水质数学模型分类

合集下载

常用河流水质数学模型与适用条件

常用河流水质数学模型与适用条件
*2. 河流完全混合模式(P71)
适用条件: (1)河流充分混合段;(3)河流为恒定流动; (2)持久性污染物; (4)废水连续稳定排放。
c——污染物浓度,mg/L; cp——污染物排放浓度,mg/L; ch——河流来水污染物浓度,mg/L; Qp——废水排放量,m3/s; Qh——河流来水流量, m3/s;
氧垂公式
x
cBOD
cBOD 0
exp(K1t)

cBOD 0
exp(K1
) 86400u
D

K1cBOD 0 K2 K1
[exp(K1
x) 86400u

exp(K2
x )] 86400u
D0
exp(K2
x) 86400u
D——亏氧量,即饱和溶解氧浓度与溶解氧浓度的差值,mg/L;
地表水环境影响预测的方法(P95)
数学模式法
物理模型法 主要指水工模型。水工模型法定量性较高,再现性较好,
能反映出比较复杂的地表水环境的水力特征和污染物迁移的物 理过程。但需要合适的试验场所和条件以及必要的基础数据, 需较多人力、物力和时间。 类比调查法
半定量或定性预测。注意预测对象与类比对象的相似性。
代入

Hale Waihona Puke c=609mg/L。 该厂废水如排入河中,河水氯化物将超标。
常用河流水质数学模型与适用条件 *3. 河流一维稳态模式
一般方程式为: c c0 exp(Kt)

c

c0
exp(K
x 86400u
)
c ——计算断面的污染物浓度,mg/L; c0——计算初始点污染物浓度,mg/L; t——断面间水团传播时间,d; K——水质综合消减系数,1/d; u——河流流速, m/s; x——从计算初始点到下游计算断面的距离,m;

河流水质数学模型

河流水质数学模型

2、2011年十大水系水质类别比例
长江、黄河、珠江、松花江、淮河、海河、辽河、浙闽片河流、西南 诸河与内陆诸河十大水系监测得469个国控断面中Ⅰ~Ⅲ类、Ⅳ~Ⅴ类 与劣Ⅴ类水质断面比例分别为61、0%、25、3%与13、7%。主要污 染指标为化学需氧量、五日生化需氧量与总磷。
3、 河流中有机污染物得相关情况
L0kd
2、3 S-P模型得修正模型
1925年,Street-Phelps提出BOD-DO偶合模型以后,水质模型得研究在很长 一段时间里进展缓慢。到了20世纪60年代,由于环境污染得加剧,水质问题引起 人们得关注,水质模型得研究也获得了快速发展。20世纪60~80年代就是水质 模型得快速发展时期。
2、2不考虑弥散作用得稳态解 当不考虑弥散作用,即弥散系数ks=0时,(1)式变化为
u C x
K1C
解上述方程得
K1 x
C C0e u
二维模型:如果模拟得河流水面较宽(超过200m),则按一维模型 计算结果可能误差较大,因此需采用二维模型计算。
3、二维情况下河流水环境容量模型
一个均匀河段得起始断面,从排污口连续稳定得向河流排
ksy
2C y 2
Байду номын сангаас
K1C
三、河流水质模型
(一)一维河流水质模型 1、河段划分 2、单一河段水质模型 3、多河段水质模型
(二)二维河流水质模型 4、正交曲线坐标系统 5、断面累积流量曲线 6、BOD模型 7、DO有限单元模型
1、河段划分
河流作为地球上分布最广泛得一种水体,其最显
著得特点就就是其在三维空间尺度上存在着巨大 得差异,并且其沿程得水文条件一般变化都较大。
B
ks
) e(kd ks )t

水质评价问题的数学模型

水质评价问题的数学模型

水质评价问题的数学模型水质评价问题的数学模型摘要本文以某村四个水井因农业和生活排放废物使地下浅表水遇到污染为背景,通过对这四个水井的24个水质监测数据的统计,对四个水井的综合水质进行了细致的分析。

