自动控制系统的基本组成与分类
《计算机控制技术》复习思考题 第1章 第2章

《计算机控制技术》复习思考题第一章自动控制系统基本概念1.自动控制系统的组成一个简单的自动控制系统,均可概括成两大部分:一部分是自动化装置控制下的生产设备,称为被控对象;另一部分是为实现自动控制所必须的自动化仪表设备,简称为自动化装置,它包括测量变送器、调节器和执行器等。
简单的自动控制系统由被控对象、测量变送器、调节器及执行器四大部分组成。
2.术语a)被控对象?调节器?执行器?测量变送器?b)被控变量,y?设定值,g?测量值,z?偏差,e?干扰,f?调节参数?在被控对象中,需要控制一定数值的工艺参数叫做被控变量,用字母y表示。
被控变量的测量值用字母:表示,按生产工艺的要求,被控变量希望保持的具体数值称为设定值,用字母譬表示。
被控变量的测量值与设定值之间的差值叫做偏差,用字母e表示,e=g-z。
在生产过程中,凡能影响被控变量偏离设定值的种种因素称为干扰,用字母,表示。
用来克服干扰对被控变量的影响,实现控制作用的参数叫做调节参数。
c)反馈?负反馈、正反馈?把系统(或环节)的输出信号直接或经过一些环节重新返回到输入端的做法叫做反馈。
如果反馈信号能够使原来的信号减弱,也就是反馈信号取负值,那么就叫做负反馈。
如果反馈信号取正值,反馈信号使原来的信号加强,那么就叫做正反馈。
自动控制系统绝对不能单独采用正反馈。
d)闭环系统?一个一个信号沿着箭头的方向传送,最后又回到原来的起点,形成一个闭合的回路,如此循环往复,直到被控对象的被控变量值达到或接近设定值为止,所以这种自动控制系统是闭环系统。
自动控制系统是具有被控变量负反馈的闭环系统。
3.自动控制系统方框图?4.自动控制系统的分类?按照工艺过程需要控制的参数值即设定值是否变化和如何变化来分类,而将闭环自动控制系统分为定值控制系统、随动控制系统和程序控制系统三大类。
按调节器具有的控制规律来分类,如位式、比例、比例积分、比例微分、比例积分微分等控制系统。
定值控制系统、随动控制系统和程序控制系统?5.过渡过程a)静态、动态?自动控制系统的平衡(静态)是暂时的、相对的和有条件的,不平衡(动态)才是普遍的、绝对的、无条件的。
控制系统的基本原理:介绍控制系统的基本原理、组成和分类

控制系统的基本原理:介绍控制系统的基本原理、组成和分类引言在现代科技的背景下,控制系统已经成为我们生活中不可或缺的一部分。
无论是家用电器、交通工具还是工业生产,都离不开控制系统的应用。
控制系统的基本原理是指通过对输入信号的检测和处理,以及对输出信号的控制,实现对系统运行状态的调节和控制。
本文将介绍控制系统的基本原理、组成和分类,帮助读者对控制系统有更加深入的理解。
什么是控制系统?控制系统是由输入信号、处理器、执行器和反馈组成的一种系统。
输入信号是指输入到系统中用来控制系统行为的信号,可以是从传感器获取的实时数据,也可以是手动输入的指令。
处理器是对输入信号进行处理和计算的核心部分,它根据输入信号和系统内部的算法决策,生成输出信号。
执行器是负责执行输出信号的设备,根据输出信号改变系统的状态。
反馈是通过测量系统输出信号,与参考信号进行比较,从而调节控制器的工作状态。
控制系统的基本原理控制系统的基本原理可以概括为输入-处理-输出-反馈的闭环过程。
首先,输入信号传输到处理器中。
处理器分析、计算和决策,生成相应的输出信号。
输出信号被执行器执行,从而改变系统的状态。
同时,系统的输出信号被反馈回来,与参考信号进行比较,根据比较的结果调整处理器的工作状态。
这个闭环的过程不断进行,使得系统能够动态地调节和控制。
控制系统的组成控制系统的组成可以分为四个主要部分:输入信号、处理器、执行器和反馈。
输入信号输入信号是控制系统的输入,它提供了控制系统操作的指令或者实时数据。
输入信号可以来自传感器、人机交互界面或者其他外部设备。
传感器可以采集温度、压力、湿度等物理量,并将采集到的信息转化为电信号。
人机交互界面可以通过按钮、开关、触摸屏等方式输入指令。
处理器处理器是控制系统的核心部件,它负责对输入信号进行处理和计算,根据系统内部的算法决策产生输出信号。
