LTE基础信息信令资料

合集下载

LTE信令与协议

LTE信令与协议

LTE信令与协议LTE(Long-Term Evolution)是第四代移动通信技术,它提供了更高的数据传输速率、更低的时延和更好的用户体验。

在LTE系统中,信令和协议非常重要,它们负责控制网络连接、数据传输和服务质量等方面。

下面我将详细介绍LTE信令与协议。

首先,LTE中的信令分为控制平面(Control Plane)信令和用户平面(User Plane)信令。

控制平面信令用于控制和管理网络连接,包括对移动终端的接入、鉴权、安全控制等;用户平面信令用于传输实际的用户数据。

在LTE中,控制平面信令主要采用S1-MME接口和S1-U接口进行传输。

S1-MME(Mobile Management Entity)接口用于传输MME(Mobility Management Entity)与eNodeB(基站)之间的控制平面信令,例如用户的接入、鉴权、位置更新等。

S1-U接口用于传输eNodeB之间的用户平面信令,例如用户数据的传输和QoS(Quality of Service)设置。

此外,LTE系统还使用了X2接口和S6a接口。

X2接口用于传输eNodeB之间的控制平面信令,例如切换过程中的协调和邻区管理等。

S6a接口用于传输MME与HSS(Home Subscriber Server)之间的控制平面信令,例如用户的鉴权和临时标识的生成等。

在LTE中,主要的协议包括S1AP(S1 Application Protocol)、X2AP(X2 Application Protocol)、GTP(GPRS Tunneling Protocol)和Diameter协议等。

S1AP是LTE系统中控制平面信令的核心协议,它定义了MME与eNodeB之间的消息格式和协议流程。

S1AP协议用于控制用户的接入和切换等过程,包括UE Context Setup过程、Initial Context Setup过程、Bearer Setup过程、UE Context Release过程等。

LTE信令流程及信令解码详解

LTE信令流程及信令解码详解

LTE信令流程及信令解码详解LTE(Long Term Evolution),是第四代移动通信技术标准,以其高速数据传输、低延迟和大容量等特点成为了当前主流的移动通信技术。

本文将详细介绍LTE的信令流程及信令解码。

1.LTE信令流程(1)小区:UE(User Equipment,用户设备)首先需要附近的基站,以确定可用的LTE网络。

这一步骤主要包括RRC(Radio Resource Control,无线资源控制)连接的小区以及测量实体之间的信道质量。

(2)小区选择和附着:在到可用小区后,UE需要选择一个最佳的小区进行附着,该小区将成为UE与网络之间的主要通信接口。

UE将通过与MME(Mobility Management Entity,移动性管理实体)之间的信令交换来进行小区选择和附着。

(3)建立RRC连接:一旦UE成功附着到小区,UE与eNB(Evolved Node B)之间将建立RRC连接。

RRC连接是UE与网络之间进行信令交换和控制的主要通道。

(4)分配和配置资源:在建立RRC连接后,网络将为UE分配必要的物理资源,并配置UE的通信参数,如频率、带宽、功率等。

这些资源和参数将被用于后续的数据传输和通信。

(5)数据传输:一旦资源和参数被配置完毕,UE和eNB之间可以开始进行数据传输。

UE将使用分配的资源来发送和接收数据,而eNB将负责数据的转发和错误处理。

(6)释放RRC连接:当UE无需再与网络进行通信时,UE可以向网络发送释放RRC连接的请求。

网络将收到请求后,释放该连接并回收相应的资源。

2.LTE信令解码(1)空中接口解码:通过对信令数据进行解调和解调来还原原始信令信息。

这种解码方法主要用于分析和处理无线传输过程中的信令,如小区信息、物理广播信息等。

(2)协议解析:通过解析信令的协议头和数据包来获取有关通信过程的详细信息。

这种解码方法可以分析UE与网络之间的控制过程,如RRC连接的建立、释放过程等。

LTE信令分析

LTE信令分析

LTE信令分析一、概述:本文信令内容为2011年6月杭州LTE实验网期间,采用NSN的网络设备,数据卡终端为创毅,测试软件使用CDS吐出的信令内容。

由于试验网期间网络、终端、测试软件都没有完全成熟,所以信令内容只局限于现有试验网阶段。

以下是终端空闲态、RRC连接态做业务涉及到的所有信令内容。

从消息看主要是无线资源控制层RRC消息和非接入层NAS消息。

NAS高层消息不再多做描述,主要对RRC层消息做简单介绍。

RRC: RRCConnectionRequestRRC: RRCConnectionSetupNAS: Attach RequestNAS: Authentication RequestNAS: Authentication ResponseNAS: Security Mode CommandNAS: Security Mode CompleteRRC: UECapabilityEnquiryRRC: UECapabilityInformationNAS: Attach AcceptRRC: RRCConnectReconfigurationCompleteNAS: Attach CompleteRRC: RRCConnectionReleaseRRC: MasterInformationBlockRRC: PagingRRC: MeasurementReport二、信令流程1.切换流程:待补充2.重选信令流程重选过程是RRC空闲状态下的流程,只有2条信令:RRC: RRCConnectionRequest、RRC: MasterInformationBlock。