针对问题一:首先从水质监测数据中选取相对有用的五种关键数据(分别为溶解氧,高锰酸盐指数,总磷,氨氮,粪大肠菌群)作为评价因子,对各个水井的各种污染物的检测数据进行无量纲标准化处理得到新数据并列出图表,并对比水质分级标准的三组数据,运用层次分析法建模,并利用MATLAB7.0.1编程求解,最后求得北井的水质最好,南井和东井水质次之,西井水质最差。

此外,我们还运用了逼近于理想值的排序方法,即TOPSIS法,首先确定四个水井水质监测数据中各项指标的正理想值和负理想值,然后求出各个方案与正理想值、负理想值之间的加权欧氏距离,由此得出各评价因子与最优数据指标的接近程度,作为评价水井水质优劣的标准。

经计算得出四个水井的综合评价指标值分别为90,73,210,505,可见北井水质最好,南井水质较好,东井水质中等,西井水质最差。

针对问题二:对四个井的地表水进行水质等级判断时,没有明确的界限,因此我们选择在模糊数学中采用隶属函数来描述水质分界,同时采用格贴近度公式,分别求得四个水井与三个水质等级的贴近程度,根椐择近原则,算出西井、东井均属于Ⅲ类,南井属于Ⅱ类,北井属于Ⅰ类。

最后,我们就模型存在的不足之处提出了改进方案,并对优缺点进行了分析。

关键词:层次分析法;TOPSIS法;模糊数学统计算法;水质等级判断。

目录摘要 (1)一、问题重述 (3)二、模型假设 (3)三、符号说明 (3)四、问题分析 (4)4.1问题一的分析 (4)4.1.1层次分析法 (5)4.1.2 TOPSIS分析法 (5)4.1.3 两种方法差异分析 (5)4.2 问题二的分析 (5)五、模型的建立和求解 (6)5.1 问题一求解 (6)5.1.1各衡量指标数据的无量纲化处理 (6)5.1.2. 模型一层次分析法 (8)5.1.3 模型二TOPSIS分析方法 (12)5.1.4 两种方法的结果分析 (15)5.2 问题二:模糊性模型 (15)5.2.1 建立因素集 (15)5.2.2 设置偏大型柯西分布隶属函数 (16)5.2.3 综合指标 (18)六、模型的评价与推广 (19)6.1 模型的评价 (19)6.1.1模型优点 (19)6.1.2模型缺点 (19)6.2 模型的推广 (20)参考文献 (21)附录 (22)一、问题重述某村内有各相距500米以上的四口水井,分别位于村东、村西、村南和村北,由于农业和生活排放废物使地下浅表水遇到污染,水质监测资料如附件1所示.需要解决的问题如下:(1)请用2种以上的数学方法对该村的四个井水的水质进行排序,并比较是否由于方法的不同导致存在着异,以及差异产生的原因。

水质模型分类

水质模型分类

/hhhbb/archive/2006/06/23/1681.html《QUAL 一 2 K模型及其主要参数确定》S —P模型的基本思路是:他们认为水中溶解氧( DO) 随时问减少的速率与B OD的浓度成正比,水中溶解氧的减少主要是由于水中有机物在好气菌在分解中消耗水中氧气所引起的,并且与BOD降解具有相同的速度,即复氧的速度与氧亏成正比。

S - P模型只考虑了有机物降解和大气复氧对DO的影响,没有考虑有机物沉浮、底泥吸附等对DO的影响,因此其结果与实际有一定的差别。

有很多学者对其进行了改进,主要有以下3种模型:( 1 ) Thomas模型:对一维稳态河流,在S---P模型基础上增加了一项因悬浮物的沉淀与浮所引起的BOD速率变化。

( 2 ) Camp—Dobbins模型:在Thomas的基础,增加了底泥释放BOD和地表径流所引起的BOD变化速率和藻类光合作用和呼吸作用以及地表径流引起的溶解氧速率变化。

( 3 ) Oconnor模型:假定总的BOD是由含碳BOD(CBOI))和含氮BOD(NBOD)两项组成,模型不仅考虑了含碳化合物的耗氧,而且也考虑了含氮化合物的耗氧。