处理器可以是数字处理器或者模拟处理器,根据控制系统的需求选择合适的处理器。
处理器将输入信号与控制算法相结合,根据预定的控制策略生成输出信号。
自动化控制的工作原理

自动化控制的工作原理自动化控制技术是指在工业生产和社会生活中,利用计算机、微电子技术、机械和仪器仪表等综合技术手段,对各种生产过程进行监测、控制和管理的一种先进技术。
它的出现,不仅大大提高了生产效率,还降低了劳动强度,改善了工作环境,提高了产品质量。
本文将详细介绍自动化控制的工作原理。
一、自动化控制系统的组成自动化控制系统主要由四个基本要素组成:控制对象、控制装置、传感器和执行器。
控制对象是指需要进行监测和控制的物理、化学、机械或电气系统;控制装置是指将纽扣、开关、按钮等操作元素与控制对象相连的设备;传感器用于将控制对象的状态参数转换为电信号;执行器用于接收控制装置的信号,并实现对控制对象的控制。
二、自动化控制的基本原理自动化控制的基本原理是通过将输入信号经过控制装置处理后,输出给执行器控制控制对象,实现对控制对象的监测和调节。
其工作原理可分为三个阶段:检测阶段、决策阶段和执行阶段。
1. 检测阶段检测阶段通过传感器采集控制对象的参数信息,如温度、压力、流量等,并将其转换为电信号。
这些电信号经过处理后,成为输入信号。
2. 决策阶段决策阶段是通过控制装置对输入信号进行处理和分析,根据事先设定的控制策略,产生输出信号。
这些输出信号将决定执行器对控制对象采取何种操作方式。
3. 执行阶段执行阶段是通过执行器接收到控制装置的输出信号后,对控制对象进行相应的操作,如开关的打开、关闭,电机的启动、停止等。
执行器的操作将对控制对象的状态产生影响。
三、自动化控制的分类根据控制系统的复杂程度和控制策略的不同,自动化控制可分为三个层次:开环控制、闭环控制和优化控制。
1. 开环控制开环控制是指控制系统只考虑输出结果,而不对输出结果进行监测和调节的一种控制方式。
在开环控制中,不对控制对象的状态参数进行反馈,因此容易受到外界干扰的影响。
2. 闭环控制闭环控制是指控制系统通过对控制对象的输出进行监测和调节,实现对其状态参数的精确控制。
自动化控制

自动化控制一、引言随着科技的进步和工业的发展,自动化控制在现代社会中的作用越来越重要。
它广泛应用于各种行业,如制造业、能源、交通、航空航天等,不仅提高了生产效率,还大大增强了系统的稳定性和安全性。
本文将详细介绍自动化控制的基本组成、分类、优点、发展趋势以及应用领域。
二、自动化控制系统的基本组成控制器:它是自动化控制系统的核心,负责接收输入信号,并根据预设的算法处理这些信号,产生相应的输出信号,以控制被控对象的运行。
传感器:传感器是用于检测被控对象的状态和变化,并将检测到的信号转换为可处理的电信号的设备。
执行器:执行器根据控制器的输出信号,驱动被控对象执行相应的动作,以实现系统的控制目标。
人机界面(HMI):人机界面是人与自动化控制系统交互的界面,用于显示系统的运行状态、接收人的操作指令等。
通信网络:通信网络用于连接自动化控制系统的各个组成部分,实现信息的传递和共享。
三、自动化控制系统的分类开环控制系统:开环控制系统是指系统中没有反馈环节的控制系统,输出只受输入的控制。
闭环控制系统:闭环控制系统是指系统中包含反馈环节的控制系统,系统可以根据反馈信号调整控制器的输出,以实现对被控对象的精确控制。
随动系统与伺服系统:随动系统是指系统的输出能够跟踪输入的变化的系统,而伺服系统则是指能够实现快速、准确跟踪输入变化的系统。
四、自动化控制系统的主要优点高效性:自动化控制系统可以连续24小时工作,大大提高了生产效率。
精确性:自动化控制系统采用高精度传感器和算法,可以实现精确控制,减少人为误差。
可靠性:自动化控制系统具有较高的稳定性和可靠性,可以减少故障发生的概率。
灵活性:自动化控制系统可以通过软件编程实现不同的控制逻辑,具有较高的灵活性。
降低成本:自动化控制系统可以降低人力成本,提高生产效益。
五、自动化控制系统的发展趋势智能化:随着人工智能技术的发展,未来的自动化控制系统将更加智能化,能够自适应地处理复杂的控制任务。
