复习专题三 函数的单调性
超实用高考数学专题复习:第三章函数概念及基本初等函数Ⅰ第3节函数的单调性与最值

对考试。数学最后的复习要树立信心,考试的时候遇到难题要想“别人也难”
,遇到容易的则要想“细心审题”。越到最后,考生越要回归基础,单词最好 再梳理一遍,这样有利于提高阅读理解的效率。另附高考复习方法和考前30天 冲刺复习方法。
知识梳理
答案 D
4.(2016·北京卷)函数 f(x)=x-x 1(x≥2)的最大值为________.
解析 易得 f(x)=x-x 1=1+x-1 1,当 x≥2 时,x-1>0,易知 f(x)在[2,+∞)
上是减函数,∴f(x)max=f(2)=1+2-1 1=2. 答案 2
5.(2020·宁波模拟)已知 log23=a,则22aa+ -11=________,函数 f(x)=a2x-2ax 的单调递 增区间为________. 解析 由 log23=a 得 2a=3,故22aa+-11=2;又函数 f(x)由 u=ax 与 y=u2-2u 复合,且 a=log23>1,即 u=ax 单调递增,而 y=u2-2u 在[1,+∞)上单调 递增,则由复合函数的单调性性质知若 f(x)单调递增,必须有 ax≥1,故 x≥0, 即单调递增区间为[0,+∞).
则 f(f(3))=________,函数 f(x)的最
-x2+2x,x≤1,
大值是________.
(2)已知函数 f(x)=x2+2xx+a,x∈[1,+∞)且 a≤1.
①当 a=12时,求函数 f(x)的最小值;
②若对任意 x∈[1,+∞),f(x)>0 恒成立,试求实数 a 的取值范围.
log1x,x>1, (1)解析 ①由于 f(x)= 3
当 0<x1<x2≤ a时,0<x1x2<a,又 x1-x2<0, 所以 f(x1)-f(x2)>0,即 f(x1)>f(x2), 所以函数 f(x)在(0, a]上是减函数.
专题03 函数的单调性和最值的处理途径-学会解题之高三数学万能解题模板【2022版】(解析版)

专题03 函数的单调性和最值的处理途径【高考地位】函数的单调性是函数的一个重要性质,几乎是每年必考的内容,例如判断和证明单调性、求单调区间、利用单调性比较大小、求值域、最值或解不等式.方法一 定义法例1 已知函数()log (2)log (4)a a f x x a a x =-+-(0a >且1a ≠). (1)当1a >时,写出函数()f x 的单调区间,并用定义法证明;(2)当01a <<时,若11()log 48a f x a ⎛⎫≥+ ⎪⎝⎭恒成立,求实数a 的取值范围.【来源】辽宁省辽西联合校2020-2021学年高三(上)期中数学试题【答案】(1)增区间为()2,3a a ,减区间为()3,4a a ;证明见解析;(2)10,2⎛⎤⎥⎝⎦.【解析】(1)求得()f x 的定义域,运用复合函数的单调性,结合对数函数和二次函数的单调性,可得所求单调区间,再由单调性的定义证明;(2)由二次函数的值域和对数函数的单调性,求得()f x 的最小值,解不等式112log 48a a ⎛⎫≥+ ⎪⎝⎭,可得所求范围. 【详解】(1)由2040x a a x ->⎧⎨->⎩可得24a x a <<,则()f x 的定义域为()2,4a a ,()log (2)log (4)log (2)(4)a a a f x x a a x x a a x =-+-=--22log (3)a x a a ⎡⎤=--+⎣⎦,当1a >时,()f x 的增区间为()2,3a a ,减区间为()3,4a a .证明:设()22()3g x x a a =--+,()g x 的增区间为(),3a -∞,减区间为()3,a +∞,当1a >时,设1223a x x a <<<,可得()()12g x g x <,()()12log log []a a g x g x <⎡⎤⎣⎦,即()()12f x f x <,可得()f x 在()2,3a a 递增;设1234a x x a <<<,可得()()12g x g x >,()()12log log []a a g x g x >⎡⎤⎣⎦, 即()()12f x f x >,可得()f x 在()3,4a a 递减.(2)由01a <<,()2223x a a a --+≤,可得2()log 2a f x a ≥=,所以112log 48a a ⎛⎫≥+ ⎪⎝⎭,即为211048a a --≤,解得102a <≤,即a 的取值范围是10,2⎛⎤⎥⎝⎦.【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <;(2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差12()()f x f x -的符号; (4)下结论:判断,根据定义作出结论. 即取值---作差----变形----定号----下结论.例2 已知定义域为R 的函数12()12xxf x -=+. (1)试判断函数12()12xxf x -=+在R 上的单调性,并用函数单调性的定义证明;(2)若对于任意t ∈R ,不等式22(2)()0f t t f t k -+-<恒成立,求实数k 的取值范围. 【来源】上海市金山区2021届高三上学期一模(期末教学质量检测)数学试题 【答案】(1)函数()f x 在R 上单调递减,证明见解析;(2)1,2⎛⎫-∞- ⎪⎝⎭.【解析】(1)利用证明函数单调性的步骤,取值、作差、变形、等号、下结论即可证明()f x 在R 上的单调性;(2)首先利用定义证明()f x 的奇偶性,再根据奇偶性和单调性脱掉f ,转化为关于t 的一元二次不等式恒成立,分离t 转化为最值问题即可求解. 【详解】(1)函数12()12xx f x -=+在R 上单调递减.