《W A S P水质模型在辽河干流污染减排模拟中的应用》WASP水质模型:WASP(Water Quality Analysis Simulation Program)是由美国国家环保局开发的水质分析软件,可用来模拟常规污染物(包括溶解氧、生物耗氧量、营养物质以及海藻污染)和有毒污染物(包括有机化学物质、金属和沉积物)在水中的迁移和转化规律,是为分析池塘、湖泊、水库、河流、河口和沿海水域等一系列水质问题而设计的动态多箱模型。

WASP模型在中国渭河、苏州河、汉江等多个流域及水库已有成功的应用。

WASP模型由两个独立的计算机程序DYNHYD和WASP组成,两个程序可连接运行,也可以分开执行。

DYNHYD是一个简单的“Link—node”网络水力动态模型,产生的输出文件可为水质分析模拟程序WASP提供流量和体积参数。

4.2水质模型及应用讲解

4.2水质模型及应用讲解
水质模型及应用
胡莺
水质数学模型分类
按上游来水和排污随时间的变化情况: 动态模式、稳态模式 按水质分布状况: 零维、一维、二维和三维 按模拟预测的水质组分: 单一组分、多组分耦合模式 水质数学模式的求解方法及方程形式 解析解模式、数值解模式
水质模式中坐标系的建立
以排放点为原点 Z轴铅直向上,X、Y轴为水平方向 X方向与主流方向一致 Y方向与主流垂直
一维稳态模式 P72
对于一般河流,由于推流导致的污染物迁移作用要比 弥散作用大得多,可忽略弥散作用:

C 为污染物的浓度; Dx 为纵向弥散系数, ux 断面平均流速; K 为污染物衰减系数
模型的适用对象:污染物浓度在各断面上分布均匀的中小
型河流的水质预测 P72例4-2
BOD-DO耦合模型(S-P模型)
• 2、计算最大氧亏处的临界DO浓度和临界点位置
• 3、利用EXCEL求解并绘制出BOD、DO的浓度沿程变 化曲线(选作)
托马斯模式 P75
x c exp ( K 1 K 3 ) c0 86400 u x exp ( K 1 K 3 ) 86400 u K 1c 0 x D D exp K 0 2 K 2 ( K1 K 3 ) 86400 u x exp K 2 86400 u K2 K 2 ( K 1 K 3 K 2 ) D0 u xc ln K 2 ( K1 K 3 ) K1 K 3 K 1 ( K 1 K 3 )c 0 c0 (c0 Q p c h Qh ) /(Q p Qh ) D0 ( D0 Q p Dh Qh ) /(Q p Qh )
计算时注意单位换算;以 及起始点处假定完全混合 后的初始浓度的计算

Chapter.043.水质模型

Chapter.043.水质模型

15
一维模型适用的两种条件
适用1 适用
背景段 污水注入点 混合段 完全混合点 均匀混合段
L
混合段总长度
适用2 适用
背景段
CE QE + CP QP C0 = QE + QP
均匀混合段
污水注入点
既是污水注入点, 既是污水注入点,也是完全混合点
瞬间完全混合
2012-1-12
CE QE + CP QP C0 = QE + QP
第二节 常用的河流水质模型
–河流水质模型简介 河流水质模型简介 –河流的混合稀释模型 河流的混合稀释模型 –河流水质零维模型 河流水质零维模型 –河流水质一维模型 河流水质一维模型 –河流水质二维模型 河流水质二维模型 –S-P 模型 S
了解 重点
了解 难点.重点 难点 重点
2012-1-12
1
水质模型分类
2012-1-12 6
完全混合模型适用条件
• 稳态:河流;排污 稳态:河流; • 下游某点废水和河水在整个断面上 达到了均匀混合 • 持久性的污染物 • 该河流无支流和其他排污口进入
2012-1-12
7
例题1: 例题 :完全混合模型 P135 3
• 计划在河边建一座工厂,该厂将以2.83m3/s的 流量排放废水,废水中总溶解固体(总可滤残 渣和总不可滤残渣)浓度为1300mg/L,该河流 平均流速为0.457m/,平均河宽为13.72m,平均 水深为0.61m,总溶解固体浓度为310mg/L,如 如 果该工厂的废水排入河中能与河水迅速混合, 果该工厂的废水排入河中能与河水迅速混合 那么总溶解固体的浓度是否超标(设标准为 500mg/L)?
饱和DO浓度 浓度 饱和

