五大类函数图像及性质总结

合集下载

高中五种函数图像总结归纳

高中五种函数图像总结归纳

高中五种函数图像总结归纳在高中数学的学习中,我们经常会遇到各种函数,而函数的图像对于理解函数的性质和规律起着至关重要的作用。

在高中数学中,常见的五种函数:常数函数、一次函数、二次函数、指数函数和对数函数。

本文将对这五种函数的图像进行总结归纳,帮助读者更好地理解和应用。

1. 常数函数:常数函数的定义域和值域都是全体实数,其图像为一条水平的直线。

设常数为a,函数公式可以用f(x) = a表示,表示x的取值不影响函数值,即所有的f(x)都是常数a。

因此,常数函数的图像是一条水平直线,且与x轴的交点为(a, 0)。

无论常数为正数、负数还是零,其图像都不会发生变化。

2. 一次函数:一次函数的定义域和值域也是全体实数。

一次函数的一般形式为f(x) = kx + b,其中k和b为常数,k表示斜率,b表示截距。

一次函数的图像是一条斜率为k的直线,斜率为正代表向上倾斜,斜率为负代表向下倾斜。

当斜率为0时,直线平行于x轴。

截距b表示直线与y轴的交点。

3. 二次函数:二次函数的定义域为全体实数,值域为[最小值, +∞)或(-∞, 最小值],这取决于二次函数的开口向上还是向下。

二次函数可以表示为f(x) =ax² + bx + c,其中a≠0。

二次函数的图像为一个抛物线,开口的方向由二次系数a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

抛物线的顶点坐标为(-b/2a, f(-b/2a))。

4. 指数函数:指数函数的定义域为全体实数,值域为(0, +∞)。

指数函数可以表示为f(x) = a^x,其中a>0且a≠1。

指数函数的图像是一个逐渐增长或递减的曲线,a的大小决定了曲线的陡峭程度。

当a>1时,曲线是递增的;当0<a<1时,曲线是递减的。

指数函数的图像一定会经过点(0, 1),因为任何数的0次方都等于1。

5. 对数函数:对数函数的定义域为(0, +∞),值域为全体实数。

函数图像知识点总结

函数图像知识点总结

函数图像知识点总结基本初等函数的图像:一次函数:图像是直线,根据斜率k的正负,函数可能单调递增或递减。

二次函数:图像是抛物线,其开口方向由a决定,与x轴的交点由判别式b^2-4ac决定,对称轴两边函数的单调性不同。

反比例函数:图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

指数函数:当底数不同时,其图像会有所变换。

对数函数:底数不同时,图像也会发生变换。

对勾函数:对于函数y=x+k/x,当k>0时,是对勾函数,可以通过均值定理找到其最值。

函数图像的基本性质:定义域和值域:函数的定义域是指函数所能接收的自变量的集合,值域是指函数所能取到的因变量的集合。

函数图像应当包含在定义域和值域的笛卡尔积上。

单调性:如果函数在定义域内递增,那么函数图像应当从左向右逐渐上升;如果函数在定义域内递减,那么函数图像应当从左向右逐渐下降。

奇偶性:如果函数是偶函数,那么函数图像在原点处具有对称性;如果函数是奇函数,那么函数图像在原点处具有中心对称性。

周期性:如果函数具有周期性,那么函数图像在一段区间内会重复出现,并且重复的间隔是固定的。

极值:函数在定义域内的最大值和最小值分别称为函数的最大值和最小值,对应的自变量称为函数的极大值和极小值。

函数图像在极值处存在驻点,即切线斜率为零。

函数图像在数学中的应用:函数图像可以直观地表示函数的性质与特征,例如单调性、极值点、零点等。

通过观察函数图像,我们可以更好地理解函数的表现特征和性质。

函数图像不仅在数学中有应用,还涉及其他相关领域,如经济学、生物学、人文社科等。

函数图像可以帮助解释实验现象,描述物理现象的变化规律,并帮助人们理解和解释实验结果。

这些知识点对于理解和分析函数图像非常重要,通过熟练掌握和应用这些知识点,可以更好地理解函数的性质,解决实际问题。

数学常见函数与图像的性质分析

数学常见函数与图像的性质分析

数学常见函数与图像的性质分析引言:数学是一门抽象而又实用的学科,其中的函数是数学领域中的重要概念之一。

函数可以用来描述数学模型和现实世界中的各种现象。

在数学中,常见的函数有多种类型,它们的图像具有不同的性质。

本文将对几种常见的函数及其图像的性质进行分析。

一、线性函数线性函数是最简单的函数之一,它的图像是一条直线。

线性函数的一般形式为y = kx + b,其中k和b为常数。