如下图所示:3.FTP信令流程:待补充三、详细信令1.RRC层信令内容业务和功能广播和 NAS 相关的系统消息广播和 AS 相关的系统消息寻呼建立、维护和释放终端和 E-UTRAN 之间的RRC 链接包括分配临时的终端标识,配置信令承载安全功能包括密钥的管理建立、维护和释放点对点的无线承载移动性管理功能,包括测量控制和上报、切换、小区选择和重选、切换时 RRC 上下文传递广播 MBMS 业务建立、维护和释放 MBMS 无线承载QoS 管理功能终端测量控制和上报上下行透明传递 NAS 消息1)RRC: RRCConnectionRequestMessage type: CCCH_ULDirection: UplinkComputer Timestamp: 14:57:41.890uL-CCCH-Messagemessagec1rrcConnectionRequestcriticalExtensionsrrcConnectionRequest-r8ue- IdentityrandomValue: 1101110111011101110111011101110111011101establishmentCause : mo-Signallingspare : 05D DD DD DD DD D6主要内容:终端身份、建立原因。

04TD-LTE信令流程

04TD-LTE信令流程
Physical Channel Reconfiguration (物理信道重配置)
Measurement Control (测量控制)
基 本 概 念 UE的工作模式与状态
RRC信令简化
RRC Connection Reconfiguration (RRC连接重配置)
LTE中的承载
Bear(承载) in LTE
基本概念
无线网系统消息
系统消息获取
UE
基本概念
E-UTRAN
无线网系统消息
MasterInformationBlock SystemInformationBlockType1
SystemInformation
系统消息信令流程
UE通过E-UTRAN广播消息获取AS和NAS系统消息 此过程适用于RRC-IDLE和RRC_CONNECTED状态
系统消息(36.331)
LTE系统消息
系统消息的组成
MasterInformationBlock(MIB) 多个SystemInformationBlocks (SIBs)
MIB
承载于BCCH → BCH → P-BCH上 包括有限个用以读取其他小区 信息的最重要、最常用的传输 参数(系统带宽,系统帧号, PHICH配置信息) 时域:紧邻同步信道,以10ms 为周期重传4次 频域:位于系统带宽中央的72 个子载波
LTE信令流程
中邮建 2013年5月
目录
第一章 基本概念 第二章 无线网基本信令流程 第三章 端到端业务建立/释放流程 第四周 移动性管理
内容
第一章 基本概念
1.1 网络架构 1.2 协议栈结构 1.3 接口功能 1.4 无线网系统消息 1.5 UE的工作模式与状态 1.6 无线承载的分类 1.7 UE标识

LTE信令与协议

LTE信令与协议

LTE信令与协议LTE(Long Term Evolution)是一种高速无线通信技术,它是下一代移动通信技术,提供了更高的数据传输速率和更低的延迟。

LTE信令与协议是指在LTE网络中用于控制、管理和传输通信信令的一套规则和协议。

以下是对LTE信令与协议的详细介绍。

1.LTE信令与协议的基本原理:- RRC(Radio Resource Control):负责无线资源的分配、配置和释放,以及可靠数据传输的建立和释放。

- NAS(Non-Access Stratum):负责鉴权、用户身份识别、移动性管理和安全控制等。

- RLC(Radio Link Control):负责数据分段、重组、数据传输的可靠性和流量控制等。

- PDCP(Packet Data Convergence Protocol):负责数据压缩和加密等。

2.LTE信令与协议的流程:- 小区和选择:UE(User Equipment)首先并选择可用的LTE小区。

- 鉴权和附着:UE向MME(Mobility Management Entity)发送鉴权请求,进行用户身份的验证和附着过程。

- 建立和释放无线连接:在鉴权和附着完成后,UE和eNodeB之间建立无线连接,用于数据传输。

当连接不再需要时,会进行释放。

- 数据传输:在建立无线连接后,UE和eNodeB之间通过RLC和PDCP协议进行数据传输。

RLC将数据进行分段,并确保传输的可靠性,而PDCP则负责压缩和加密数据。

-切换:当UE从一个小区切换到另一个小区时,需要进行切换过程,其中包括关联/脱离和测量等步骤。

3.LTE信令与协议中的主要协议:- S1AP(S1 Application Protocol):用于eNodeB和MME之间的控制信令传输,包括建立和释放无线连接、切换等。