水质模型及应用

水质模型及应用
氧垂曲线与临界点(最大氧亏值处)
饱和溶解氧及氧亏的计算
DOs 468 31.6T
DOs:饱和溶解氧(mg/L); T:气温(℃)
DDO DsO
D:氧亏值,mg/L; DO:实际的溶解氧值,mg/L
cc0
expK1
x 8640u0
处假定完全混合 后的初始浓度的计算
• 1、利用S-P模型算出DO浓度为饱和值80%的位置 (即距始端的距离)和该点相应的BOD浓度值。
• 2、计算最大氧亏处的临界DO浓度和临界点位置
• 3、利用EXCEL求解并绘制出BOD、DO的浓度沿 程变化曲线(选作)
托马斯模式 P75
c
c0exp
(K1
K3
)
x 86400u
D
K2
K1c0 (K1
K3
)
exp
(K1
K3
)
x 86400u
exp
K2
x 86400u
D0
exp
K2
x 86400u
xc
K2
u (K1
K3
)
ln
K2 K1 K3
K2(K1 K3 K2)D0 K1(K1 K3)c0
c0 (c0Qp chQh )/(Qp Qh )
D0 (D0Qp DhQh )/(Qp Qh )
河流水质模型
• 河流完全混合模式、一维稳态模式、S-P模式(适 用于河流的充分混合段)
• 托马斯模式(适用于沉降作用明显河流的充分混 合段)
• 二维稳态混合模式与二维稳态混合衰减模式(适 用于平直河流的混合过程段)
• 弗罗模式与弗-罗衰减模式(适用于河流混合过程 段以内断面的平均水质)
• 二维稳态累积流量模式与二维稳态混合衰减累积

第三章水环境化学-第四节水质模型介绍

第三章水环境化学-第四节水质模型介绍

有机污染物迁移转化的动力学机理 表征化合物固有性质:可由实验室测得。 模型中的水 质参数:
(溶解度,蒸汽 压,辛醇-水分配系数等)
表征环境特征:取决于实际水环境。
(水流量,流速,pH,水温,风速,细菌数,光强等)
化合物迁移转化过程:
负载过程(输入过程)
来源:污水人为排放, 大气沉降,陆地径流 等将有机毒物引入水 体。
2.吸着过程对有机物消失的影响 有机物在颗粒物上的吸着会降低有机物在水中的浓度, 吸着也会发生转化(如微生物转化代谢),但在这里 不考虑转化过程或转化很慢(比溶液中慢),并且吸 着过程具有可逆性。 当有机物含量很低时,它在水和颗粒物之间的分配往 往可以用分配系数(KP)来表示:
CS KP CW


转化过程 生物降解:微生物代谢将改变污染物和它们的毒性。 光解作用:破坏有毒有机物分子的结构。 水解作用:使污染物分子变成简单分子,低毒或无毒化 合物。 氧化还原:微生物催化氧化,光催化氧化,均将改变有机 分子的结构。
生物积累过程 生物浓缩:通过可能的生物浓缩手段(如鱼腮吸附), 摄取有机物进入生物体。 生物放大:高营养级生物以低营养级生物为食物,使生 物体中有机毒物的浓度随营养级的提高而逐步增大。
CT CS CP CW
Cs、Cw分别为有机毒物在颗粒物和水中的平衡浓度; CT、CP分别为单位体积水溶液有机毒物和颗粒物总浓度。
将上式代入
RT Ki [C] KT [C]
KT CT RT K P CP 1
ln 2 t1 (CP K P 1) KT 2