证明如下:任取12,x x ∈R ,且12x x <,122112*********(22)()()1212(12)(12)x x x x x x x x f x f x ----=-=++++,因为12x x <,所以1222x x <,1120x +>,2120x +>,即12()()f x f x >,故函数12()12xxf x -=+在R 上单调递减.(2)因为1221()()1221x x x x f x f x -----===-++,故12()12xxf x -=+为奇函数,所以222(2)()()f t t f t k f k t -<--=-, 由(1)知,函数()f x 在R 上单调递减,故222t t k t ->-,即2220t t k -->对于任意t ∈R 恒成立,所以222k t t <-,令()222g t t t =-,则()min k g t <,因为()22111222222g t t t t ⎛⎫=-=--≥- ⎪⎝⎭,所以()min 12g t =-,所以12k <-,即实数k 的取值范围是1,2⎛⎫-∞- ⎪⎝⎭.【点睛】方法点睛:定义法判定函数()f x 在区间D 上的单调性的一般步骤 1.取值:任取1x ,2x D ∈,规定12x x <, 2.作差:计算()()12f x f x -, 3.定号:确定()()12f x f x -的正负, 4.得出结论:根据同增异减得出结论.【变式演练1】(多选)【海南省2021届高三年级第二次模拟考试】下列函数中是偶函数,且在区间(0,1)上单调递增的是() A .22y x =-B .2y x=C .1||||y x x =+D .2||x y x =【答案】AD 【解析】利用函数的奇偶性的定义判断奇偶性,根据函数解析式判断单调性. 【详解】A ,因为()()()2222f x x x f x -=--=-=,22y x =-是偶函数,在区间(0,1)上为增函数,符合题意; B ,因为()()22x x f x f x =--=--=,2y x=是奇函数,且在区间(0,1)上为减函数,不符合题意; C ,因为()()11||||||||f x x x f x x x -=-+=+=-,1||(0)||y x x x =+≠是偶函数,当(0,1)x ∈时,1y x x=+单调递减,不符合题意;D ,因为()()22||||x x f x f x x x -===-,2(0)||x y x x =≠是偶函数,且在区间(0,1)上为增函数,符合题意. 故选:AD例3 定义在[1,1]-上的奇函数()f x ,对任意,0m n ≠时,恒有()()0f m f n m n+>+.(1)比较1()2f 与1()3f 大小;(2)判断()f x 在[1,1]-上的单调性,并用定义证明;(3)若810a x -+>对满足不等式11()(2)024f x f x -+-<的任意x 恒成立,求a 的取值范围. 【答案】(1)11()()23f f >;(2)函数()f x 在[1,1]-上为单调递增函数,证明见解析;(3)4a >. 【解析】试题解析:(1)利用作差法,即可比较1()2f 与1()3f 大小;(2)利用单调性定义证明步骤,即可得出结论;(3)先确定x 的范围,再分离参数求最值,即可求a 的取值范围.试题解析:(1)第一步,由()()0f m f n m n+>+得出031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f :∵11()023+-≠,031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f , ∵03121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f , 第二步,由奇偶性得出结论: ∵11()()23f f >--∵11()()23f f >. (2)第一步,取值、作差: 任取12[1,1]x x ∈-,且12x x <,21212121212121()()()()()()()()()f x f x f x f x f x f x x x x x x x x x -+--=-=--+-.第二步,判断符号: ∵2121()()0()f x f x x x +->+-,210x x ->,∵21()()0f x f x ->,第三步,下结论:∵函数()f x 在[1,1]-上为单调递增函数. (3)4a >.考点:函数奇偶性与单调性的综合问题. 【变式演练2】已知函数()21xf x x =+. (1)判断并证明函数()f x 的奇偶性;(2)判断当()1,1x ∈-时函数()f x 的单调性,并用定义证明; (3)若()f x 定义域为()1,1-,解不等式()()210f x f x -+<. 【答案】(1)奇函数(2)增函数(3)1{|0}3x x <<【解析】试题解析:(1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x ,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。
高考数学解题方法专题讲解(3)抽象函数单调性的判断方法

