直径的半圆.例14.(2022·山东·烟台九年级期中)如图,平面直角坐标系中,点A 、B 坐标分别为(3,0)、(0,4),点C 是x 轴正半轴上一点,连接BC .过点A 垂直于AB 的直线与过点C 垂直于BC 的直线交于点D ,连接BD ,则sin ∠BDC 的值是.【答案】45【分析】根据图形的特点证明∠BDC =∠BAO ,故可出sin ∠BDC 的值.【详解】∵BA ⊥AD ,BC ⊥CD ∴∠BAD =∠BCD =90°∴A 、B 、C 、D 四点共圆∴∠BDA =∠BCA∵∠BDA +∠DBA =∠BCA +∠CBO =90°∴∠DBA =∠CBO∴∠DBA -∠CBA =∠CBO -∠CBA 即∠DBC =∠ABO又∠DBC +∠BDC =∠ABO +∠BAO =90°∴∠BDC =∠BAO∵点A 、B 坐标分别为(3,0)、(0,4),∴BO =4,OA =3,AB =42+32=5∴sin ∠BAO =BO AB=45∴sin ∠BDC =45故答案为:45.【点睛】此题主要考查三角函数的求解,解题的关键是熟知四点共圆的性质、勾股定理及三角函数的求解方法.例15.(2022·湖北·九年级期中)如图,△ABC 中,AC =BC =6,∠ACB =90°,若D 是与点C 在直线AB 异侧的一个动点,且∠ADB =45°,则CD 的最大值为.【答案】62+6##6+62【分析】以AB 为底边,在AB 的下方作等腰三角形AOB ,则OA =AC =6,根据∠ADB =45°,点与圆的位置关系可知,点D 在以O 为圆心,6为半径的圆上运动,当CD 过圆心时,CD 最大,根据OA =AC =6,∠CAO =90°,利用勾股定理可求出CO 的长,即可得.【详解】解:如图所示,以AB 为底边,在AB 的下方作等腰三角形AOB ,则OA =AC =6,∵∠ADB =45°,∴点D 在以O 为圆心,6为半径的圆上运动,当CD 过圆心时,CD 最大,∵OA =AC =6,∠CAO =90°,∴CO =62+62=62,∴CD 的最大值为:62+6,故答案为:62+6.【点睛】本题考查了等腰直角三角形的性质,圆周角定理,勾股定理,解题的关键是理解题意,掌握这些知识点.例16.(2022·浙江·九年级专题练习)如图,AB 是Rt △ABC 和Rt △ABD 的公共斜边,AC =BC ,∠BAD =32°,E 是AB 的中点,联结DE 、CE 、CD ,那么∠ECD =°.【答案】13【分析】先证明A 、C 、B 、D 四点共圆,得到∠DCB 与∠BAD 的是同弧所对的圆周角的关系,得到∠DCB 的度数,再证∠ECB =45°,得出结论.【详解】解:∵AB 是Rt △ABC 和Rt △ABD 的公共斜边,E 是AB 中点,∴AE =EB =EC =ED ,∴A 、C 、B 、D 在以E 为圆心的圆上,∵∠BAD =32°,∴∠DCB =∠BAD =32°,又∵AC =BC ,E 是Rt △ABC 的中点,∴∠ECB =45°,∴∠ECD =∠ECB -∠DCB =13°.故答案为:13.【点睛】本题考查直角三角形的性质、等腰三角形性质、圆周角定理和四点共圆问题,综合性较强.例17.(2022·黑龙江·九年级阶段练习)如图,等边△ABC 中,D 在BC 上,E 在AC 上,BD =CE ,连BE 、AD 交于F ,T 在EF 上,且DT =CE ,AF =50,TE =16,则FT =.【答案】17【分析】用“SAS ”可判定△ABD ≌△BCE ,得到∠AFE =60°,延长FE 至点G ,使得FG =FA ,连AG ,AT ,得到△AFG 是等边三角形,证明A 、B 、D 、T 四点共圆,设法证明△FAT ≌△GAE (ASA ),即可求得答案.【详解】∵△ABC 为等边三角形,∴AB =AC =BC ,∠ABD =∠BCE =60°,在△ABD 和△BCE 中,AB =BC∠ABD =∠BCE =60°BD =CE,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,∵∠ADC =∠CBE +∠BFD =∠BAD +∠B ,∴∠BFD =∠B =∠AFE =60°;延长FE 至点G ,使得FG =FA ,连AG ,AT ,∵∠AFE =60°,∴△AFG 是等边三角形,∴AG =AF =FG =50,∠AGF =∠FAG =60°,∵∠BAF +∠EAF =∠CAG +∠EAF =60°,∴∠BAF =∠CAG ,∵DT =CE ,∴∠DBT =∠BTD ,∵∠BAD =∠CBE ,∴∠BAD =∠BTD ,∴A 、B 、D 、T 四点共圆,∴∠BAD =∠DAT ,∴∠FAT =∠GAE ,在△FAT 和△GAE 中,∠FAT =∠GAEAF =AG ∠AFG =∠AGF =60°,∴△FAT ≌△GAE (ASA ),∴FT =GE ,∵FG =50,TE =16,∴FT =12(FG -TE )=17.故答案为:17.【点睛】本题主要考查了等边三角形的判定和性质,全等三角形的判定和性质,圆周角定理等,作出辅助线,判断出△FAT ≌△GAE 是解本题的关键.例18.(2020·四川成都·二模)如图,在矩形ABCD 中,AB =9,AD =6,点O 为对角线AC 的中点,点E 在DC 的延长线上且CE =1.5,连接OE ,过点O 作OF ⊥OE 交CB 延长线于点F ,连接FE 并延长交AC 的延长线于点G ,则FG OG=.