自动控制系统实验教案

自动控制系统实验教案一、实验目的1. 理解自动控制系统的原理和组成;2. 掌握自动控制系统的分析和设计方法;3. 熟悉自动控制系统的实验操作和调试技巧;4. 培养学生动手能力和团队协作精神。
二、实验原理1. 自动控制系统的基本概念:系统、输入、输出、反馈、控制目标等;2. 自动控制系统的分类:线性系统、非线性系统、时间不变系统、时变系统等;3. 自动控制系统的数学模型:差分方程、微分方程、传递函数、状态空间表示等;4. 自动控制器的设计方法:PID控制、模糊控制、自适应控制等。
三、实验设备与器材1. 实验台:自动控制系统实验台;2. 控制器:可编程逻辑控制器(PLC)、微控制器(MCU)等;3. 传感器:温度传感器、压力传感器、流量传感器等;4. 执行器:电动机、电磁阀、伺服阀等;5. 信号发生器:函数发生器、任意波形发生器等;6. 示波器、频率分析仪等测试仪器。
四、实验内容与步骤1. 实验一:自动控制系统的基本原理与组成(1)了解自动控制系统实验台的基本结构;(2)学习自动控制系统的原理和组成;(3)分析实验台上的控制系统。
2. 实验二:线性系统的时域分析(1)根据实验要求,搭建线性系统实验电路;(2)利用信号发生器和示波器进行实验数据的采集;(3)分析实验数据,得出系统特性。
3. 实验三:线性系统的频域分析(1)搭建线性系统实验电路,并连接频率分析仪;(2)进行频域实验,采集频率响应数据;(3)分析频率响应数据,得出系统特性。
4. 实验四:PID控制器的设计与调试(1)学习PID控制原理;(2)根据系统特性,设计PID控制器参数;(3)搭建PID控制实验电路,并进行调试。
5. 实验五:模糊控制器的设计与调试(1)学习模糊控制原理;(2)根据系统特性,设计模糊控制器参数;(3)搭建模糊控制实验电路,并进行调试。
五、实验要求与评价2. 实验操作:熟悉实验设备的操作,正确进行实验;3. 数据处理:能够正确采集、处理实验数据;4. 分析与总结:对实验结果进行分析,得出合理结论;5. 课堂讨论:积极参与课堂讨论,分享实验心得。
简述自动控制系统的基本分类

简述自动控制系统的基本分类自动控制系统是现代工业生产中不可或缺的一部分,它可以实现对生产过程的自动化控制,提高生产效率和质量。
自动控制系统的基本分类主要有以下几种。
一、按照控制对象分类1.连续控制系统:主要用于对连续生产过程进行控制,如化工、石油、纺织等行业的生产过程。
2.离散控制系统:主要用于对离散生产过程进行控制,如自动包装、自动装配等行业的生产过程。
3.混合控制系统:是连续控制系统和离散控制系统的结合,主要用于对同时具有连续和离散生产过程的系统进行控制。
二、按照控制方式分类1.开环控制系统:是指控制器不对被控对象的输出进行反馈调节,而是直接根据预定的控制规律进行控制。
2.闭环控制系统:是指控制器对被控对象的输出进行反馈调节,根据输出与预定值之间的误差进行控制。
3.开闭环控制系统:是指同时采用开环和闭环控制方式的控制系统,主要用于对复杂系统进行控制。
三、按照控制器分类1.单变量控制器:是指控制单个变量的控制器,如PID控制器、比例控制器等。
2.多变量控制器:是指控制多个变量的控制器,如模型预测控制器、自适应控制器等。
3.分散控制器:是指控制系统中各个部分各自独立进行控制的控制器。
4.集中控制器:是指控制系统中各个部分通过中央控制器进行集中控制的控制器。
四、按照控制对象的数量分类1.单变量控制系统:是指控制系统中只有一个被控对象的控制系统。
2.多变量控制系统:是指控制系统中有多个被控对象的控制系统。
3.分布式控制系统:是指控制系统中各个被控对象通过分布式控制器进行控制的控制系统。
四、按照控制系统的层次分类1.基层控制系统:是指控制系统中最底层的控制系统,主要用于对现场设备进行控制。
2.中层控制系统:是指控制系统中处于中间层次的控制系统,主要用于对生产过程进行控制。
3.高层控制系统:是指控制系统中处于最高层次的控制系统,主要用于对整个生产过程进行规划和管理。
以上是自动控制系统的基本分类,不同的控制系统具有不同的特点和应用范围,选择合适的控制系统能够提高生产效率和质量,降低成本,提高企业的竞争力。