高考数学解题方法专题讲解专题(三) 抽象函数单调性的判断方法[例] [2021·西安模拟]已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1,②当x>0时,f(x)>-1.(1)求f(0)的值,并证明f(x)在R上是单调增函数;(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.解题视点:(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本小题的切入点.要构造出f(M)<f(N)的形式.解析:(1)令x=y=0得f(0)=-1.证明如下:在R上任取x1>x2,则x1-x2>0,f(x1-x2)>-1.又f(x1)=f((x1-x2)+x2)=f(x1-x2)+f(x2)+1>f(x2),所以,函数f(x)在R上是单调增函数.(2)由f(1)=1,得f(2)=3,f(3)=5.由f(x2+2x)+f(1-x)>4得f(x2+x+1)>f(3),又函数f(x)在R上是增函数,故x2+x+1>3,解之,得x<-2或x>1,故原不等式的解集为{x|x<-2或x>1}.答题模板:解函数不等式问题的一般步骤第一步:确定函数f(x)在给定区间上的单调性;第二步:将函数不等式转化为f(M)<f(N)的形式;第三步:运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:解不等式或不等式组确定解集;第五步:反思回顾.查看关键点,易错点及解题规范.答题启示:对于抽象函数的单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x1,x2在所给区间内比较f(x1)-f(x2)与0的大小,或f(x1),f(x2)同号时比较f(x1)f(x2)与1的大小.有时根据需要,需作适当的变形:如x1=x2·x1x2或x1=x2+x1-x2等.。
高考数学专题讲解:三角函数的单调性

8
8
计算三角函数单调性
例题:求函数f (x) 3tan( 1 x ) 1的单调性。
26
解法设计:A 3 0 1 0 三角函数单调性发生改变
2
k 1 x k
2
2 62
原始单调递增,单调性改变,现在单调递减
k 1 x k
6
6
x [ 7 2k, 2k] f (x)单调递增
6
6
计算三角函数单调性
例题:求函数 f (x) cos(2x )的单调性。
4
解法设计:A 1 0 2 0 三角函数单调性不发生改变
2k 2x 2 2k
4
3
原创解法设计中心
2
3
训练三:求函数 f (x) 3tan( x ) 2 的单调性。
4
训练四:求函数 f (x) 2sin( 3x )的单调性。
4
训练五:求函数 f (x) 4cos(x ) 3 的单调性。
6
训练六:求函数 f (x) 2tan(x ) 的单调性。
5
2
2
当x [ 2k,2 2k]时:
函数 f (x) cos x单调递增
知识点储备
y
0
2
2
f (x) tan x的单调性
3
x
当x
(
2
k,
2
k )
时:
2
函数 f (x) tan x单调递增
计算三角函数单调性
A 振幅A 0 三角函数的单调性不发生改变 振幅A 0 三角函数的单调性发生改变 A0
高三数学 函数的单调性专题复习 教案

芯衣州星海市涌泉学校三仓中学2021届高三数学函数的单调性专题复习教案导学目的:①理解函数的单调性、最大〔小〕值及其几何意义;②理解函数单调性的定义,掌握函数单调性的断定与证明,能利用函数的单调性解决一些问题.自主梳理1.增函数和减函数一般地,设函数()f x的定义域为I:假设对于定义域I内某个区间D上的任意两个自变量的值12,x x,当12x x<时,都有12()()f x x<,那么就说函数()f x在区间D上是___________.假设对于定义域I内某个区间D上的任意两个自变量的值12,x x,当12x x<时,都有12()()f x x>,那么就说函数()f x在区间D上是___________.2.单调性与单调区间假设一个函数在某个区间M上是_____________或者者是____________,就说这个函数在这个区间M上具有_____________〔区间M称为____________〕。
3.最大〔小〕值〔前面已复习过〕4.判断函数单调性的方法〔1〕定义法:利用定义严格判断。
〔2〕导数法①假设()f x在某个区间内可导,当'()0f x>时,()f x为______函数;当'()0f x<时,()f x为______函数。
②假设()f x在某个区间内可导,当()f x在该区间上递增时,那么'()f x______0,当()f x在该区间上递减时,那么'()f x______0。
〔3〕利用函数的运算性质:如假设(),()f xg x为增函数,那么①()()f xg x+为增函数;②1()f x为减函数〔()0f x>〕;③()f x为增函数〔()0f x≥〕;④()()f xg x为增函数〔()0,()0f xg x>>〕;⑤()f x-为减函数。
〔4〕利用复合函数关系判断单调性法那么是“___________〞即两个简单函数的单调性一样,那么这两个函数的复合函数为_______,假设两个简单函数的单调性相反,那么这两个函数的复合函数为_______,〔5〕图像法〔6〕奇函数在两个对称区间上具有____的单调性;偶函数在两个对称区间上具___的单调性;自我检测1.设函数()(21)f x a x b=-+是R上的减函数,那么a的取值范围为.2.函数)(xfy=在定义域R上是单调减函数,且)1(|)1(|fxf>,那么实数x的取值范围是.3.函数2()45f x x mx=-+在区间[2,)-+∞上是增函数,在区间]2,(--∞上是减函数,那么)1(f=.4.:函数()()2411f x x a x=+-+在[)1,+∞上是增函数,那么a的取值范围是_____5.函数132+-=xxy在区间)1,(--∞上是单调________函数.〔填“增〞或者者“减〞〕探究点一函数单调性的判断及应用:【例1】函数,1)(2axxxf-+=其中.0>a假设),1()1(2-=ff求a的值;证明:当1≥a时,函数)(xf在区间),0[+∞上为单调减函数;假设函数)(xf在区间),1[+∞是增函数,求a的取值范围探究点二求函数的单调区间:【例2】求函数)23(log221+-=xxy的单调区间.