- X2AP(X2 Application Protocol):用于eNodeB之间的控制信令传输,包括切换、传输资源配置等。

LTE信令与协议

LTE信令与协议

LTE信令与协议:LTE信令与协议基础:LTE/EPC网络结构:图 1 LTE基本网络架构这是一张非常有名的LTE架构图,从图中可以看出,整个网络构架被分为了四个部分,包括由中间两个框框起来的E-UTRAN部分和EPC部分,还有位于两边的UE和PDN两部分。

在日常生活中,UE就可以看作是我们的手机终端,而PDN可以看作是网络上的服务器,E-UTRAN可以看作是遍布城市的各个基站(可以是大的铁塔基站,也可以是室内悬挂的只有路由器大小的小基站),而EPC可以看作是运营商(中国移动/中国联通/中国电信)的核心网服务器,核心网包括很多服务器,有处理信令的,有处理数据的,还有处理计费策略的等等。

UE:全称是User Equipment,用户设备,就是指用户的手机,或者是其他可以利用LTE上网的设备。

eNB:是eNodeB的简写,它为用户提供空中接口(air interface),用户设备可以通过无线连接到eNB,也就是我们常说的基站,然后基站再通过有线连接到运营商的核心网。

在这里注意,我们所说的无线通信,仅仅只是手机和基站这一段是无线的,其他部分例如基站与核心网的连接,基站与基站之间互相的连接,核心网中各设备的连接全部都是有线连接的。

一台基站(eNB)要接受很多台UE的接入,所以eNB要负责管理UE,包括资源分配,调度,管理接入策略等等。

eNB功能:无线资源管理相关的功能,包括无线承载控制、接纳控制、连接移动性控制、上/下行动态资源分配/调度等;IP头压缩与用户数据流加密;UE附着时的MME选择;提供到S-GW的用户面数据的路由;寻呼消息的调度与传输;系统广播信息的调度与传输;测量与测量报告的配置。

MME:是Mobility Management Entity的缩写,是核心网中最重要的实体之一,提供以下的功能:NAS 信令传输、用户鉴权与漫游管理(S6a)、移动性管理、EPS承载管理。

在这里所述的功能中,NAS信令指的是三层信令,包含EMM, ESM 和NAS 安全。

LTE前台信令讲解

LTE前台信令讲解

1、信道请求Channel Request(RACH)MS→BTSMS通过动态地在RACH信道(随机接入信道)上发送一个随机接入脉冲向一个(BTS)BTS申请一条信道。

在信道请求消息中包括了建立的原因,这个原因可能是“应答寻呼”、“紧急呼叫”、“移动主叫”、“短消息业务”或“其他”,比如“位置更新”。

此外,这条消息还包括随机参数,移动台(MS)随机的选5个比特作为随机参数。

Random reference有5位,最多可同时区分32个MS,但不保证两个同时发起呼叫的MS的RAND值一定不同。

要进一步区别同时发起请求的MS,还要根据Um接口上的应答消息2、申请信道Channel Required(BTS→BSC)BTS向BSC发一条申请信道消息。

通过这条消息,BTS进一步向BSC传递由移动台发起的信道请求。

实际上,申请信道消息中除了包含信道请求消息中的一些消息外,还包括通过BTS加入的一些消息。

申请参数直接从信道请求消息中来,初始时间提前量TA(接入延迟)由BTS加入到这条消息中去。

3、信道激活Channel Activation(BSC→BTS)收到从BTS发来的申请信道消息后,BSC开始按照一定的条件为此次呼叫寻找和分配SDCCH信道,同时BSC向BTS发送一条信道激活消息。