线性函数的图像具有以下性质:1. 斜率k决定了直线的倾斜程度,当k>0时,直线向右上方倾斜,当k<0时,直线向右下方倾斜,当k=0时,直线为水平线。

2. 截距b决定了直线与y轴的交点,当b>0时,直线在y轴上方交y轴,当b<0时,直线在y轴下方交y轴,当b=0时,直线经过原点。

3. 线性函数的图像是一条直线,直线上的任意两点可以确定一条直线。

二、二次函数二次函数是一种常见的非线性函数,它的图像是一条抛物线。

二次函数的一般形式为y = ax^2 + bx + c,其中a、b和c为常数,且a不等于0。

二次函数的图像具有以下性质:1. 抛物线的开口方向由二次项的系数a决定,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。

2. 抛物线的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)为二次函数。

3. 抛物线与x轴的交点称为根,二次函数的根可以通过求解方程ax^2 + bx + c = 0得到。

4. 当二次函数的判别式b^2-4ac大于0时,抛物线与x轴有两个不同的交点;当判别式等于0时,抛物线与x轴有一个重复的交点;当判别式小于0时,抛物线与x轴没有交点。

三、指数函数指数函数是一种以常数e为底数的函数,它的图像呈现出逐渐增长或逐渐衰减的特点。

指数函数的一般形式为y = a * e^(kx),其中a和k为常数。

指数函数的图像具有以下性质:1. 当k>0时,指数函数逐渐增长,当k<0时,指数函数逐渐衰减。

五类基本初等函数及图形

五类基本初等函数及图形

五类基本初等函数及图形----------------------------------- (1) 幂函数----------------------------------1. 当u为正整数时,函数的定义域为区间,他们的图形都经过原点,并当u>1时在原点处与X轴相切。

且u为奇数时,图形关于原点对称;u为偶数时图形关于Y轴对称;2. 当u为负整数时。

函数的定义域为除去x=0的所有实数。

3. 当u为正有理数m/n时,n为偶数时函数的定义域为(0, +),n为奇数时函数的定义域为(-+)。

函数的图形均经过原点和(1 ,1).如果m>n图形于x 轴相切,如果m图形于y轴相切,且m为偶数时,还跟y轴对称;m,n均为奇数时,跟原点对称.4. 当u为负有理数时,n为偶数时,函数的定义域为大于零的一切实数;n为奇数时,定义域为去除x=0以外的一切实数.,是常数;----------------------------------- (2) 指数函数 ----------------------------------(是常数且),;1. 当a>1时函数为单调增,当a<1时函数为单调减.2. 不论x为何值,y总是正的,图形在x轴上方.3. 当x=0时,y=1,所以他的图形通过(0,1)点.----------------------------------- (3) 对数函数 ----------------------------------(是常数且),;1. 他的图形为于y轴的右方.并通过点(1,0)2. 当a>1时在区间(0,1),y的值为负.图形位于x的下方,在区间(1, +),y值为正,图形位于x轴上方.在定义域是单调增函数.a<1在实用中很少用到.----------------------------------- (4) 三角函数 ----------------------------------正弦,,余弦,,正切,,,余切,,,----------------------------------- (5) 反三角函数 ----------------------------------反余弦,,,反正弦,,反正切,,反余切,,。

高中阶段常见函数性质及图像

高中阶段常见函数性质及图像

高中阶段常见函数性质汇总函数名称:常数函数解析式形式:f (x )=b (b ∈R)图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线定义域:R 值域:{b}单调性:没有单调性奇偶性:均为偶函数[当b =0时,函数既是奇函数又是偶函数]反函数:无反函数周期性:无周期性函数名称:一次函数解析式形式:f (x )=kx +b (k ≠0,b ∈R)图象及其性质:定义域:R 值域:R单调性:当k>0时,函数f (x )为R 上的增函数;当k<0时,函数f (x )为R 上的减函数;奇偶性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性;反函数:有反函数。

