常见函数的图像及其性质

合集下载

正弦、余弦、正切函数图象及其性质

正弦、余弦、正切函数图象及其性质

函数正弦函数y=sinx 余弦函数y=cosx 正切函数y=tanx图像定义域R R{x∣x≠Kπ+π/2,K∈Z}值域[-1,1][-1,1]R周期性最小正周期都是2π最小正周期都是2π最小正周期都是π奇偶性奇函数偶函数奇函数对称性对称中心是(Kπ,0),K∈Z;对称轴是直线x=Kπ+π/2,K∈Z对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z对称中心是(Kπ/2,0),K∈Z单调性在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增最值当X=2Kπ(K∈Z)时,Y取最大值1;当X=2Kπ+3π/2(K∈Z时,Y取最小值-1当X=2Kπ+π/2(K∈Z)时,Y取最大值1;当X=2Kπ+π(K∈Z时,Y取最小值-1无最大值和最小值正弦、余弦、正切函数图象及其性质注意1、正弦函数y=sinx在[2kπ-π/2, 2kπ+π/2](k∈Z)上是增函数,但不能说它在第一或第四象限是增函数;对于正切函数,它在定义域的每一个单调区间内都是增函数,但不能说它在定义域上是增函数。

2、对于复合函数y=Asin(ωx+φ)、y=Acos(ωx+φ)、y=Atan(ωx+φ)均可以将ωx+φ视为一个整体,用整体的数学方法转化为熟悉的形式解决。

当ω<0时,要特别注意。

如:y=sin(-2x+π/4)可以化为y=-sin(2x-π/4)或y=cos(2x+π/4)再求解。

3、函数y=Asin(ωx+φ)、y=Acos(ωx+φ)的最小正周期为2π/∣ω∣,y=Atan(ωx+φ) 的最小正周期为π/∣ω∣。

常见三角函数图像及其性质

常见三角函数图像及其性质

常见三角函数图像及其性质三角函数介绍正弦函数主词条:正弦函数格式:sin(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比斜边长度的比值求出,函数值为上述比的比值,也是csc(θ)的倒数函数图像:波形曲线值域:[]1,1-余弦函数主词条:余弦函数格式:cos(θ)作用:在直角三角形中,将大小为(单位为弧度)的角邻边长度比斜边长度的比值求出,函数值为上述比的比值,也是sec(θ)的倒数函数图像:波形曲线值域:[]1,1-正切函数主词条:正切函数格式:tan(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比邻边长度的比值求出,函数值为上述比的比值,也是cot(θ)的倒数。

函数图像:上图平面直角坐标系反映值域:()∞-∞,+余切函数主词条:余切函数格式:cot(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角邻边长度比对边长度的比值求出,函数值为上述比的比值,也是tan(θ)的倒数值域:()∞-∞,+正割函数主词条:正割函数格式:sec(θ)作用:在直角三角形中,将斜边长度比大小为θ(单位为弧度)的角邻边长度的比值求出,函数值为上述比的比值,也是cos(θ)的倒数函数图像:上图平面直角坐标系反映值域:(][)∞-1-,1∞,+余割函数主词条:余割函数格式:csc(θ)作用:在直角三角形中,将斜边长度比大小为θ(单位为弧度)的角对边长度的比值求出,函数值为上述比的比值,也是sin(θ)的倒数值域:(][)∞-1-∞,+,1。