其中最重要的是:分配给哪个BTS以及此SDCCH的信道组合。

此消息中包含的参数有:DTX控制、信道的ID(识别)、信道描述和移动分配、移动台和基站的最大功率电平、BSC计算的有关此次接入的初始时间提前量等。

4、信道激活证实Channel Activation ACK(BTS→BSC)这是对信道激活消息的应答。

当BTS收到这条消息后,它开始在SACCH信道发送和接受消息。

5、立即指配命令immediate assignment(BSC→BTS)BSC告诉BTS关于被使用的SDCCH信道。

6、立即指配immediate assignment(BTS→MS)AGCH基站分系统通过AGCH信道告知移动台有关使用的SDCCH信道的情况。

LTE信令与协议

LTE信令与协议

Copyright © 2012 Huawei Technologies Co., Ltd. All rights reserved. PDF 文件以 "FinePrint pdfFactory Pro" 试用版创建
Page0
SRB0/SRB2承载的消息
Page3
UE在承载和协议栈中的标识
l
EPS承载标识(EPS bearer identity )
p
EPS承载标识在UE通过E-UTRAN进行接入过程中,用来唯一标识EPS承载。 EPS承载标识由MME分配。 在EPS RB和EPS承载之间存在着一一映射,这种EPS RB标识与EPS承载标识 之间的映射关系由E-UTRAN提供。
ESM信令流程 NAS
PDN Connectivity Req Default EPS Bearer Context Act. Bearer Resource Allocation Req
MME
Dedicated EPS Bearer Context Act.
Copyright © 2012 Huawei Technologies Co., Ltd. All rights reserved. PDF 文件以 "FinePrint pdfFactory Pro" 试用版创建
GUTI:
3 bit 3 bit 16 bit 8 bit S-TMSI 32 bit GUMMEI MMEI
GUTI:Globally Unique Temporary UE Identifier GUMMEI:Globally Unique MME Identifier MMEI:MME Identifier TMSI: Temporary Mobile Subscriber Identity
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

写出LTE的下行物理信道:\ 写出LTE上行物理信道PBCH:物理广播信道 PRACH:物理随机接入信道PHICH:物理HARQ指示信道 PUSCH:物理上行共享信道PCFICH:物理控制格式指示信道 PUCCH:物理上行控制信道PDCCH:物理下行控制信道PDSCH:物理下行共享信道PMCH:物理多播信道PCI规划应遵循什么原则PCI即物理小区标识。

LTE系统提供504个物理层小区ID(即PCI),和TD-SCDMA 系统的128个扰码概念类似。

网管配置时,为小区配置0~503之间的一个号码即可。

在TD-LTE系统中,UE需要解出两个序列:主同步序列(PSS,共有3种可能性)和辅同步序列(SSS,共有168种可能性)。

由两个序列的序号组合,即可获取该小区ID。

物理小区标识规划应遵循以下原则:不冲突原则:保证同频相邻小区之间的PCI不同;因为PCI直接决定了小区同步序列,而且多个物理信道的扰码也和PCI相关,所以相邻小区的PCI不能相同,以避免干扰。

即所谓的:避免PCI冲突。

不混淆原则:保证某个小区的同频邻小区PCI值不相等;切换时,UE将报告邻小区的PCI和测量量。

如果服务小区有两个邻区都使用同样的PCI,则服务小区无法分辨UE到底应该切往哪个邻小区。

所以,任意小区的所有邻区都应有不同的PCI。

即所谓的:避免PCI混淆相邻小区之间应尽量选择干扰最优的PCI值,即PCI值模3不相等;主同步序列的值(共3种可能性)决定了参考信号(RS)在PRB内的位置。

所以相邻小区(尤其是对打的小区)应尽量避免配置同样的主同步序列值,以错开RS之间的干扰。

即所谓的:“PCI模3不等”原则。

在时域位置固定的情况下,相邻小区PCI模6相同会造成下一个TX antenna 下下行RS相互干扰;PCI 模30值相同,会造成上行DM RS和SRS的相互干扰,因此相邻小区也应尽量避免模6、模30相同。

最优化原则:保证同PCI的小区具有足够的复用距离,并在同频邻小区之间选择干扰最优的PCI值。

系统消息是分为MIB和SIB两类进行传输的,其中MIB是系统中最重要的一些参数信息,在UE入网的过程中从PBCH上接收。

SIB消息是除MIB中包含的系统消息之外的系统消息,其是在PD-SCH上传输的。

MIB被调度传输的周期是40ms。

其上面传输的是一些必要的、最重要的系统参数以及后续继续获取系统消息所必须的一些前提参数信息。

SIB消息分两部分,其中SIB1消息中包含的是调度信息列表,而这些调度信息列表里面的内容就对应着如何在一个调度周期中将SIB2至SIB12映射到各个SI 消息中,以及各个SI消息发送的时间窗口长度以及周期。