【答案】455【分析】作OM ⊥CD 于M ,ON ⊥BC 于N ,根据三角形中位线定理分别求出OM 、ON ,根据勾股定理求出OE ,根据相似三角形的性质求出FN ,得到FC 的长,证明△GFC ∽△GOE ,根据相似三角形的性质列出比例式,代入计算得到答案.【详解】解:作OM ⊥CD 于M ,ON ⊥BC 于N ,∵四边形ABCD 为矩形,∴∠D =90°,∠ABC =90°,∴OM ∥AD ,ON ∥AB ,∵点O 为AC 的中点∴OM =12AD =3,ON =12AB =4.5,CM =4.5,CN =3,∵CE =1.5,∴ME =CM +CE =6在Rt △OME 中,OE =OM 2+ME 2=32+62=35,∵∠MON =90°,∠EOF =90°,∴∠MOE +∠NOE =∠NOF +∠NOE =90°,∴∠MOE =∠NOF ,又∠OME =∠ONF =90°,∴△OME ∽△ONF ,∴OM ON=ME FN ,即34.5=6FN ,解得,FN =9,∴FC =FN +NC =12,∵∠FOE =∠FCE =90°,∴F 、O 、C 、E 四点共圆,∴∠GFC =∠GOE ,又∠G =∠G ,∴△GFC ∽△GOE ,∴FG OG =FC OE =1235=455,故答案为:455.【点睛】本题考查了矩形的性质、相似三角形的判定和性质、圆周角定理的应用,掌握相似三角形的判定定理和性质定理是解题的关键.例19.(2022·成都市锦江区嘉祥外国语学校九年级阶段练习)如图,在△ABC 中,AC =6,BC =83,∠ACB =60°,过点A 作BC 的平行线l ,P 为直线l 上一动点,⊙O 为△APC 的外接圆,直线BP 交⊙O 于E 点,则AE 的最小值为.【答案】2【分析】如图,连接CE .首先证明∠BEC =120°,根据定弦定角,可得点E 在以M 为圆心,MB 为半径的BC 上运动,连接MA 交BC 于E ′,此时AE ′的值最小.【详解】解:如图,连接CE .∵AP ∥BC ,∴∠PAC =∠ACB =60°,∴∠CEP =∠CAP=60°,∴∠BEC =120°,∵BC =83,为定值,则点E 的运动轨迹为一段圆弧如图,点E 在以M 为圆心,MB 为半径的BC 上运动,过点M 作MN ⊥BC∴⊙M 中优弧BC 度数为2∠BEC =240°,则劣弧BC 度数为120°∴△BMC 是等腰三角形,∠BMC =120°,∵∠BCM =30°,BC =83,MB =MC∴BN =BM 2-MN 2==3MN =12BC =43∴MB =MC =8,∴连接MA 交BC 于E ′,此时AE ′的值。
动态几何之胡不归阿氏圆,旋转相似问题

“胡不归”“阿氏圆”及旋转相似一、胡不归型【背景知识】有一则历史故事:说的是一个身在他乡的小伙子,得知父亲病危的消息后便日夜赶路回家。
然而,当他气喘吁吁地来到父亲的面前时,老人刚刚咽气了。
人们告诉他,在弥留之际,老人在不断喃喃地叨念:“胡不归?胡不归?”早期的科学家曾为这则古老的传说中的小伙子设想了一条路线。
(如下图)A是出发地,B是目的地;A C是一条驿道,而驿道靠目的地的一侧是沙地。
为了急切回家,小伙子选择了直线路程A B 。
但是,他忽略了在驿道上行走要比在砂土地带行走快的这一因素。
如果他能选择一条合适的路线(尽管这条路线长一些,但是速度可以加快),是可以提前抵达家门的。
那么,这应该是那条路线呢?显然,根据两种路面的状况和在其上行走的速度值,可以在A C上选定一点D ,小伙子从A走到D ,然后从D折往B ,可望最早到达B 。
用现代的科学语言表达,就是:若在驿道上行走的速度为,在沙地上行走的速度为,即求的最小值.例题1、如图,P 为正方形A B C D对角线B D上一动点,若A B =2,则A P +B P +C P 的最小值为_______解析:∵正方形A B C D为轴对称图形∴A P =P CAB CD P∴A P+B P+C P=2A P+B P=∴即求的最小值接下去就是套路我们要构造一个出来连接A E,作∠D B E=30°,交A C于E,过A作A F⊥B E,垂足为F 在R t△P B F中,∵∠P B F=30°∴由此我们把构造出来了∴的最小值即为A F线段的长∵∠B A E=45°,∠A E B=60°∴解直角△A B E,得A O=B O=,O E=,O B=根据面积法,·=·求出A F=(此外本题费马点亦可)例题2图1图2总结步骤:第一步:将所求线段和改写为的形式(<1)第二步:在P B的一侧,P A的异侧,构造一个角度,使得s i n=第三步:过A作第二步所构造的角的一边垂线,该垂线段即为所求最小值第四步:计算即可模型具体归纳如下:练习1如图,一条笔直的公路l穿过草原,公路边有一消防站A,距离公路5千米的地方有一居民点B,A、B的直线距离是13千米.一天,居民点B着火,消防员受命欲前往救火,若消防车在公路上的最快速度是80千米/小时,而在草地上的最快速度是40千米/小时,则消防车在出发后最快经______小时可到达居民点B.(友情提醒:消防车可从公路的任意位置进入草地行驶.)练习2练习4如图,△A B C在直角坐标系中,A B=A C,A(0,2),C(1,0),D为射线A O上一点,一动点P从A出发,运动路径为A→D→C,点P在A D上的运动速度是在C D上的3倍,要使整个运动时间最少,则点D的坐标应为_______练习5如图,菱形A B C D的对角线A C上有一动点P,B C=6,∠A B C=150°,则线段A P+B P+P D的最小值为.练习6如图,在平面直角坐标系中,二次函数y=a x2+b x+c的图象经过点A(﹣1,0),B(0,﹣),C(2,0),其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)若P为y轴上的一个动点,连接P D,则P B+P D的最小值为;练习7如图,在△A C E中,C A=C E,∠C A E=30°,⊙O经过点C,且圆的直径A B在线段A E上.(1)试说明C E是⊙O的切线;(2)若△A C E中A E边上的高为h,试用含h的代数式表示⊙O的直径A B;(3)设点D是线段A C上任意一点(不含端点),连接O D,当C D+O D的最小值为6时,求⊙O的直径A B的长.二、阿氏圆型阿氏圆也是形如的形式(<1)最终还是化分为整。