[特殊地,当k =-1或b =0且k =1时,函数f (x )的反函数为原函数f (x )本身] 周期性:无函数名称:反比例函数解析式形式:f (x )=xk (k ≠0)xy bOf(x)=b图象及其性质:定义域:),0()0,(值域:),0()0,(单调性:当k>0时,函数f (x )为)0,(和),0(上的减函数;当k<0时,函数f (x )为)0,(和),0(上的增函数;奇偶性:奇函数反函数:原函数本身周期性:无函数名称:二次函数解析式形式:一般式:)0()(2a c bx axx f 顶点式:)0()()(2ah k x a x f 两根式:)0)()(()(21ax x x xa x f 图象及其性质2f x axbx c a 0a 0a 图像2b xa2b xa定义域:R 值域:当0a 时,值域为),44(2abac ;当0a 时,值域为)44,(2ab ac 单调性:当0a 时,]2,(a b 上为减函数,),2[a b上为增函数;当0a 时,),2[a b 上为减函数,]2,(ab上为增函数;奇偶性:当0b 时,函数为偶函数;当0b 时,函数为非奇非偶函数反函数:定义域范围内无反函数周期性:无函数名称:三次函数解析式形式:32()(0)f x axbxcx d a 图象及其性质:a>0a<0>0>0图象定义域:R 值域:R 单调性:a>0a<0>0>0单调性在12(,),(,)x x 上,是增函数;在12(,)x x 上,是减函数;在R 上是增函数在12(,)x x 上,是增函数;在12(,),(,)x x 上,是减函数;在R 上是减函数奇偶性:当0b 时,函数为奇函数;当0b 时,函数为非奇非偶函数反函数:定义域范围内无反函数周期性:无函数名称:指数函数xx 1 x 2 x 0xx 1 x 2xx 0x解析式形式:)1,0()(a aa x f x图象及其性质值域:),0(单调性:当0a 时,函数为增函数;当0a时,函数为减函数;奇偶性:无反函数:对数函数)1,0(log )(aax x f a 周期性:无函数名称:对数函数解析式形式:)1,0(log )(a ax x f a 图象及其性质:图象a >1a <1定义域:R 值域:),0(单调性:当0a 时,函数为增函数;当0a 时,函数为减函数;[与系数函数的单调性类似,因为两函数互为反函数]奇偶性:无反函数:指数函数)1,0()(a aa x f x周期性:无函数名称:对钩函数解析式形式:xxx f 1)(图象及其性质:①函数图象与y 轴及直线x y不相交,只是无限靠近;②当0x 时,函数)(x f y有最低点)2,1(,即当1x 时函数取得最小值2)1(f ;③当0x 时,函数)(x f y有最高点)2,1(,即当1x 时函数取得最大值2)1(f ;定义域:),0()0,(值域:),2[]2,(单调性:在]1,(和),1[上函数为增函数;在)0,1[和]1,0(上函数为减函数;奇偶性:奇函数反函数:定义域内无反函数周期性:无解析式形式:||)(x x f 图象及其性质:定义域:R 值域:),0(单调性:在),0(上函数为增函数;在)0,(上函数为减函数;奇偶性:偶函数反函数:||)(x x f xyOf(x)=xx112周期性:无解析式形式:xx f )(图象及其性质:定义域:),0[值域:),0[单调性:增函数奇偶性:无反函数:2xy 周期性:无注意:幂函数的图像与性质定义域R R R 奇偶性奇奇奇非奇非偶奇在第Ⅰ象限的增减性在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递减幂函数y x (xR ,是常数)的图像在第一象限的分布规律是:①所有幂函数yx (xR ,是常数)的图像都过点)1,1(;②当21,3,2,1时函数yx 的图像都过原点)0,0(;③当1时,y x 的的图像在第一象限是第一象限的平分线(如2c );④当3,2时,y x 的的图像在第一象限是“凹型”曲线(如1c )⑤当21时,yx 的的图像在第一象限是“凸型”曲线(如3c )⑥当1时,y x 的的图像不过原点)0,0(,且在第一象限是“下滑”曲线(如4c )当0时,幂函数yx 有下列性质:(1)图象都通过点)1,1(),0,0(;(2)在第一象限内都是增函数;(3)在第一象限内,1时,图象是向下凸的;10时,图象是向上凸的;(4)在第一象限内,过点)1,1(后,图象向右上方无限伸展。

(完整版)高中各种函数图像及其性质(精编版)

(完整版)高中各种函数图像及其性质(精编版)