变式训练:(1)求函数62-+=xxy的单调区间.(2)求函数)352(log)(2+-=xxxfa的单调区间.探究点三函数单调性的应用:【例3】〔1〕假设)(xf是R上的增函数,那么满足)()2(2mfmf<-的实数m的取值范围是.(2)函数)(xfy=是偶函数,)2(-=xfy在[0,2]上是单调减函数,那么)2(),0(),1(fff-的大小顺序是.(3)函数⎪⎩⎪⎨⎧<-≥+=.0,2,0,2)(22xxxxxxxf假设)()2(2afaf>-,那么实数a的取值范围是.探究点四抽象函数的单调性:﹡【例4】函数)(xf对任意的a,b∈R,都有1)()()(-+=+bfafbaf,并且当x>0时,)(xf>1.(1).求证:)(xf是R上的增函数;〔2〕.假设5)4(=f,解不等式3)23(2<--mmf.1.给出如下三个函数:①)2ln(+=xy;②1+-=xy;③xxy1+=.其中在区间),0(+∞内为增函数的是(写出所有增函数的序号)2.函数)(xf是定义在),0[+∞上的函数,且在该区间上单调递增,那么满足不等式)31()12(fxf<-的x的取值范围是.3.函数⎪⎩⎪⎨⎧>+-≤-=,2,)1(,2,)21()(xkxkxkxfx对于任意的21xx≠,都有)()(2121<--xxxfxf,那么k的最大值为.4.设函数)(xf定义在实数集上,它的图象关于直线1=x对称,且当1≥x时,,13)(-=xxf那么)23(),32(),31(f f f 从小到大的顺序为.。
复习专题三 函数的单调性

达 标训 练
1.(2010·山东烟台质检)如果函数f(x)=ax2+2x-3在区间(-∞,4)上是 单调递增的,则实数a的取值范围是 ( )
A.a 1 4
C. 1 a 0 4
B.a 1 4
D. 1 a 0 4
(2) f (x 1) f (x) a 2x 2b 3x 0 2b ( 3)x a 2
当(1)a
0, b
0时,( 3)x 2
a 2b
x
log 3
2
(
a ); 2b
(2)a
0, b
0时,( 3)x 2
a 2b
x
log 3
2
(
a ). 2b
另外,在函数的单调性定义中的x1,x2满足:一是属于一个单 调区间;二是任意性;三是有大小,即x1<x2(或x1>x2).由于 区间端点不具有单调性,因此写单调区间时,可以写成包含
端点的闭区间,也可以写成不包含端点的开区间.
2.函数单调性定义的等价形式
(1)对于任意x1,x2∈[a,b], 在[a,b]是增(减)函数.
变式训练:讨论函数f
(x)
ax
x2
(a 1
0)
在x (1,1)上的单调性。
解:设-1<x1<x2 1
则f(x1)-f(x2 )=
ax1 x12 1
ax2 x22 1
a(x1x2 1)(x2 (x12 1)(x22
x1) 1)
考点17导数与函数的单调性(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点17导数与函数的单调性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用【知识点】1.函数的单调性与导数的关系条件恒有结论f ′(x )>0f (x )在区间(a ,b )上________f ′(x )<0f (x )在区间(a ,b )上________函数y =f (x )在区间(a ,b )上可导f ′(x )=0f (x )在区间(a ,b )上是________2.利用导数判断函数单调性的步骤第1步,确定函数的 ;第2步,求出导数f ′(x )的;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.常用结论1.若函数f (x )在(a ,b )上单调递增,则当x ∈(a ,b )时,f ′(x )≥0恒成立;若函数f (x )在(a ,b )上单调递减,则当x ∈(a ,b )时,f ′(x )≤0恒成立.2.若函数f (x )在(a ,b )上存在单调递增区间,则当x ∈(a ,b )时,f ′(x )>0有解;若函数f (x )在(a ,b )上存在单调递减区间,则当x ∈(a ,b )时,f ′(x )<0有解【核心题型】题型一 不含参函数的单调性确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.【例题1】(2023·全国·模拟预测)已知函数()()()ln 2ln 4f x x x =-+-,则()f x 的单调递增区间为( )A .()2,3B .()3,4C .(),3-¥D .()3,+¥【变式1】(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为( )A .(),e -¥-B .()e,0-C .(),0¥-D .()1,0-【变式2】(2024·四川巴中·一模)已知奇函数()f x 的导函数为()f x ¢,若当0x <时()2af x x x=-,且()10f ¢-=.则()f x 的单调增区间为 .【变式3】(2024·河南开封·三模)已知函数()33ln f x x x =-,()f x ¢为()f x 的导函数.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()()()9g x f x f x x¢=--的单调区间和极值.题型二 含参数的函数的单调性(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点【例题2】(多选)(23-24高三上·海南省直辖县级单位·阶段练习)函数()322f x x ax x=++(R a Î)的大致图象可能为( )A .B .C .D .