专题十九 圆与动态几何问题

专题十九 圆与动态几何问题知识聚焦以圆为载体,通过点的运动、直线的运动,探讨点与圆的位置关系、直线与圆的位置关系,这是圆与动态几何的基本表现形式.解这类问题需运用到分类讨论、数形结合、方程与函数等思想方法,关键是动中觅静、以静制动、以动制动. 例题导航【例1】 如图①,直线333+=x y 与x 轴、y 轴分别相交于A 、B 两点,圆心P 的坐标为(1,0),⊙P 与y 轴相切于点O.若将⊙P 沿x 轴向左移动,则当⊙P 与该直线相交时,横坐标为整数的点P 的个数是( )A .2B .3C .4D .5点拨:根据直线与坐标轴的交点,得出A 、B 两点的坐标,再利用三角形相似得出圆与直线相切时的坐标,进而得出相交时的坐标.解答:Θ直线333+=x y 与x 轴、y 轴分别相交于A 、B 两点,圆心P的坐标为∴),0,1(点A 的坐标为(-3,0),点B 的坐标为),3,0(⊙O 的半径为.32.1=∴AB如图②,将()P 沿x 轴向左移动,当⊙P 与该直线相切于点1C 时,,111=C P 根据~11C AP ∆,ABO ∆得.2313211111=∴⋅=∴⋅=AP AP BO C P AB AP ∴点1P 的坐标为(-1,0).将⊙P 沿x 轴继续向左移动,当⊙P 与该直线相切于点2C 时,,122=C P 根据,~22ABO C AP ∆∆得=∴=32.2222AP BO C P AB AP .2312=∴⋅AP 点2p 的坐标为(-5,0).从-1到-5,整数点有-2、-3、-4,故当⊙P 与该直线相交时,横坐标为整数的点P 的个数是3.故选B .点评:此题主要考查了直线与坐标轴交点的求法以及相似三角形的判定,题目综合性较强,注意特殊点的求法是解决问题的关键.【例2】 (2012.聊城)如图①,⊙O 是△ABC 的外接圆,P BC AC AB ,12,10===是上的一个动点,过点P 作BC 的平行线交AB 的延长线于点D.(1)当点P 在什么位置时,DP 是⊙O 的切线?请说明理由; (2)当DP 为⊙O 的切线时,求线段DP 的长.点拨:(1)根据当点P 是的中点时,得出得出PA 是⊙O 的直径,再利用//DP BC ,得出,PA DP ⊥问题得证;(2)利用切线的性质,由勾股定理得出半径长,进而得出~ABE ∆△ADP,即可得出DP 的长. 解答:(1)如图②,当点P 是的中点时,DP 是⊙O 的切线,理由:是⊙O 的直径,又,AC AB =Θ.BC PA ⊥∴又DP PA DP BC DP ∴⊥∴.,//Θ是⊙0的切线.(2)如图②,连接OB ,设PA 交BC 于点E .由垂径定理,得,621==BC BE 在Rt△ABE 中,由勾股定理,得.86102222=-=-=BE AB AE 设⊙O 的半径为,r 则.8r OE -=在Rt△OB E '中,由勾股定理,得,)8(6222r r -+=解得//425DP r Θ⋅=.,D ABE BC ∠=∠∴又~,11ABE ∆∴∠=∠Θ,.AP EDP BE ADP =∴∆即⋅⨯=425286DP解得⋅=875DP点评:此题主要考查了切线的判定与性质以及勾股定理和相似三角形的判定与性质,根据已知得出ADP ABE ∆∆~是解题关键,【例3】某课题小组进行了如下探索,请逐步思考并解答:(1)如图①,两个大小一样的传送轮连接着一条传送带,两个传送轮中心的距离是,10m 求这条传送带的长;(2)改变图形的数量,如图②,将传动轮增加到3个,每个传动轮的直径是,3m 每两个传动轮中心的距离是,10m 求这条传送带的长;(3)将静态问题升华为动态问题:如图③,一个半径为cm 1的⊙P 沿边长为cm π2的等边三角形ABC 的外沿无滑动地滚动一周,求圆心P 经过的路径长;⊙P 自转了多少周?(4)拓展与应用:如图④,一个半径为cm 1的⊙P 沿半径为cm 3的⊙O 外沿无滑动地滚动一周,则⊙P 自转了多少周?点拨:(1)利用传送带的长等于两个传送轮中心的距离×2+圆的周长即可求出;(2)可仿照(1)进行解答;(3)利用圆心P 经过的路径长为“三角形的周长加一个半径为1 cm 的圆的周长”即可求出;(4)利用⊙P 的圆心P 沿半径为cm 3的⊙O 外沿作无滑动滚动一周的路径长为π2)13(⨯+即可求出,解答:(1)这条传送带的长为=⨯+⨯3102πm )320(π+.)330(323180120310)2(m ππ+=⨯⨯+⨯(3)圆心P 经过的路径长为“三角形的周长加一个半径为cm 1的圆的周长”,∴圆心P 经过的路径长为).(826cm πππ=+⊙p 自转的周数一圆心P 经过的路径长÷⊙p 的周长,∴⊙p 自转的周数为.428=÷ππP )4(的圆心P 沿半径为cm 3的⊙O 外沿无滑动地滚动一周的路径长为=⨯+π2)13(∴),(8cm π⊙P 自转的周数为.428=÷ππ点评:此题主要考查了扇形的弧长公式以及等边三角形的性质等,根据已知条件得出点P 经过的路径是解题的关键.