3.稳态时的浓度(动态平衡) 假设: 有机毒物输入水体的速率 RI,有机毒物在水环 境中消失的速率 RL 当 RI = RL 时,有机毒物就达到稳态浓度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水质数学模型分类按上游来水和排污随时间的变化情况:动态模式、稳态模式按水质分布状况:零维、一维、二维和三维按模拟预测的水质组分:单一组分、多组分耦合模式水质数学模式的求解方法及方程形式解析解模式、数值解模式河流水质模型• 河流完全混合模式、一维稳态模式、S-P 模式(适用于河流的充分混合段) • 托马斯模式(适用于沉降作用明显河流的充分混合段)• 二维稳态混合模式与二维稳态混合衰减模式(适用于平直河流的混合过程段)• 弗罗模式与弗-罗衰减模式(适用于河流混合过程段以内断面的平均水质) • 二维稳态累积流量模式与二维稳态混合衰减累积流量模式(适用于弯曲河流的混合过程段)• 河流pH 模式与一维日均水温模式河流完全混合模式C -废水与河水完全混合后污染物的浓度,mg/LQh -排污口上游来水流量,m3/sC h -上游来水的水质浓度,mg/LQp -污水流量,m3/s)/()(h p h h p p Q Q Q c Q c c ++=Cp-污水中污染物的浓度,mg/L适用条件:(1)废水与河水迅速完全混合后的污染物浓度计算;(2)污染物是持久性污染物,废水与河水经一定的时间(距离)完全混合后的污染物浓度预测。

河流为恒定流动;废水连续稳定排放一维稳态模式C 为污染物的浓度;Dx 为纵向弥散系数,ux 断面平均流速;K 为污染物衰减系数模型的适用对象:污染物浓度在各断面上分布均匀的中小型河流的水质预测BOD-DO耦合模型(S-P模型)适用条件:河流充分混合段,污染物为耗氧有机物,需要预测河流溶解氧状态;河流为恒定流动,污染物连续稳定排放氧垂曲线与临界点(最大氧亏值处)S-P模式的适用条件:①河流充分混合段;②污染物为耗氧性有机污染物;③需要预测河流溶解氧状态;④河流恒定流动;⑤连续稳定排放河流的简化:●矩形平直河流、矩形弯曲河流、非矩形河流●具体简化方法如下:●河流断面宽深比≥20时,可视为矩形河流;●大中河流断面上水深变化很大且评价等级较高(如一级评价)时,可以视为非矩形河流并应调查其流场?,其他情况均可简化为矩形河流;●大中河流中,预测河段弯曲较大(如其最大弯曲系数>1.3)时,可视为弯曲河流,否则可以简化为平直河流;●小河可以简化为矩形平直河流;●河流水文特征或水质有急剧变化的河段,可在急剧变化之处分段,各段分别进行简化●对于江心洲等按以下原则进行简化●①评价等级为3级时,江心洲、浅滩等均可按无江心洲、浅滩情况对待;●②评价等级为2级时,江心洲位于充分混合段,可以按无江心洲对待;●③评价等级为1级且江心洲较大时,可分段进行简化,江心洲较小时可不考虑,江心洲位于混合过程段,可分段进行简化。

●人工控制河流根据水流情况可以视其为水库,也可以视其为河流,分段进行简化。

可简化为矩形平直河流、矩形弯曲河流和非矩形河流。

大中河流各端面水深变化很大且评价等级很高时,可视为非矩形河流并应调查其流场;河流水质水文有急剧变化处,可分段分别进行预测;河网应分段进行预测排放规律可简化为:连续恒定排放、非连续恒定排放排放形式可简化为:点源、面源无组织排放可简化为面源;多个间距很近的排放口排水时,也可简化为面源;排入小湖库的所有排放口可简化为一个;排入河流或大湖库的两个排污口距离较近时,可简化为一个;距离较远时则应分别考虑河口的简化河流感潮段受潮汐作用影响较明显的河段。