【变式1】(2024·天津·二模)已知()()ln R f x x ax x a =+×Î,(1)当2a =时,求()f x 在点()()e e f ,处的切线方程;(2)讨论()f x 的单调性;(3)若函数()f x 存在极大值,且极大值为1,求证:()2e xf x x -£+.【变式2】(2024·陕西商洛·三模)已知函数()()2212ln 2f x a x x ax a =--ÎR .(1)求函数()f x 的单调区间;(2)当0a >时,若函数()2e e 2x x g x a =+和()22h x a x =的图象在()0,1上有交点,求实数a 的取值范围.【变式3】(2024·全国·模拟预测)已知函数()(2)ln f x a x a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()9ln f x a >.(参考数据:ln 20.693»)题型三 函数单调性的应用由函数的单调性求参数的取值范围的方法(1)函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立.(2)函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0 (或f ′(x )<0)在该区间上存在解集命题点1 比较大小或解不等式【例题3】(2024·四川成都·模拟预测)若函数()f x 对任意的x ÎR 都有()()f x f x ¢<恒成立,则2(2)f 与2e (ln 2)f 的大小关系正确的是( )A .2(2)f >2e (ln 2)fB .2(2)f =2e (ln 2)fC .2(2)f <2e (ln 2)f D .无法比较大小【变式1】(2023·全国·模拟预测)比较11101011a =-,ln1.2b =,0.115ec =的大小关系为( )A .a c b >>B .b c a >>C .b a c>>D .a b c>>【变式2】(23-24高三上·湖南衡阳·期末)已知函数()()21e ln 12xf x x a x =--+.(1)证明:当1a £时,()1f x ≥对[)0,x Î+¥恒成立.(2)若存在()1212,x x x x ¹,使得()()12f x f x =,比较()()1211x x ++与2e e a的大小,并说明理由.【变式3】(23-24高三上·河北保定·阶段练习)已知函数()()2ln 12x f x x =++.(1)当[)0,x Î+¥时,比较()f x 与x 的大小;(2)若函数()2cos 2x g x x =+,且()()2e 10,0a f g b a b æö=->>ç÷èø,证明:()()211f b g a +>+.命题点2 根据函数的单调性求参数【例题4】(2023·全国·模拟预测)若对任意的1x ,2(,)x m Î+¥,且12x x <,122121ln ln 2x x x x x x -<-,则实数m 的取值范围是( )A .1,e e æöç÷èøB .1,e e éùêúëûC .1,e ¥éö+÷êëøD .1,e æö+¥ç÷èø【变式1】(23-24高三上·广东汕头·期中)设()0,1a Î,若函数()(1)x xf x a a =++在()0,¥+递增,则a 的取值范围是( )A.B.ö÷÷øC.ö÷÷øD.æççè【变式2】(多选)(23-24高三上·河南·阶段练习)已知函数()2ln f x x ax x =--,下列命题正确的是( )A .若1x =是函数()f x 的极值点,则1a =B .若()10f =,则()f x 在[]0,2x Î上的最小值为0C .若()f x 在()1,2上单调递减,则1a ≥D .若()()l ln x x f x -≥在[]1,2x Î上恒成立,则2a ≥【变式3】(23-24高三上·山东青岛·期末)若函数2()e 1x f x a x =+-在(0,)+¥上单调递增,则a 的取值范围是 .【课后强化】基础保分练一、单选题1.(2023·全国·高考真题)已知函数()e ln x f x a x =-在区间()1,2上单调递增,则a 的最小值为( ).A .2e B .eC .1e -D .2e -2.(23-24高三上·山西大同·阶段练习)设()af x x a x=-+在()1,+¥上为增函数,则实数a 取值范围是( )A .[)0,¥+B .[)1,+¥C .[)2,-+¥D .[)1,-+¥3.(2024·云南楚雄·一模)若a b >,则函数()2()y a x a x b =--的图象可能是( )A .B .C .D .4.(2024高三下·全国·专题练习)已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数12,x x 使得1()0>f x ,且2()0f x >,则实数a 的取值范围为( )A .[ln 3,2)B .(0,2ln 3]-C .(0,2ln 3)-D .[2ln 3,2)-5.(2024·全国·模拟预测)已知8sin 15a =,3ln 2b =,25c =,则,,a b c 的大小关系为( )A .a b c >>B .a c b>>C .b a c>>D .c b a>>二、多选题6.(2023·全国·模拟预测)已知函数()33f x x x =-,则( )A .函数()()()'g x f x f x =× 是偶函数B .y x =-是曲线()y f x =的切线C .存在正数(),a f x 在(),a a -不单调D .对任意实数a ,()(f a f a £+7.(23-24高三上·江西宜春·期中)下列函数中,是奇函数且在区间()0,1上是减函数的是( )A .