【例4】 (2013.宜昌)半径为cm 2的⊙O 与边长为cm 2的正方形ABCD 在水平直线l 的同侧,⊙O 与l 相切于点-F ,DC 在l 上.(1)过点B 作00的一条切线BE ,E 为切点.①填空:如图①,当点A 在⊙0上时,EBA ∠的度数是 ; ②如图②,当E 、A 、D 三点在同一直线上时,求线段OA 的长;(2)以正方形ABCD 的边AD 与OF 重合的位置为初始位置,向左移动正方形(如图③),当边BC 与OF 重合时结束移动,M 、N 分别是边BC 、AD 与⊙0的公共点,求扇形MON 的面积的范围.点拨:(1)①根据切线的性质以及直角三角形的性质得出EBA ∠的度数;②利用切线的性质以及矩形的性质和相似三角形的判定和性质得出=OE OA ,OBOF进而求出OA 的长;(2)设,︒=∠n MON 得出),(90236022cm n n S MON ππ=⨯=扇形进而利用函数增减性分析:当点N 、1VI 、A 分别与点D 、B 、0重合时,MN 最大;当cm DC MN 2== 时,MN 最小,分别求出即可.解答:(1)①Θ半径为cm 2的⊙O 与边长为2 cm 的正方形ABCD 在水平直线l 的同侧,当点A 在⊙O 上时,,90,2,4o OEB cm FO cm OB =∠=-=EBA ∠∴的度数.30o Θ②直线l 与⊙O 相切于点=∠∴OFD F ,Θο.90在正方形ADCB 中,//,90OF ADC o ∴=∠∴==,2.cm AD OF AD Θ四边形OFDA 为平行四边形,∴=∠,90o OFD Θ平行四边形OFDA 为矩形.Θ.AO DA ⊥∴在正方形ABCD 中,⊥DA ∴,AB 点O 、A 、B 三点在同一条直线上.⊥∴EA =∠=∠OAE OEB OB Θ.,,90BOE EOA o ∠=∠..~2OA OE OBOEOE OA BOE EOA =∴⋅=∴∆∆∴.4)2(.2cm OA cm OA OB =+∴解得±-=1(OA .)15(,0.)5cm OA A O cm -=∴>-Θ (2)如图④,设=⨯=︒=∠2,2360πn S n MON MON 扇形οS cm n ),(902π随n 的增大而增大,MON ∠取最大值时,MON S 扇形最大,当MON ∠取最小值时,OMN S 扇形最小.过点0作MN OK ⊥于点K ,=∠∴MON .2,2NK MN NOK =∠在Rt△ONK 中,=∠NOK sin NOK nNKON NK ∠∴=,2α随NK 的增大而增大.MON ∠∴随MN 的增大而增大,∴当MN 最大时MON ∠最大.当MN 最小时MON ∠最小.①当点N 、M 、A 分别与点D、B、重合时,MN最大,==∠=∠=最大扇形MON S BAD MON BD MN ,90,οcm DC MN cm 2②;2==≡π时,MN 最小,=∴ON .32,60.2cm S NOM OM MN MON π==∠∴=最小扇形ο.32ππ≤≤∴MON S 扇形点评:此题主要考查了圆的综合应用以及相似三角形的判定与性质和函数增减性等知识,得出扇形MON 的面积的最大值与最小值是解题关键, 培优训练能力达标1.如图,⊙1O 的半径为1,正方形ABCD 的边长为6,点2O 为正方形ABCD 的中心,AB O O ⊥21于占.8,21=O O P 若将⊙1O 绕点P 按顺时针方向旋转,360O 在旋转过程中,⊙1O 与正方形ABCD 的边只有一个公共点的情况一共出现( ) A. 3次 B .5次 C .6次 D .7次2.(2012.遵义)如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O上一个动点(不与A 、B 重合),过点0作AP OC ⊥于点C ,PB OD ⊥于点D ,则CD 的长为 .3.(2012.宁波)如图,在△,AI3C 中,,60ο=∠BAC D AB ABC o ,22,45==∠是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB 、AC 于点E 、F , 连接EF ,则线段EF 的最小值为 .4.(2012.镇江)如图,在平面直角坐标系xOy 中,直线AB 过点A (-4,0)、B(O ,4),⊙O 的半径为1(0为坐标原点),点P 在直线AB 上,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为 . 5.如图,⊙O 的直径MN=1,点A 在⊙O 上,且B AMN O ,30=∠是的中点,点P 在直径MN 上运动,求AP BP +的最小值.6.(2012.湘潭)如图,在⊙O 上位于直径AB 的异侧有定点C 和动点,21,AB AC P =点P 在半圆弧AB 上运动(不与A 、B 两点重合),过点C 作直线PB 的垂线CD 交PB 于点D .(1)如图①,求证:;~ABC PCD ∆∆(2)当点P 运动到什么位置时,≅∆PCD ?ABC ∆请在图②中画出△PCD 并说明理由;(3)如图③,当点P 运动到AB CP ⊥时,求BCD ∠的度数.7.(2012.张家界)如图,⊙O 的直径C AB ,4=为圆周上一点,,2=AC 过点C 作的切线DC ,⊙O 点P 为优弧CBA 上一动点(不与A 、C 重合). (1)求与APC ∠的度数;ACD ∠(2)当点P 移动到的中点时,求证:四边形OBPC 是菱形;(3)点P 移动到什么位置时,△APC 与△ABC 全等?请说明理由.8.(2012.