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。

设一直线的倾斜角为a,则该直线的斜率k=tg(a)。

2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。

定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。

常见函数的图像和性质

常见函数的图像和性质

常见函数的图像和性质函数是高中数学学习中不可避免的部分,常见函数有一些图像和性质。

本文将介绍常见函数的图像和性质,包括线性函数、二次函数、指数函数、对数函数和三角函数。

线性函数是最基本的函数之一,也是最容易理解的函数之一。

线性函数的一般式是y = kx + b,其中k和b是常数,x和y表示函数的自变量和因变量。

线性函数的图像是一条直线,斜率k和截距b决定了直线的位置和倾斜程度。

当k>0时,函数是单调递增的,当k<0时,函数是单调递减的。

斜率越大,直线越陡峭,斜率越小,直线越平缓。

截距决定直线和y轴的交点。

当b>0时,直线在y轴上方,当b<0时,直线在y轴下方,当b=0时,直线经过原点。

线性函数的性质是简单的,任何两个不同的点都能确定一条直线,而且任何一条直线都可以写成y = kx + b的形式。

二次函数是另一个基本函数,一般式是y = ax^2 + bx + c,其中a、b、c是常数。

二次函数的图像是一个开口向上或向下的抛物线,抛物线的开口方向由系数a的正负决定。

当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。

二次函数图像的性质和线性函数有所不同,首先,二次函数不是单调函数,也就是说,它有一个最值点,最值点的坐标为(-b/2a,c-b^2/4a)。

第二,二次函数图像的对称轴是一个垂直于x轴的线,它的坐标是x = -b/2a。

第三,二次函数图像上任何一条水平线和抛物线只有一个交点,因此,二次函数也称为单峰函数。

指数函数是一种以底数为e的指数型函数,一般式是y = a^x,其中a是正常数。

指数函数的图像呈现出一种快速增长或快速衰减的趋势,指数函数的性质是独特的。

当a>1时,指数函数单调递增,当0<a<1时,指数函数单调递减,当a=1时,指数函数恒等于1。

指数函数图像的特点是固定的x值下y值呈指数型增长或衰减,在坐标系中的图像表现出“指数型曲线”。

指数函数、对数函数、幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a n n =)((注意a 必须使n a 有意义)。

2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m na a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)mnm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。

(2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质n 为奇数 n 为偶数注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。

即无论在轴的左侧还是右侧,底数按逆时针方向变大。

(二)对数与对数函数 1、对数的概念 (1)对数的定义如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。

(2)几种常见对数2、对数的性质与运算法则(1)对数的性质(0,1a a >≠且):①1log 0a =,②lo g 1aa =,③lo g Na a N =,④lo g N a aN =。

常见三角函数图像及性质

常见三角函数图像及性质

常见三角函数图像及性质三角函数在数学中具有重要的作用,主要有正弦函数、余弦函数和正切函数。

这些三角函数的图像及性质对理解三角函数在不同角度下的变化规律至关重要。

1. 正弦函数(Sine Function)正弦函数可以表示为 $y = \\sin(x)$,其中x表示自变量(角度),x表示函数值。

正弦函数的图像是一条波浪形状的曲线,在 $[-\\pi, \\pi]$ 区间内,正弦函数的图像在原点(0,0)处达到最大值1和最小值−1,且图像在x轴上对称。

正弦函数的主要性质包括:•周期性:正弦函数的周期是 $2\\pi$,即 $f(x+2\\pi) = f(x)$。

•奇函数:正弦函数是奇函数,即x(−x)=−x(x)。

•范围:正弦函数的值域为[−1,1]。

•正负性:在第一和第二象限,正弦函数为正;在第三和第四象限,正弦函数为负。

2. 余弦函数(Cosine Function)余弦函数可以表示为 $y = \\cos(x)$,余弦函数的图像是一条类似正弦函数的波浪形状曲线,不过余弦函数的图像在x轴上下移了 $\\frac{\\pi}{2}$。

余弦函数的性质包括:•周期性:余弦函数的周期也是 $2\\pi$,即$f(x+2\\pi) = f(x)$。

•偶函数:余弦函数是偶函数,即x(−x)=x(x)。

•范围:余弦函数的值域为[−1,1]。

•正负性:在第一和第四象限,余弦函数为正;在第二和第三象限,余弦函数为负。

3. 正切函数(Tangent Function)正切函数可以表示为 $y = \\tan(x)$,正切函数的图像是一条周期性的曲线,其在某些角度处会出现无穷大的值。

正切函数的图像在 $x=k\\pi + \\frac{\\pi}{2}$ 时,即 $x =\\frac{\\pi}{2}, \\frac{3\\pi}{2}, \\frac{5\\pi}{2}$ 等,会出现垂直渐近线。