()exf x =B .()sin f x x =-C .()1f x x=D .3()2f x x x=-三、填空题8.(2024·云南大理·模拟预测)函数()12ln f x x x =--的最大值为.9.(2024·全国·模拟预测)已知函数()2e e e x x x g x x x =--,若方程()g x k =有三个不同的实根,则实数k 的取值范围是 .四、解答题10.(2024·江西南昌·一模)已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.11.(2024·江苏盐城·模拟预测)已知函数()2ln f x ax x x =--.(1)讨论()f x 的单调性;(2)若不等式()0f x ≥恒成立,求a 的取值范围.综合提升练一、单选题1.(2023·贵州毕节·一模)给出下列命题:①函数2()2x f x x =-恰有两个零点;②若函数()4a af x x x =-+在(1,)+¥上单调递增,则实数a 的取值范围是[1,)-+¥;③若函数()f x 满足()(1)4f x f x +-=,则12918101010f f f æöæöæö+++=ç÷ç÷ç÷èøèøèøL ;④若关于x 的方程20x m -=有解,则实数m 的取值范围是(0,1].其中正确的是( )A .①③B .②④C .③④D .②③2.(2023·江西·模拟预测)已知函数()32f x ax bx cx d =+++的大致图象如图所示,则( )A .0,0,0a b c >><B .0,0,0a b c ><<C .0,0,0a b c ><>D .a 0,b 0,c 0<>>3.(2024·云南昆明·模拟预测)已知函数()()()1e x f x x a =-+在区间()1,1-上单调递增,则a 的最小值为( )A .1e -B .2e -C .eD .2e 4.(2024·全国·模拟预测)已知函数2()4e e 2e x x xf x x =--,()f x ¢为()f x 的导函数,()()e xf xg x ¢=,则( )A .()g x 的极大值为24e 2-,无极小值B .()g x 的极小值为24e 2-,无极大值C .()g x 的极大值为4ln22-,无极小值D .()g x 的极小值为4ln22-,无极大值5.(2024·全国·模拟预测)已知13,,ln2e 14a b c ===-,则它们之间的大小关系是( )A .a b c <<B .a c b <<C .c a b<<D .c b a<<6.(2023·贵州遵义·模拟预测)若函数()2e x axf x -=在区间()1,3上单调递增,则a 的可能取值为( )A .2B .3C .4D .57.(2024·全国·模拟预测)若22ln 2e a -=,12e b =,ln 24c =,则a ,b ,c 的大小顺序为( )A .a c b<<B .c a b <<C .a b c <<D .b a c<<8.(2023·吉林通化·模拟预测)已知函数()e ln xf x a x =-有两个大于1的零点,则a 的取值范围可以是( )A .(]0,1B .1e 1,e æùçúèûC .1ee ,e æùçúèûD .)e 12e e ,e +éë二、多选题9.(22-23高三上·云南昆明·阶段练习)已知函数21e 1xx y x -=×-,则( )A .函数的极大值点为=0x B .函数的极小值点为=0x C .函数在(1,)+¥上单调递增D .函数在31,2æöç÷èø上单调递减10.(2023·云南昆明·模拟预测)已知函数3()f x x mx n =--,其中,m n ÎR ,下列选项中,能使函数()y f x =有且仅有一个零点的是( )A .1m =-,1n =B .0m =,1n =C .3m =,2n =D .3m =,3n =-11.(2023·山东泰安·一模)已知函数()()()ln f x x x ax a =-ÎR 有两个极值点1x ,2x ()12x x <,则( )A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-三、填空题12.(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为 .13.(2023·湖南·模拟预测)已知函数()sin esin a xf x a x =-,对于任意12,x x ÎR ,都有()()12e 2f x f x -£-,则实数a 的取值范围为 .14.(2023·广东广州·模拟预测)已知函数()()()222e 22e 0x xf x a x a x a =--->恰有两个零点,则=a .四、解答题15.(2024·全国·模拟预测)已知函数2()ln f x x ax bx =+-.(1)当1a =,3b =时,求()f x 的单调区间;(2)若函数()f x 在2x =处取得极值ln 2,求曲线()y f x =在点(1,(1))f 处的切线方程.16.(2024·全国·模拟预测)已知函数()2()e x f x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()4ln 2f x a ≥+.17.(2024·全国·模拟预测)已知函数()()21ln 12f x x x a x =+++,a ÎR .(1)讨论()f x 的单调性;(2)证明:当1a <-时,()21a f x +>.18.(2024·青海·模拟预测)已知函数()()3211132f x x mx m x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有3个不同的零点,求m 的取值范围.19.