高中各种函数图像及其性质一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

(二)一次函数1、一次函数的定义一般地,形如y kx b(k,b是常数,且k 0 )的函数,叫做一次函数,其中x 是自变量。

当b 0时,一次函数y kx,又叫做正比例函数。

⑴一次函数的解析式的形式是y kx b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当 b 0,k 0时,y kx仍是一次函数.⑶当 b 0,k 0时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx (k 不为零)① k 不为零② x 指数为 1 ③ b 取零当k>0 时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0 时,?直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1)解析式:y=kx (k 是常数,k≠ 0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5)倾斜度:|k| 越大,越接近y 轴;|k| 越小,越接近x 轴3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为 1 ③ b 取任意实 数一次函数 y=kx+b 的图象是经过( 0,b )和(- b , 0)两点的一条直线,我们称它为直k线 y=kx+b, 它可以看作由直线 y=kx 平移 |b| 个单位长度得到 . (当 b>0 时,向上平移; 当 b<0 时,向下平移)1)解析式: y=kx+b (k 、 b 是常数, k 0)2) 必过点:(0,b )和( - b ,0) k3) 走向: k>0 ,图象经过第一、三象限; k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限k 0 直线经过第一、二、三象限k 0 直线经过第一、三、四象限b 0b 0k 0 直线经过第一、二、四象限k 0 直线经过第二、三、四象限b 0b 04)增减性: k>0 , y 随 x 的增大而增大; k<0,y 随 x 增大而减小 . 5)倾斜度: |k| 越大,图象越接近于 y 轴; |k| 越小,图象越接近于 x 轴 .6)图像的平移: 当 b>0 时,将直线 y=kx 的图象向上平移 b 个单位; 当 b<0 时,将直线y=kx 的图象向下平移 b 个单位 .4、一次函数 y=kx + b 的图象的画法根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可. 一般情况下:是先选取它与两坐标轴的交点:(0,b),或纵坐标为0 的点.. 即横坐标5、正比例函数与一次函数之间的关系一次函数y=kx +b的图象是一条直线,它可以看作是由直线y=kx平移|b| 个单位长度而得到(当b>0时,向上平移;当b<0 时,向下平移)6、正比例函数和一次函数及性质正比例函数一次函数概念一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数一般地,形如y=kx+b(k,b 是常数,k≠0),那么y 叫做x 的一次函数. 当b=0 时,是y=kx ,所以说正比例函数是一种特殊的一次函自变量范围X 为全体实数图象一条直线必过点(0,0)、(1,k)(0,b)和(- b,0)k走向k>0 时,直线经过一、三象限;k<0 时,直线经过二、四象限k>0,b>0, 直线经过第一、二、三象限k>0,b<0 直线经过第一、三、四象限k<0,b>0 直线经过第一、二、四象限k<0,b<0 直线经过第二、三、四象限增减性k>0 ,y 随x 的增大而增大;(从左向右上升)k<0 ,y 随x 的增大而减小。

常见函数的图像及其性质

常见函数的图像及其性质

常见函数的图像及其性质数学中的函数就像我们日常生活中的“机器”,通过给出一个输入,便能得到一个输出。

而函数所表示的“规律”,可以通过数学的方法加以描述和解释。

在数学中,常见的函数有线性函数、二次函数、指数函数、对数函数、三角函数等。

本文将介绍这些函数的图像及其性质。

一、线性函数线性函数是最基本、最简单的函数之一。

线性函数的一般形式为:y = kx + b其中,k和b是常数,x是自变量,y是因变量。

这里k表示直线斜率,b表示直线截距。

线性函数的图像是一条直线,其特点是斜率恒定。

当直线斜率为正时,函数是增长函数;当直线斜率为负时,函数是减少函数;斜率为0时,函数是常量函数。

二、二次函数二次函数是一种二次多项式函数,其一般形式为:y = ax² + bx + c其中,a、b、c是常数,x是自变量,y是因变量。

二次函数的图像是一个开口朝上或开口朝下的抛物线,因为其自变量是平方项的形式。

二次函数的性质包括:1. 当a > 0时,函数开口向上,有最小值;当a < 0时,函数开口向下,有最大值。

2. 当二次函数的判别式b²-4ac > 0时,函数图像与x轴有两个交点;当b²-4ac = 0时,函数图像与x轴有一个交点;当b²-4ac < 0时,函数图像与x轴没有交点。

三、指数函数指数函数是一种以常数e(自然对数常数)为底,自变量是指数的函数。

其一般形式为:y = a^x其中,a是一个大于0且不等于1的常数,x是自变量,y是因变量。

指数函数的图像有如下特点:1. 当a > 1时,函数在x轴右侧增长;当0 < a < 1时,函数在x 轴左侧增长。

2. 当a > 1时,函数的y值无上限,但x轴是渐近线;当0 < a < 1时,函数的y值趋于0,但x轴是渐近线。

四、对数函数对数函数是指既然函数,其一般形式为:y = logₐx其中,a是底数,a > 0且a ≠ 1,x是自变量,y是因变量。

(完整版)高中的常见函数图像及基本性质

(完整版)高中的常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线一次函数 f (x )=kx +b (k ≠0,b ∈R )1)、两种常用的一次函数形式:斜截式——点斜式——2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k |越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R单调性:当k 〉0时 ;当k<0时奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。