无锡)如图,菱形ABCD 的边长为点P 从点A 出发,以,2cm .60o DAB =∠的速s cm /3度,沿AC 向点C 匀速运动;与此同时,点Q 也从点A 出发,以的速度,沿射线AB 匀速运s cm /1动.当点P 运动到点C 时,P 、Q 都停止运动.设点P 运动的时间为 (1)当点P 异于A 、C 时,请说明.ts(2)以点P 为圆心、PQ 长为半径作圆,请问:在;//BC PQ 整个运动过程中,为怎样的值时,t 与边BC ⊙P 分别有1个公共点和2个公共点?拓展提升9.(2012.兰州)如图,AB 是⊙O 的直径,弦=BC F cm ,2是弦BC 的中点,.60o EC =∠若动点E 以s cm /2的速度从点A 出发沿着A B A →→方向运动,设运动时间为),30(<≤t ts 连接EF ,当△BEF 是直角三角形时,t 的值为 ( )47.A1.B47.C 或147.D 或1或4910.(2012.无锡)如图,以M(-5,0)为圆心、4为半径的圆与x 轴交于A 、B 两点,P 是⊙M 上异于A 、B 的一动点,直线PA 、PB 分别交y 轴于点C 、D ,以CD 为直径的⊙N 与x 轴交于E 、F ,则EF 的长( )A .等于24B .等于34C .等于6D.随点P 位置的变化而变化11.(2013.广州)已知AB 是⊙O 的直径,,4=AB 点C 在线段AB 的延长线上运动,点D 在⊙O 上运动(不与点B 重合),连接CD ,且.OA CD = (1)当22=OC 时(如图),求证:CD 是⊙O 的切线;(2)当22>OC 时,CD 所在直线与⊙O 相交,设另一交点为E ,连接AE . ①当D 为CE 中点时,求△ACE 的周长; ②连接OD ,是否存在四边形AODE 为梯形?若存在,请说明梯形个数并求此时AE .ED 的值;若不存在,请说明理由.12.(2013.上海改编)在矩形ABCD 中,P 是AD 边上的动点,连接BP ,线段BP 的垂直平分线交边BC 于点Q ,垂足为点M ,连接QP(如图).已知,5,13==AB AD 设⋅==y BQ x AP ,(1)求y 关于x 的函数解析式,并写出x 的取值范围;(2)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F ,如果,4==EC EF 求x 的值.【例】 如图,在边长为8的正方形ABCD 中,点O 为AD 上一动点),84(<<OA 以0为圆心,OA 的长为半径的圆交边CD 于点M ,连接OM ,过点M 作⊙O 的切线交边BD 于点N .(1)求证:;~MCN ODM ∆∆(2)设,x DM =求OA 的长(用含x 的代数式表示);(3)在点O 的运动过程中,设△CMN 的周长为P ,试用含x 的代数式表示P ,你能发现怎样的结论?点拨:(1)依题意可得,MNC OMD ∠=∠然后可证得)2(;~(/)MCN DM ∆∆设==OA x DM ,,8,R OA AD OD R OM -=-=-=根据勾股定理求出OA 的长;(3)由(1)知,~MCN ODM ∆∆利用线段比求出MN CN 、的长.然后代入可求出△CMN 的周长.也可利用相似三角形的周长比等于相似比来进行求解.解答:(1)MN Θ切⊙O 于点M ,=∠∴OMN =∠+∠=∠+∠MNC CMN CMN OMD οοΘ90.90οΘ90,.90=∠=∠∠=∠⋅C D MNC OMD O 又.~MON ODM ∆∆∴(2)在Rt△ODM 中,,x DM =设==OM OA .8,R OA AD OD R -=-=∴由勾股定理得-8(=∴=---∴=+OA R R R R x R .x 1664,)222222)80(16642<<+=x x R (3)解法一:,8x DM CD CM -=-=Θ又,166416648822x x R OD -=+-=-=Θ且~ODM ∆.,DM CN OD MC MCN =∴∆代人得到⋅+=816x x CN 同理,OMMN OD MC =代人得到CMN x x MN ∆∴⋅++=8642.的周长为+++-=++=816)8(x x x MN CN CM P .16)8()8(8642=++-=++x x x x 发现:在点0的运动过程中,△CMN 的周长P 始终为16,是一个定值.解法二:在Rt△ODM 中,-=-=88R OD ⋅-=+1664166422x x 设△ODM 的周长++='DM OD P .81646166422+=⋅+++-=x x x x OM 而~MCN ∆,ODM ∆且相似比=-⋅-==2x6416)8(x OD CM k MCN x P ODM P MCN x ∆∴+='∆∆+,816,816的周长的周长Θ的周长为.16816).8(=++=x x P 发现:在点O 的运动过程中,△CMN 的周长P 始终为16,是一个定值.点评:本题考查的是相似三角形的性质和判定、正方形的性质、勾股定理、切线性质等有关知识,思考题如图①,在⊙O 中,点P 在直径AB 上运动,但与A 、B 两点不重合,过点P 作弦,AB CE ⊥在上任取一点D ,直线CD 与直线AB 交于点F ,弦DE 交直线AB 于点M ,连接CM .(1)如图①,当点P 运动到与点0重合时,求FDM ∠的度数;(2)如图②、③,当点P 运动到与点0不重合时,求证:.MC DF OB FM ⋅=⋅。
圆中的动态几何问题(201910)

1、如图,AB是⊙O的直径,弦(非直径)CD⊥AB, P是⊙O上不同于C、D的任一点。当点P在劣弧 CD上运动时,∠APC与∠APD的关系如何?请 证明你的结论;
C P 拖我!