(2023·全国·模拟预测)已知函数()e xf x ax b =+-,其中e 为自然对数的底数.(1)若()f x 在区间(]1,2上不是单调函数,求a 的取值范围.(2)当0x ≥时,()2112f x x b ≥+-恒成立,求a 的取值范围.拓展冲刺练一、单选题1.(2024·全国·模拟预测)下列函数是奇函数且在()0,¥+上单调递减的是( )A .()32xxf x -=+B .()2222x xxxf x ---=+C .()3f x x x=-D .()(12log f x x =2.(2024·全国·模拟预测)已知函数()32()log 2(0a f x x ax x a a =-+->且1)a ¹在区间(1,)+¥上单调递减,则a 的取值范围是( )A .20,3æùçúèûB .2,13éö÷êëøC .(1,2]D .[2,)+¥3.(2024·甘肃兰州·三模)函数()21ln f x x ax x =-++-,若()f x 在0,12æöç÷èø是减函数,则实数a 的取值范围为( )A .(,2]-¥B .(,2)-¥C .(,3]-¥D .(3),-¥4.(2024·全国·模拟预测)已知 2.012.0111110312,ln ,1001011021001015a b c æöæö=++==+ç÷ç÷èøèø,则( )A .a b c <<B .c b a <<C .<<b c aD .<<c a b二、多选题5.(2024·云南昆明·模拟预测)已知函数()321f x x ax ax =+-+,则下列说法正确的是( )A .若()f x 为R 上的单调函数,则3a <-B .若2a =时,()f x 在()1,1-上有最小值,无最大值C .若()1f x -为奇函数,则0a =D .当0a =时,()f x 在1x =处的切线方程为310x y --=6.(2024·云南曲靖·一模)下列不等式正确的是( )A .πe e π>B .1ln 0.99-<C .15sin 15<D .11sin 3π<三、填空题7.(2024·全国·模拟预测)已知1a >,0b >,1c >,且e e ln a b a b --==a ,b ,c 的大小关系为 .(用“<”连接)8.(2023·安徽·二模)若不等式2ln 23x ax a -£-对(0,)"Î+¥x 恒成立,则实数a 的取值范围为 .四、解答题9.(2024·湖南衡阳·二模)已知函数()()321f x ax bx a =++ÎR ,当2x =时,()f x 取得极值3-.(1)求()f x 的解析式;(2)求()f x 在区间[]1,3-上的最值.10.(2024·陕西西安·三模)已知函数1()ln ()m f x mx x m x-=--ÎR ,函数1π()ln ,[0,cos 2g x x x q q =+Î在区间[1,)+¥上为增函数.(1)确定q 的值,求3m =时曲线()y f x =在点(1,(1))f 处的切线方程;(2)设函数()()()h x f x g x =-在,()0x Î+¥上是单调函数,求实数m 的取值范围.11.(2024·辽宁丹东·一模)已知函数()ln 1f x x mx =++.(1)讨论函数()f x 的单调性;(2)当1m =时,数列{}n a 满足11a =,1()n n a f a +=①求证:12n n a -£;②求证:22223111(1)(1(1e na a a +++<L .。
3.2函数的单调性与奇偶性课件-2024届高三数学一轮复习

即练即清
1.判断正误(对的打“√”,错的打“✕”)
(1)函数y= 1 的单调递减区间是(-∞,0)∪(0,+∞). ( × )
x
(2)若定义在R上的函数f(x)有f(-1)<f(3),则函数f(x)在R上为增函数. ( × )
(3)偶函数图象不一定过原点,奇函数的图象一定过原点. ( × )
1
2.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是 3 .
因此f(1)≠f(-1), f(-1)≠-f(1),
故f(x)为非奇非偶函数.
(3)由1 x2 0, 得函数的定义域为(-1,0)∪(0,1),关于原点对称,
| x 2 | 2,
∴x-2<0,∴|x-2|-2=-x,∴f(x)= lg(1 x2) .
x
又∵f(-x)= lg[1 (x)2]=- lg(1 x2) =-f(x),
1 0
1
+b=ln +b=0,
2 (1 0)
2
∴b=-ln 1 =ln 2,此时f(x)=ln 1 1 +ln 2=ln 1 x ,满足题意.
2
2 1 x
1 x
综上可知,a=-1 ,b=ln 2.
2
答案 -1 ;ln 2
2
即练即清
3.判断下列函数的奇偶性:
(1)f(x)=
1
3x x2
;(2)f(x)=|x|+x;
2.(2024届江苏淮安期中,7)若函数f(x)=(3aax, x1)x1 4a, x 1,是定义在R上的减函数,则a的 取值范围为 ( A )
A. 18
,
1 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f x1 f x2(<00)⇔f(x)
x1 x2
(2)对于任意x1,x2∈[a,b],[f(x1)-f(x2)](x1-x2)>0 (<0)⇔f(x)在[a,b]是增(减)函数.
3.复合函数的单调性 对于f[g(x)]的单调性的判断,应先判断f(u),u=g(x)
的单调性,若y=f(u)与u=g(x)的单调性一致,则f[g(x)]的 单调递增,否则,单调性递减,简称“同增异减”.讨论复合 函数的单调性的解题步骤:①求出复合函数的定义域;②把 复合函数分解成若干个常见的基本函数,并判断其单调性; ③把中间变量的范围转化为自变量的变化范围;根据复合 函数的单调性判定其单调性.