自动控制基础知识.详解

例2:“是”函数的真值 表
例3:“与”函数的真值 表
例4:“或”函数的真值 表
三、卡诺图
卡诺图:就是按一定规则画出的方块图。
图中一个方块就代表变量的一种取值情况,和真值表类似, 有n个逻辑变量,在卡诺图中就有2n 个格。
0 a1
aa
图1.19 单变量 卡诺图
3 复合控制
计算
给定值
计算
执行
测量
干扰
受控对象
被控量
测量
图1.7 复合控制框图
§1.2 传递函数与环节特性
一、比例环节
其传递函数为:
特点:当输人信号变化时,输出信号会同时以一定的比例 复现输入信号的变化。
x(t)
y(t)
A A
KA A
图1.8 比例环节动态特性
二、一阶环节
其传递函数为: 特点:当输入信号x(t)作阶跃变化后,输出信号y(t)立刻以
“非”函数可用常闭开关符号代表:
“非”函数的基本性质如下:
(2) 双变量(多变量)运算
设变量“a、b、c、d…”,函数S,有如下运算: a.“与”函数
又称“逻辑乘”,表示“同时”、“共同 ” 等价表于达两式个为常:开开关串联:
基本性质: 置换律: 结合律: 几个特殊关系:
当有n个变量时,“与”函数可表示为: 上述性质均成立
(2)过渡过程的5个品质指标
y
图1.13 定值系统的过渡过程
最大偏差A 过渡时间ts 余差C 衰减比ψ 振荡周期Tp
§1.4 自动控制的基本方式
f 被控对象
uห้องสมุดไป่ตู้
控制器
c
c
e
r0
图1.14 控制系统方框图
第一章 自动控制系统的基本概念(修改) (2)

上篇自动控制原理第一章自动控制系统概述本章要点本章简要介绍有关自动控制的基本概念、开环控制和闭环控制的特点、自动控制系统的基本组成和分类以及对自动控制系统的基本要求。
第一节自动控制的基本概念自动控制是指在没有人的直接干预下,利用物理装置对生产设备和工艺过程进行合理的控制,使被控制的物理量保持恒定,或者按照一定的规律变化。
自动控制系统则是为实现某一控制目标所需要的所有物理部件的有机组合体。
在自动控制系统中,被控制的设备或过程称为被控对象或对象;被控制的物理量称为被控量或输出量;决定被控量的物理量称为控制量或给定量;妨碍控制量对被控量进行正常控制的所有因素称为扰动量。
扰动量按其来源可分为内部扰动和外部扰动。
给定量和扰动量都是自动控制系统的输入量。
通常情况下,系统有两种外作用信号:一是有效输入信号(以下简称输入信号),二是有害干扰信号(以下简称干扰信号)。
输入信号决定系统被控量的变化规律或代表期望值,并作用于系统的输入端。
干扰信号是系统所不希望而又不可避免的外作用信号,它不但可以作用于系统的任何部位,而且可能不止一个。
由于它会影响输入信号对系统被控量的有效控制,严重时必须加以抑制或补偿。
第二节开环控制和闭环控制自动控制有两种基本的控制方式:开环控制和闭环控制。
与这两种控制方式对应的系统分别称之为开环控制系统和闭环控制系统。
一、开环控制系统开环控制系统是指系统的输出端和输入端不存在反馈关系,系统的输出量对控制作用不发生影响的系统。
这种系统既不需要对输出量进行测量,也不需要将输出量反馈到输入端与输入量进行比较,控制装置与被控对象之间只有顺向作用,没有反向联系。
电加热系统的控制目标是,通过改变自耦变压器滑动端的位置,来改变电阻炉的温度,并使其恒定不变。
因为被控制的设备是电阻炉,被控量是电阻炉的温度,所以该系统可称为温度控制系统,如图1-1所示。
开环控制系统的优点是系统结构和控制过程简单,稳定性好,调试方便,成本低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制系统的基本组成与分类
自动控制系统的基本组成
如前所述,自动控制系统(即反馈控制系统)由被控对象和控制装置两大部分组成,
根
据其功能,后者又是由具有不同职能的基本元部件组成的。
图1.12是一个典型的自
动控制
系统的基本组成示意图,图中组成系统的各基本环节及其功能如下。
1.被控对象
如前所述,被控对象是指对其莱个特定物理量进行控制的设备或过程