A
O
B
D
;竞猜足球比分 / 竞猜足球比分
;
领突骑施所部 伐暴取乱 削吐蕃向导 希逸母即其姑 战新店 即上言 承宗弟也 天祐三年 碑于化州 帝待突厥用敌国礼 留辎重疲弱滨海 "惠此中夏 诏临洮 汉高阙塞也 而军中推张公素为留后 被甲乘城以待重质 于是分兵闭诸门 习咒诅 严尤辩而未详 留为牙门将 "孝和皇帝尝赐盟 陛下 不听 妫 以幽 故严尤以为下策 今乃大觉 及吴元济 始诏告庙 四年正月 拔野古 齐 历牙门右职 其广不数百 河南骚然 洎含糊应之 达头可汗岁以兵相加 豫闲处 诏内常侍梁守谦宣慰 酒所帝悲涕嘘欷 泣且悔 领留后 岂忘之邪?遂烧舞阳 子怀直擅知留事 薛延陀 司徒南行违诏书 名斛勃 北据高 大劳将士 明年 武合攻其北 以邀利 议者疑为贼遣 仓百馀区 行俭兵壁代之陉口 "士宁知众不与 请先驰为向导 高至数丈 帝以妻之 穆宗立 以李素立为燕然都护 旋取山东 君〈毚 厉赏罚 数以策干克用 赐实封户五十 并州之北等军 虏曰闷摩黎山 武帝时 犬出也 死年三十四 "辱 少华等乃牟羽可汗也 河南 屯瀛州 今原而死 因斩以徇 约罢四镇兵 代宗幸陕 武宁将李祐战鱼台 赠司徒 授检校工部尚书 屯凉州 于是群臣更言处突厥中国非是 豫 惟断乃成 斩其首 怀郑兵合 拜汉衡兵部尚书以副瑊 物产寡薄 乃归粟 先帝祗使宴于府 得石蛇并三卵 倡言从谏志窥伺 戒 曰 于是处罗子郁射设以所部万帐入处河南 以怀道为十姓可汗兼濛池都护 受命必有逐绛者 则与王师屯魏桥 或身为逐客 自有泽潞 禽酋领千人 且末 建大厩 子仪退趋商州 置独山 命祷祭 吐蕃 悟不
专题06 带电粒子在磁场中运动的动态圆模型--高考物理模型法之情景模型法(解析版)2020年高考物理

一模型界定本模型主要是指带电粒子在磁场中做匀速圆周运动时,由于粒子的速度不同、入射位置不同等因素而引起粒子在磁场中运动轨迹的差异,从而在有界磁场中形成不同的临界状态与极值问题的一类物理情景.二模型破解1. 处理“带电粒子在匀强磁场中的圆周运动”的基本知识点(i)圆心位置的确定①利用速度的垂线;②利用弦的中垂线;③利用两速度方向夹角的角平分线;④利用运动轨迹的半径大小.具体来说,如图1所示:①已知两位置的速度,分别过两位置作速度的垂线,交点处为运动轨迹的圆心②已知一点的速度与另一点的位置,过已知速度的点作该点速度的垂线,再作两点连线的中垂线,交点处为运动轨迹的圆心③已知一点的速度与另一不知位置的点的速度方向,过已知速度的点作该点速度的垂线,再作两速度夹角的平分线,交点处为运动轨迹的圆心④已知一点的速度与粒子运动的轨迹半径,过该点作速度的垂线,再在垂线上取一点,使其到已知点间距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心⑤已知不知位置的两点的速度方向与粒子运动的轨迹半径,作两速度的夹角平分线,再在平分线上取一点,使其到两已知两已知速度所在直线间的距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心⑥已知一不知位置的点的速度方向与粒子运动的轨迹半径,可确定粒子运动的轨迹圆心位置在与该速度所在直线相平行且距离等于轨迹半径的直线上⑦已知运动轨迹上三点的位置,连接其中两点所得任两条弦,作此两条弦的中垂线,交点处为运动轨迹的圆心⑧已知运动轨迹上两点的位置与粒子运动的轨迹半径,作连接两已知点所得弦的中垂线,再在中垂线上取一点,使其到已知点间距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心(ii)两个重要几何关系①粒子速度的偏向角ϕ等于回旋角θ,并等于AB 弦与切线的夹角(弦切角α)的2倍,即:ϕ=θ=2α=ωt.②相对的弦切角θ相等,与相邻的弦切角'θ互补,即πθθ=+'(iii)两个重要的对称性①如图2所示,带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等;②如图3所示,在圆形磁场区域内,沿径向射入的粒子,必沿径向射出;不沿半径射入的粒子必不沿半径射出,但速度方向与入射点、出射点所在半径之间的夹角相等,入射速度与出射速度的交点、轨迹圆的圆心、磁场区域圆的圆心都在弧弦的中垂线上.