函数的单调性
知识梳理 1.函数的单调性的定义 一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区 间D上的任意两个自变量的值x1,x2,当x1<x2时,都有 f(x1)<f(x2),则称f(x)在区间D上为减函数,若f(x1)>f(x2)则 称f(x)在区间D上为减函数,若f(x1)>f(x2)则称f(x)在区间D 上为减函数,区间D叫做y=f(x)的单调区间,函数的单调性是 函数在某个区间上的整体性质,所以讨论函数的单调性及单 调区间都必须考虑函数的定义域;
例1.讨论函数x a (a 0)的单调性 x
解:函数的定义域为(-,0)(0,+)
且f(-x)=-f(x),所以f(x)是一个奇函数
(1)当x>0时,设0<x1<x2
则f(x1)-f(x2 )=x1+
a x1
x2
a x2
x1 x2 x1 x2
( x1 x2
a)
于是当0<x1<x2 a时,x1x2 a, f(x1)>f(x2 )
所以f(x)在(0, a ]上是减函数;
当 a<x1<x2时,x1x2 a, f(x1)<f(x2 ) 所以f(x)在( a,+)上是增函数。
因为f(x)是一个奇函数,函数f(x)在 对称区间上具有相同的单调性 所以有 (2)当x<0时f(x)在[- a,0)上是减函数;
在(-,- a )上是增函数。 综上知:函数f(x)的单调递增区间为: (-,- a ),( a , ) 单调递减区间为:[- a,0),(0,a ]
变式训练:讨论函数f
(x)
ax
x2
(a 1
0)
在x (1,1)上的单调性。
解:设-1<x1<x2 1
则f(x1)-f(x2 )=
ax1 x12 1
ax2 x22 1
a(x1x2 1)(x2 (x12 1)(x22
x1) 1)
x12 1 0, x22 1 0, x2 x1 0, a 0, x1x2 1 0
f(x1)-f(x2 )>0
所以f(x)在( 1,1)上是减函数。
例2:(1)函数y=-(x-3)|x|的单调递减区间 是___________________
(2)求函数 y log2 (4 3x x2 )
的单调区间
解:(1)图象法。答案:
( , 0],[ 3 , ) 2
(2)函数的定义域为:( -∞,-1) ∪(4,+ ∞)
f
( x2 x1
•
x1)
f
(x1)
f
( x2 x1
)
f
(x1)
f
( x1 )
f
( x2 ) x1
因为
x2 x1
1,所以f
( x2 x1
)
0, 所以f
( x2 )
f
( x1 )
0.
故f (x)在定义域上是增函数。
(2)因为f (x) f (8x 4) f (8x2 4x)
2 f (2) f (2) f (4)
8x2 4x 4
所以x满足
x
0
, 解得x 1
8x 4 0
故实数x的取值范围是[1, )
例5.已知函数y=f(x)是偶函数,y=f(x-2)在[0,2]上 是单调减函数,试比较f(-1),f(0),f(2)的大小
解:令t=x-2,当x∈[0,2]时,t∈[-2,0] t=x-2在[0,2]上是增函数,f(x-2)在[0,2]上是 减函数,说明t∈[-2,0]时,f(t)单调递减 又因为y=f(x)是偶函数所以y=f(x)在[-2,0]上 是减函数,在[0,2]上是增函。 所以有:f(0)<f(1)<f(2),而f(1)=f(-1) 故:f(0)<f(-1)<f(2)
变式训练:若函数y=log2(x2-ax+3a)在 [2,+∞)上是增函数,求实数a的取值范围。
解:由题意知函数u= x2-ax+3a在[2,+∞)上 是增函数,且u(2)>0
a 2
2
4 2a 3a 0
解得:a∈(-4,4]
例3:已知函数 f (x) | x 1| (x 3)
(1)求的f(x)的单调区间,并针对减区间给予证 明;
令u=4+3x-x2,y=log2u,
x对
3 2
u=4+3x-x2在( -∞,-1)上单调递增,在 (4,+
∞)上单调递减,y=log2u在(0, ,+ ∞)上是 增函数.由复合函数的单调性知: 函数 y log2(4 3x x2) 的单调递增区间为: ( -∞,-1) ,单调递减区间为: (4,+ ∞)
另外,在函数的单调性定义中的x1,x2满足:一是属于一个单 调区间;二是任意性;三是有大小,即x1<x2(或x1>x2).由于 区间端点不具有单调性,因此写单调区间时,可以写成包含
端点的闭区间,也可以写成不包含端点的开区间.
2.函数单调性定义的等价形式
(1)对于任意x1,x2∈[a,b], 在[a,b]是增(减)函数.
(2)求f(x)在[-3,0]上的最值
解:(1)由图象知(图略): f(x)的单调递增区间为:(-∞,-1],[1,+∞) 单调递减区间为(-1,1) x∈ (-1,1)时,f(x)=-x2-2x+3,(单调性证明略) (2)由(1)知f(x)在[-3,-1]上单调递增,在(-1,0]上 单调递减。f(-3)=0,f(-1)=4,f(0)=3 所以,f(x)在[-3,0]上的最大值为4,最小值为0.
例4.已知函数f(x)的定义域为(0,+∞),当x>1时, f(x)>0,且对于任意的正数x,y都有f(xy)=f(x)+f(y)
(1)证明:函数f(x)在定义域上是增函数
(2)如果f(2)=1且f(x)+f(8x-4) ≥2,求x的取值范围
(1)证明:设0 x1 x2