补充:反函数定义:例题:定义在r y=f (x ); y=g (x )都有反函数,且f (x-1)和g —1(x )函数的图像关于y=x 对称,若f (4)=周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法:xy b Of (x )=bx yOf (x )=kx +b R 2)点关于直线(点)对称,求点的坐标2、与曲线函数的联合运用反比例函数 f (x )=xk(k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k 〉0时,函数f (x )的图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线;既是中心对成图形也是轴对称图形定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞ 单 调 性:当k> 0时;当k< 0时 周 期 性:无奇 偶 性:奇函数 反 函 数:原函数本身补充:1、反比例函数的性质2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)—-入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此)3、反函数变形(如右图)1)、y=1/(x —2)和y=1/x —2的图像移动比较 2)、y=1/(—x)和y=—(1/x)图像移动比较3)、f (x )= dcx bax ++ (c ≠0且 d ≠0)(补充一下分离常数)(对比标准反比例函数,总结各项内容)二次函数 一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f两根式:)0)()(()(21≠--=a x x x x a x f图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为 ②当0>a 时,开口向上,有最低点 当0<a 时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五大类函数图像及性质总结
一次函数的图像是一条直线,写作形式为y=ax+b(a≠0),它的性质有以下几点:
(1)任意两点确定一条直线,当给定任意两个点(x1,y1),
(x2,y2),则直线的斜率为:
【m= (y1-y2)/(x1-x2)】
(2)当x=0时,y=b,可以得出结论,一次函数图像通过原点。

(3)此外,一次函数图像也具有一定的对称性,当x=x时,y=b,则y=-(x-x)+b,图像对称轴为y=x。

二、二次函数图像及性质
二次函数的图像为抛物线,写作形式为y=ax+bx+c(a≠0),它
的性质有以下几点:
(1)当x=0,y=c,可以得出结论,二次函数图像通过原点。

(2)当x=x,y=0时,判断抛物线是向上还是向下凹,只需判断
系数a的正负性即可:若a>0,则抛物线向上凹;若a<0,则抛物线
向下凹。

(3)此外,当y=0时,可得出二次函数的两个根:【x = [-b
± (b-4ac)]/(2a)】。

三、单调函数图像及性质
单调函数的图像为一次或多次函数的图像,它的性质有以下几点:(1)单调函数图像在任意一点上发生的变化方向是确定的,不
管是向上还是向下,它只能沿着一个方向变化;
(2)单调函数图像满足单调性;
(3)单调函数图像是连续变化图像,就是说图像在每到一个点处,图像均无折现现象。

四、指数函数图像及性质
指数函数的图像为一条曲线,写作形式为y=ax(a≠0),它的性质有以下几点:
(1)当x=0,y=a,可以得出结论,指数函数图像通过原点。

(2)指数函数图像具有一定的对称性,当x=x时,y=a,则y=a/x,图像对称轴为y=x。

(3)此外,指数函数与有理函数具有相同的极限性质,当x趋于正无穷时,y趋于正无穷;当x趋于负无穷时,y趋于零。

五、对数函数图像及性质
对数函数的图像为一条曲线,写作形式为y=loga(x)(a>0,a≠1),它的性质有以下几点:
(1)当x=1,y=loga(1),可以得出结论,对数函数图像通过原点。

(2)对数函数和指数函数的关系为:【y=loga(x) x=a^y】
(3)此外,由于底数a和参数y的关系满足交换性,因此,对数函数也具有对称性,即【loga(x)=y loga(y)=x】,图像对称轴为y=x。

综上所述,五大类函数图像的性质分别有:一次函数图像为一条直线,任意两点确定一条直线,通过原点,具有一定的对称性;二次
函数图像为抛物线,通过原点,可以判断抛物线是向上还是向下凹,可得出两个根;单调函数图像满足单调性,是连续变化图像;指数函数图像为一条曲线,通过原点,具有一定的对称性,指数函数与有理函数具有相同的极限性质;对数函数图像为一条曲线,通过原点,和指数函数有一定的关系,具有对称性。

以上就是五大类函数图像及性质的总结,希望能够对大家有所帮助!。

相关文档
最新文档