出即为系统的输出员,即被控量,通常以c(r)(或y(f))表示。
2.阁量元件
测量元件用于对输出量进行测量,并将其反馈至输入端。
如果输出量与输入量的物
理
单位不同,有时还要进行相应的量纲转换*例如,温度测量装置(热电偶)用于团量湿度并
转换为电压(见固1.2),测速发电机用于测量电动机轴转速井转换为电压(见田1.9)。
3.给定元件
根据控制日的,给定元件将给定量转换为与期望输出相对应的系统治入量(通常以
r(‘)表示),作为系统的控制依据。
例如,图1.9中,给定电压M2的电位器即为给
定元件。
4.比较元件
比较元件对输入量与测量元件测得的输出量进行比较,并产生偏差信号
中的电压比较电路。
通常,比较元件输出的偏差信号以‘(2)表示。
5.放大元件
放大元件是特比较元件结出的(檄弱的)偏差信号进行放大(必要时还要进行物理量的转换)。
例如,图1.9中的ATMEL代理放大器和晶闸管整流装置等。
6.执行元件
执行元件的功能是,根据放大元件放大后的偏差信号,推动执行元件去控制被控对
象,使其被控量按照设定的要求变化。
通常,电动机、液压马达等都可作为执行元件。
7.校正元件
校正元件又称补偿元件,用于改善系统的性能,通常以串联或反馈的方式连接在系
统中。
在图1.12中,作用信号从输入端沿箭头方向到达输出端的传输通路称为前向通路;系
统治出量经测旦元件反馈到输入端的传输通路称为主反馈通路;前向通路和主反馈通
路构
成的回路称为主反馈回路,简称主回路。
除此之外,还有局部反馈通路以及局部反馈
回路
等*将只包含一个主反馈通路的系统称为单回路系统,将包含两个或两个以上反馈通路的
系统称为多回路系统。
1.4.2 自动控制系统的分类
如前所述,自动控制系统的组成千差万别,所完成的控制任务也不尽相同,但可以
按
不同的分类方法,将其分为各种不同的类别。
例如,按控制方式可分为开环控制系统、闭
环控制系统和复合控制系TI代理统;按元件类型可分为机械系统、电气系统、机电系统、液压系
统、气动系统、生物系统等;按系统功能可分为温度控制系统、压力控制系统、位置
控制系
统等。
为便于研究自动控制系统的实质,确定正确的研究方法及选择合适的数学工具
重点讨论几种最基本和最常用的分类方法。
1.按输入量变换规律分类
(1)恒值控制系统。
恒值控制系统的输入量为常值,要求系统在扰动存在的情况下,
输出量保持恒定。
因此,恒值控制系统的任务就是要克服各种扰动对系统的影响而保
持输
出量为恒值。
前述介绍的自动恒温控制系统和宣流电动机闭环调速系统均为恒值控制
系
统。
此外,工业控制中的过程控制系统(输出量为温度、流量、压力、液位等生产过程参量)
也都为恒值控制系统。
(2)随动控制系统。
随动控制系统又称伺服系统或跟踪系统,其输人量是预先未知的
随时间任意变化的函数,要求输出量能够迅速而准确地跟随输入量的变化。
因而,随
动控
制系统的任务是在各种情况下保证输出量以一定相度和速度跟随输入量的变化而变化。
武
器系统中的火炮跟踪系统、雷达导引系统,机械加工设备的伺服机构,天文望远镜的
跟踪
系统等都属于随动系统。
(3)程序控制系统。
程序控制系统的输入量是按照预定规律随时间变化的函数。
数字控制机床、机械手控制系统等。
2.按组成系统元件特性分NXP代理商类
(1)线性系统。
组成控制系统的所有环节(或元件)均为线性元件,即其输入/输出特性
都是线性的,这样的控制系统称为线性系统,线性系统可以用线性微分方程(或差分方程)
来描述。
在线性系统中,环节(或元件)参数不随时间变化的控制系统称为定常系统(或时
不变系统);参数随时间变化的控制系统称为时变系统。
(2)非线性系统。
组成控制系统的所有环节(或元件)中,至少有一个为非线性元件,
其他为线性元件,这样的控制系统称为非线性系统。
3.按系统信号性质分类
(1)连续时间系统。
系统中所有信号都是时间‘的连续函数的控制系统称为连续时间
系统,简称连续系统。
(2)离散时间系统。
信号传输过程中存在间歇采样、脉冲序列等离散信号的控制系统
称为离散时间系统,简称离散AT89C2051系统,其运动规律可用差分方程描述。
cjmc%ddz。