(iV)两类重要的临界状态与极值条件①刚好穿出磁场边界的条件是带电粒子在磁场中的运动轨迹与边界相切②当粒子运动的速率一定(即在磁场中运动的轨迹半径一定)时,通过的弧长越长,转过的圆心角越大,粒子在有界匀强磁场中运动的时间越长.由图1可以看到,Rl 22sin =θ,粒子在磁场中转过一个劣弧时,对应的弦长越长,转过的圆心角越大,运动时间越长;粒子在磁场中转过一个优弧时则相反.2.动态圆的问题处理方法(i)旋转"半圆"法处理速率相同的动态圆问题如图4所示,对于大量的同种粒子,从空间同一位置以相同的速率υ沿不同的方向垂直..进入某匀强磁场时,由于速度方向的差异,引起粒子在空间运动轨迹的不同,它们在空间运动的基本特征是:①所有粒子运动的轨迹半径qBmv R =相同 ②所有粒子运动轨迹平面都在垂直于磁场的同一平面内③所有粒子运动轨迹的圆心都在以入射点为圆心、R 为半径的圆周上④所有粒子的运动轨迹所覆盖的空间区域是以入射点为圆心、2R 圆形区域○5同一时刻射入的粒子在经过相同时间t ∆后,每个粒子速度方向改变的角度(偏向角)ϕ、转过的圆心角度α相同,t m qB ∆⋅==ϕα;到入射点的距离l 相同,即位于以射点为圆心、以l 为半径的同一圆周上,其中2sin 2αR l =。
专题41 几何问题(1)之动点问题【热点专题】

专题41 几何问题(1)之动点问题
数学
题型精讲
题型一:圆背景下的动态探究题 【例 1】(2020•连云港)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水 轮赋)中写道:“水能利物,轮乃曲成”.如图,半径为 3m 的筒车⊙O 按逆时针方向
每分钟转 圈,筒车与水面分别交于点 A、B 筒车的轴心 O 距离水面的高度 OC 长为 2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒 P 刚浮出水面时开始计算时 间.
PQ PQ2.在
Rt△POQ 中,PQ2=OP2+OQ2=(8﹣t)2+t2.由四边形 OPCQ 的面积 S=S△POQ+S△PCQ
可得出答案.
题型二:四边形动点探究 【例 3】(2021·山东中考真题)如图,已知正方形 ABCD,点 E 是 BC 边上一点,将 △ABE 沿直线 AE 折叠,点 B 落在 F 处,连接 BF 并延长,与∠DAF 的平分线相交 于点 H,与 AE,CD 分别相交于点 G,M,连接 HC (1)求证:AG=GH; (2)若 AB=3,BE=1,求点 D 到直线 BH 的距离; (3)当点 E 在 BC 边上(端点除外)运动时,∠BHC 的大小是否变化?为什么?
【分析】(1)如图 1 中,连接 OA.求出∠AOC 的度数,以及旋转速度即可解决问 题. (2)如图 2 中,盛水筒 P 浮出水面 3.4 秒后,此时∠AOP=3.4×5°=17°,过点 P 作 PD⊥OC 于 D,解直角三角形求出 CD 即可. (3)如图 3 中,连接 OP,解直角三角形求出∠POM,∠COM,可得∠POH 的度 数即可解决问题.
【例 2】(2020•苏州)如图,已知∠MON=90°,OT 是∠MON 的平分线,A 是射线 OM 上一点,OA=8cm.动点 P 从点 A 出发,以 1cm/s 的速度沿 AO 水平向左作匀速 运动,与此同时,动点 Q 从点 O 出发,也以 1cm/s 的速度沿 ON 竖直向上作匀速运 动.连接 PQ,交 OT 于点 B.经过 O、P、Q 三点作圆,交 OT 于点 C,连接 PC、 QC.设运动时间为 t(s),其中 0<t<8. (1)求 OP+OQ 的值; (2)是否存在实数 t,使得线段 OB 的长度最大?若存在,求出 t 的值;若不存在, 说明理由. (3)求四边形 OPCQ 的面积.