可以将落潮时最大断面平均流速与涨潮时最小断面平均流速之差等于0.05m/s 的断面作为其与河流的界线简化方法:除个别要求很高(如一级评价)的情况外,河流感潮段一般可按潮周平均、高潮平均和低潮平均三种情况,简化为稳态进行预测;河流汇合部分可以分为支流、汇合前主流、汇合后主流三段分别进行环境影响预测。

小河汇入大河时,把小河看成点源;河流与湖泊、水库的汇合部分可以按照河流与湖泊、水库两部分分别预测其环境影响;河口断面沿程变化较大时,可以分段进行环境影响预测;河口外滨海段可视为海湾。

湖、库的简化简化为大湖(库)、小湖(库)、分层湖(库)简化方法河口河流交汇处河流感潮河段河口外滨海段湖、库汇合处评价等级为1级时,中湖(库)可以按大湖(库)对待,停留时间较短时也可以按小湖(库)对待;评价等级为3级时,中湖(库)可以按小湖(库)对待,停留时间很长时也可按大湖(库)对待;评价等级为2级时,如何简化视具体情况而定;水深>10m 且分层期较长(如大于30天)的湖泊、水库可视为分层湖(库); 湖、库的简化串联型湖泊可以分为若干区,各区分别按上述情况简化;不存在大面积回流区和死水区且流速较快,水力停留时间较短的狭长湖泊可简化为河流。

其岸边形状和水文特征值变化较大时还可以进一步分段;不规则形状的湖泊、水库可根据流场的分布情况和几何形状分区;自顶端入口附近排入废水的狭长湖泊或循环利用湖水的小湖,可以分别按各自的特点考虑。

污染源简化在预测中,通常可以把排放规律简化为连续恒定排放。

对于点源排放位置的处理,有如下情况:排入河流的两排放口的间距较小时,可以简化为一个排放口,其位置假设在两排放口之间,其排放量为两者之和;排入小湖(库)的所有排放口可以简化为一个排放口,其排放量为所有排放量之和;污染源包括排放方式和排放规律的简化排放方式点源面源排放规律 连续恒定排放非连续恒定排放排入大湖(库)的两排放口的间距较小时,可以简化为一个排放口,其位置假设在两排放口之间,其排放量为两者之和;无组织排放可以简化为面源,从多个间距很近的排放口分别排放污水时,可以简化为面源。

河流混合过程段长度预测范围内河段分充分混合段、混合过程段和排污口上游河段。

充分混合段:污染物浓度在断面上均匀分布的河段。

当断面上任意一点的浓度与断面平均浓度之差小于平均浓度的5%时,可以认为达到均匀分布。

混合过程段:指排放口下游达到充分混合以前的河段。

适用于符合一维动力学降解规律的一般污染物,如氰、酚、有机毒物、重金属、BOD、COD等单项指标的污染物。

1、水库环境影响评价工程分析的主要内容?答:⑴施工期的环境影响A.水环境影响源:砂石骨料废水、混凝土拌和废水、汽车保养与机修废水、生活污水B.大气污染源:爆破、砂石骨料加工、运输、燃油机械C.声污染源:爆破、砂石骨料加工、运输、振动机械D.固体废物:生活垃圾E.生态影响源:施工占地和工程开挖对农业生态环境、林业生态环境的影响;产生的弃渣可能造成水土流失。

E.社会环境:施工运输车辆的增加对交通环境的影响;人员的增加可能引起疾病②运行期的环境影响占地与淹没导致的土地利用方式的改变、生物量变化、生态变化、建筑物阻隔、水资源分布改变等。

移民安置可能带来的环境和生态破坏。

2、公路环境影响评价工程分析的主要内容?答:1.建设项目的基本情况的全面介绍:地理位置、路线方案起讫点名称及主要控制点、建设规模、技术标准、预测交通量、工程内容(技术指标与技术工程数量、筑路材料与消耗量、路基工程、路面工程、桥梁涵洞、交叉工程、措线设施)、建设进度汁划、占地面积、总投资额。

2.重点工程的详细描述:如重点工程名称、规模、分布,永久占地和临时占地类型及数量,临时占地应包括取上场、弃土场、综合施工场地(可能包括拌和场和料扬)、桥梁施工场、施工便道等、占用基本农田的数量。