正切函数的性质包括:•周期性:正切函数的周期是 $\\pi$,即 $f(x+\\pi) = f(x)$。

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。

设一直线的倾斜角为a,则该直线的斜率k=tg(a)。

2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。

定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。

五大基本函数图像及性质

五大基本函数图像及性质

五大基本函数图像及性质基本函数是数学中最常用的函数,它们能够描述和表示曲线的性质和特征。

常见的基本函数包括指数函数、对数函数、三角函数、双曲函数和偏微分函数。

二、指数函数指数函数是指一类具有指数表达形式的函数,可以用来描述数据之间的相对关系。

指数函数的图像以指定点作为原点,从原点开始上升或下降,通过控制变量取值范围来表示函数值的变化程度。

三、对数函数对数函数是一类定义在正数域上的函数,它的值由底数和指数决定,即形如ax的形式。

它的图形是一条从有限正数到有穷大的抛物线,图像的斜率代表了变化的程度。

四、三角函数三角函数是描述在给定区间内某物体运动的函数,它的图像主要由正弦函数、余弦函数和正切函数构成。

它们的图像是以某一定点为原点,其值随着x变化而循环变化,斜率可以表示变化的程度。

五、双曲函数双曲函数是一类定义在实数域上的函数,它的值由变量的决定,其图像可以表现为一条弯曲的曲线,它的斜率也可以表示变化的程度。

六、偏微分函数偏微分函数是一类关于一元变量的函数,它表示函数在某一点处的切线斜率,其图像表示函数在某一点处的变化率。

综上所述,基本函数是数学中最常用的函数,它们通过控制变量取值范围来表示函数值的变化程度。

常见的基本函数包括指数函数、对数函数、三角函数、双曲函数和偏微分函数,它们的图像由指定点作为原点,其值随x的变化而变化,并代表函数值的变化程度。

指数函数是一类具有指数表达形式的函数,它的图像从原点开始上升或下降,可以用来描述数据之间的相对关系。

而对数函数是定义在正数域上的函数,它的图形是从有限正数到有穷大的抛物线,斜率代表了变化的程度。

三角函数是描述在给定区间内某物体运动的函数,它们的图像以某一定点为原点,其值随着x变化而循环变化,斜率可以表示变化的程度。

而双曲函数是一类定义在实数域上的函数,它的图像是一条弯曲的曲线,斜率也可以表示变化的程度。

最后,偏微分函数是关于一元变量的函数,它的图像表示函数在某一点处的变化率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见函数的图像及其性质
数学中的函数就像我们日常生活中的“机器”,通过给出一个输入,便能得到一个输出。

而函数所表示的“规律”,可以通过数学的方法加以描述和解释。

在数学中,常见的函数有线性函数、二次函数、指数函数、对数函数、三角函数等。

本文将介绍这些函数的图像及其性质。

一、线性函数
线性函数是最基本、最简单的函数之一。

线性函数的一般形式为:
y = kx + b
其中,k和b是常数,x是自变量,y是因变量。

这里k表示直线斜率,b表示直线截距。

线性函数的图像是一条直线,其特点是斜率恒定。

当直线斜率为正时,函数是增长函数;当直线斜率为负时,函数是减少函数;斜率为0时,函数是常量函数。

二、二次函数
二次函数是一种二次多项式函数,其一般形式为:
y = ax² + bx + c
其中,a、b、c是常数,x是自变量,y是因变量。

二次函数的图像是一个开口朝上或开口朝下的抛物线,因为其自变量是平方项的形式。

二次函数的性质包括:
1. 当a > 0时,函数开口向上,有最小值;当a < 0时,函数开口向下,有最大值。

2. 当二次函数的判别式b²-4ac > 0时,函数图像与x轴有两个交点;当b²-4ac = 0时,函数图像与x轴有一个交点;当b²-4ac < 0时,函数图像与x轴没有交点。

三、指数函数
指数函数是一种以常数e(自然对数常数)为底,自变量是指数的函数。

其一般形式为:
y = a^x
其中,a是一个大于0且不等于1的常数,x是自变量,y是因变量。

指数函数的图像有如下特点:
1. 当a > 1时,函数在x轴右侧增长;当0 < a < 1时,函数在x 轴左侧增长。

2. 当a > 1时,函数的y值无上限,但x轴是渐近线;当0 < a < 1时,函数的y值趋于0,但x轴是渐近线。

四、对数函数
对数函数是指既然函数,其一般形式为:
y = logₐx
其中,a是底数,a > 0且a ≠ 1,x是自变量,y是因变量。

对数函数的性质包括:
1. 对于任意的正数a,loga a = 1,loga 1 = 0;
2. 当0 < a < 1时,对数函数的图像是单调递减的;当a > 1时,对数函数的图像是单调递增的。

五、三角函数
三角函数是指以角度为自变量的函数,其中,最常见的三角函
数是正弦函数和余弦函数。

其一般形式为:
y = f(x) = A sin(Bx + C) + D 或y = f(x) = A cos(Bx + C) + D
其中,A、B、C、D是常数。

正弦函数和余弦函数的图像周期性变化,因为其自变量是角度的函数。

正弦函数的图像在y轴上有一个最大值和最小值;余弦函数的图像在y轴上有一个切线,并且最值在y轴中央。

综上所述,常见函数的图像及其性质都是数学学科中不可或缺的一部分。

通过了解这些图像和性质,我们可以更好地理解和掌握数学知识,为日后的学习和工作提供帮助。

相关文档
最新文档