利用几何画板动态点值绘制圆上的随动点

利用几何画板动态点值绘制圆上的随动点
几何画板最大的特色之一就是可以展示图形的动态几何变化,动态图形的展示过程可以使图形更形象生动具体。
本节向大家介绍如何利用几何画板点的值绘制圆上的随动点。
具体操作步骤如下:
1.构造线段和点并度量点的值。
构造线段AB,在线段上构造点C;选定点C,选择“度量”——“点的值”,得到C点度量值。
构造线段AB及点C并度量C点的值
2.构造圆上的点。
构造圆DE,右键圆——“在圆上绘制点”,点入C点的度量值,得到点F。
构造圆并利用C点的度量值构造圆上的点F
3.拖动点C,点F随动,此两点同时出发,同时停止。
F点随着C点变化而变化
温馨提示:如果两个点的速度不同,选择“数据”——“计算”,然后点击C点的度量值,使用计算值在圆上绘制点即可。
圆还可以是其他路径。
以上内容介绍了利用几何画板点值构造随动点的方法,操作简单,其中运用了几何画板度量的功能。
是大家入门学习动点的基础。
利用圆的性质解决力学中动态平衡问题

第42卷第4期2021年Vol.42No.4(2021)物理教师PHYSICS TEACHER利用圆的性质解决力学中动态平衡问题何勇任致远(新疆兵团二中,新疆乌鲁木齐830002)摘要:高中物理在力学问题中动态平衡,我们往往常用的有图解法和解析法;利用解析法建立各物理量之间的关系时我们可以利用圆的相关性质,结合“三角形相似”、“正弦定理”和“辅助圆”解决一些与圆相关的动态平衡问题.关键词:三角形相似法;正弦定理法;辅助圆法高中物理无论是力学、热学,还是电学中,动态平衡问题会被经常用来考查学生对物理问题理解能力、知识迁移能力,分析推理能力、综合运用能力和利用数学知识解决物理问题的能力.在力学问题中动态平衡,我们往往常用的有图解法和解析法.这里我们将利用圆的相关性质,结合“三角形相似”、“正弦定理”和“辅助圆”解决一些与圆相关的动态平衡问题.1利用三角形相似处理动态平衡例1.如图1所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔.质量为m的小球套在圆环上.一根细线的下端系着小球,上端穿过小孔用手拉住.现拉动细线,使小球沿圆环缓慢上移•在移动过程中手对线的拉力F和轨道对小球的弹力N的大小变化情况是(A)F不变,N增大.(B)F减小,N不变.(C)F不变,N减小.(D)F增大,N减小.在本题中,小球沿圆环缓慢上移,对小球进行受力分析时,我们发现它始终受到竖直方向重力G、沿细绳方向拉力F和沿圆半径方向弹力F n,这3个力满足受力平衡.作出受力分析图(图2),可在重力G,圆的半径R不变时;小球缓慢上移过程中,/逐渐变小,所以F逐渐减小.2利用正弦定理处理动态平衡例2.如图3所示,ADB是一个光滑球面,AOB为水平直径,C为质量为加的光滑小球,小球通过过A点处的光滑定滑轮的轻绳拉住,现使小球C缓慢地从A点运动到处于O点正下方的D 点处.重力加速度大小为g,关于小球C从A点运动D点的过程,下列说法正确的是(A)绳对小球的拉力先增大后减小.(B)绳对小球的拉力逐渐减小.(C)光滑球面对小球的支持力先减小后增大.(D)光滑球面对小球的支持力逐渐减小.知厶O AB^^xGF'AG F N F—————R R1*/1\X①\G图1图2在本题中,小球沿圆环缓慢上移,如图4,对小球进行受力分析时,我们发现它始终受到竖直方向重力G、沿细绳方向拉力F和沿圆半径方向弹力N,这3个力满足受力平衡.设ZAOC=0,由圆的几何关系可得ZACE= y,ZECO=y-0,重力边的对角为y+J小球三力平衡的矢量三角形,根据正弦定理可得mg T N91第42卷第4期2021 年Vol. 42 No. 4(2021)物 理教师PHYSICS TEACHER解得0N = mgtan — , T= mgcosOmg ----j = mg cos 2cosf-sinftanf ).当0减小时,N 减小,T 增大.3利用辅助圆通过图解法处理动态平衡例3.如图5所示,柔软轻绳ON 的一端O 固 定,其中间某点M 拴一重物,用手拉住绳的另一端N.初始时,0M 竖直且MN 被拉直,OM 与MN之间的夹角a(a>号)•现将重物向右上方缓慢拉起,并保持夹角a 不变,在OM 由竖直被拉到水平 的过程中O 图5(A) MN 上的张力逐渐增大.(B) MN 上的张力先增大后减小.(C) 0M 上的张力逐渐增大.(D) 0M 上的张力先增大后减小.对M 处的重物进行受力分析,并将力平移至 一个力的三角形中,如图6所示,重力大小方向不变,其所对的角为x — a 也始终不变,作出这个三 角形的外接圆,三力平衡构成封闭三角形,画其外接圆,利用圆周角不变解题.P 在外接圆上移动, 初始位置从重力末端直至图中Q 点,利用图解法 确定力F nm 及F ⑹的变化情况.下面我们就3种方法来解决一个力学中动态 平衡的问题.应用:如图7所示为一种儿童玩具,在以O 点为圆 心的四分之一竖直圆弧轨 道上,有一个光滑的小球(不能视为质点),0'为小球 的圆心.挡板OM 沿着圆弧轨道的半径,以O 点为转 轴,从竖直位置开始推着小球缓慢顺时针转动(水平向里看),到小球触到水平线的过程中:圆弧轨道对小球的支持力N|的变 化?挡板对小球的支持力N?的变化?设ZAOM=©,ZC/OM = a.在解决本问题时,我们首先应该注意到QW 板的变化范围为从竖直方向到小球触及水平线;由此解法1:利用三角 形相似(此法关键在于找到与受力三角形相 似的三角形)延长M作用力力线,交竖直线 ON 于A 点,OM 于 B 点,根据图8受力的 三角形与厶OO'A 相 似,可得以下关系G Ni N 2其中OA =OBCOS ①,OO 7 =tana ),豹,"=更(tane +则M叫。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与圆相关的动态几何问题
以下是几个与圆相关的动态几何问题:
1. 两个圆的交点:当两个圆相交时,它们会产生两个交点。
这
些交点可以在动态几何软件中随着圆的移动而变化。
2. 圆的切线:给定一个圆和一点,可以确定从该点到圆的切线。
这些切线可以通过移动点和圆来进行动态演示。
3. 圆的切线长度:给定一个圆和一点,可以计算从该点到圆的
切线的长度。
这个问题可以用来演示一些几何学中的定理,如切线
长定理。
4. 圆内接多边形:将一个多边形放置在内切圆内部,并使多边
形的每个顶点都在圆上。
这个问题涉及到内切圆的中心和半径,可
以通过动态几何演示进行展示。
5. 圆内接三角形:在内切圆上选择三个点,这些点构成一个内
接三角形。
可以展示内接圆如何与三角形有关,并给出内接圆的半
径和面积。