3.施工场地、料场占地和分布;取、弃土量与取、弃土场设置,施工方式。

4.服务区设置情况(规模)。

5.拆迁安置及环境敏感点分布,包括砍伐树林种类与数量。

6.工程项目全过程的活动,主要考虑施工期、运行期,一定要给出各环境要素污染源强。

7.根据以上要求对路线比较方案进行描述,重点考虑工程路线是否涉及敏感区及少占用耕地的方案比选。

6、河流水质模型适用条件答:a、完全混合模式的适用条件:河流充分混合段;持久性污染物;河流为恒定流;废水连续稳定排放。

b、一维稳态模式的适用条件:河流充分混合段;非持久性污染物;河流为恒定流;废水连续稳定排放。

c、二维稳态混合模式的适用条件:平直河流、断面形状规则的河流混合过程段;持久性污染物;河流为恒定流;连续稳定排放;对于非持久性污染物,需采用相应的衰减模式。

d、二维稳态混合累积流量模式的适用条件:弯曲河流、断面形状不规则河流的混合过程段;持久性污染物;河流为恒定流;连续稳定排放;对于非持久性污染物,需采用相应的衰减模式。

e、S-P模式的适用条件:河流充分混合段;污染物为耗氧性有机污染物;需要预测河流溶解氧状态;河流为恒定流;污染物连续稳定排放。

f、河流混合过程段计算模式:适用于排污口下混合过程段长度的界定。

一般情况下,评价河段分为:排污口上游河段、充分混合段、混合过程段;通过混合过程段长度计算,来判断预测河段的水质混合情况,合理选择水质预测模型。

一维水质模型c=c0*exp(-kx/86400u)用于预测()A 密度小于或等于1的可溶解性化学品;B 重金属C 考虑吸附态D 密度大于1的化学品答案:先来看模型的适用条件:“溶解态,在横向方向上达到完全混合”。

以上明确后,我们不妨用排除法来看:1、吸附态要用到分配系数,不符合。

C先被淘汰;2、“密度大于1的化学品”。

条件不足,是否可溶呢?如是可溶解的当然符合条件,反之则要考虑沉降。

D淘汰;3、“重金属”。

属于持久性污染物,完全混合河段适用完全混合模式(表6-1),而不是一维稳态模式。

故而B也不符;4、“密度小于或等于1的可溶解性化学品”,属于非持久性污染物,在完全混合河段适用一维稳态模式(表6-1)。

符合条件。

综上所述,正确答案为A。

监测点位数(2)监测点位数一级评价项目,监测点应包括评价范围内有代表性的环境空气保护目标,点位不少于10个;二级评价项目,监测点应包括评价范围内有代表性的环境空气保护目标,点位不少于6个。

对于地形复杂、污染程度空间分布差异较大,环境空气保护目标较多的区域,可酌情增加监测点数目。

三级评价项目,若评价范围内已有例行监测点位,或评价范围内有近3年的监测资料,且其监测数据有效性符合本导则有关规定,并能满足项目评价要求的,可不再进行现状监测,否则,应设置2~4个监测点。

(3)公路、铁路等项目应分别在各主要集中式排放源(如服务区、车站等大气污染源)评价范围内,选择有代表性的环境空气保护目标设置监测点位。

(4)城市道路项目可不受上述监测点设置数目限制,根据道路布局和车流量状况,并结合环境空气保护目标的分布情况,选择有代表性的环境空气保护目标设置监测点位。

(5)监测布点原则监测点的布设,应尽量全面、客观、真实反映评价范围内的环境空气质量。

依项目评价等级和污染源布局的不同,按照以下原则进行监测布点:①一级评价项目a) 以监测期间所处季节的主导风向为轴向,取上风向为0°,至少在约0°、45°、90°、135°、180°、225°、270°、315°方向上各设置1个监测点,在主导风向下风向距离中心点(或主要排放源)不同距离,加密布设1~3个监测点。

相关文档
最新文档