LTE系统消息承载的内容主要包括:MIB:下行链路带宽、SFN和PHICH信道配置消息;SIB1:小区接入信息:最小接入电平;网络标识:PLMN、Cell ID;上下行子帧配比及特殊子帧配比;SIB2-SIB8的调度信息;SIB2:小区接入BAR信息和无线信道配置参数;SIB3:关于同频、异频及异系统小区重选中和服务小区相关的参数;SIB4:用于同频小区重选,主要包括邻区相关的参数(邻区及门限值); SIB5:用于异频小区重选,主要包括邻区相关的参数(邻区及门限值); SIB6:用于TDS异系统小区重选,主要包括邻区相关的参数(邻区及门限值); SIB7:用于GSM异系统小区重选,主要包括邻区相关的参数(邻区及门限值); SIB8:CDMA2000重选信息;SIB9:HOME ENB ID;SIB10-SIB11:ETMS (Earthquake and Tsunami Warning System)通知; SIB12:CMAS辅通知信息;SIB13:MBMS控制信息。

关于SIB到SI的映射,需要遵循如下的规则?1、每个SIB只能映射到一个SI中;2、仅调度周期相同的SIB可以映射到同一个SI中;3、不同SI调度周期可以相同;4、SIB2默认映射在第一个SI中;5、以SI承载除SIB1外其它SIB。

SIB1中包含了是否允许UE接入小区以及后续其它系统信息的调度信息。

例如:小区ID、小区所属的运营商ID(即PLMN)、跟踪域码(TAC)、小区是否被禁止标识(cellBarred,该参数会告诉UE当前小区UE是否可以接入)、TDD模式子帧配置及特殊子帧配置等SIB1,其周期为80ms,固定在每个偶数帧(SFN mod 2 == 0)的第#5个子帧上传输,在每个周期之内可以再重传(不包括新传)3次SIB2中主要包含小区空口的公共配置信息。

这些信息是UE和小区建立无线连接的基础。

当UE成功接收MIB、SIB1和SIB2之后,就可以发起接入过程了。

其中,小区接入控制主要用于当小区负载过重以限制接入用户数的场景,比如,可以通过配置,将用户数限制在80%以内已达到负载控制的目的。

SIB3-SIB8都是与小区重选相关的配置信息。

SIB3中主要包含同/异频以及异系统小区重选的公共配置信息。

SIB4主要包含同频小区重选邻区列表(包括白名单和黑名单)SIB5中主要包含异频小区重选邻区列表(最多8个异载频,在每个异载频上,均有白名单/黑名单邻区列表)SIB6中包含UTRA系统小区重选参数信息;SIB7中包含GERAN系统小区重选参数信息;SIB8中CDMA2000系统小区重选参数信息SIB9包含家庭基站(Home eNodeB)信息SIB10和SIB11用以地震海啸告警系统(ETWS)消息;其中,SIB10用以通知分秒必争的紧急通知,例如,地震即将来临;SIB11用以通知相对不太紧急的通知,例如,震后逃生路线、在哪里领取食物等SIB12包含Commercial Mobile Alert System(CMAS)告警消息小区下发的广播形式为MIB、SIB1、SI-1、SI-2PSS的全称是Primary Synchronization Signal,即主同步信号,用于传输组内ID即N(2)_ID值。

具体做法是:eNB将组内ID号N(2)_ID值与一个根序列索引u相关联,然后编码生成1个长度为62的ZC序列du(n),并映射到PSS对应的RE(Resource Element)中,UE通过盲检测序列就可以获取当前小区的N(2)_ID SSS的全称是Secondary Synchronization Signal,即辅同步信号,用于传输组ID即N(1)_ID值。

具体做法是:eNB通过组ID号N(1)_ID值生成两个索引值m0和m1,然后引入组内ID号N(2)_ID值编码生成2个长度均为31的序列d(2n)和d(2n+1),并映射到SSS的RE中,UE通过盲检测序列就可以知道当前eNB下发的是哪种序列,从而获取当前小区的N(1)_ID。

下图示意的就是怎么计算d(2n)和d(2n+1)这两个序列。

时域上的位置对于LTE-FDD制式,PSS周期的出现在时隙0和时隙10的最后一个OFDM符号上,SSS周期的出现在时隙0和时隙10的倒数第二个符号上。

对于LTE-TDD制式,PSS周期的出现在子帧1、6的第三个OFDM符号上,SSS周期的出现在子帧0、5的最后一个符号上。

如果UE在此之前并不知道当前是FDD还是TDD,那么可以通过这种位置的不同来确定制式。

(2)频域上的位置PSS和SSS映射到整个带宽中间的6个RB中,因为PSS和SSS都是62个点的序列,所以这两种同步信号都被映射到整个带宽(不论带宽是1.4M还是20M)中间的62个子载波(或62个RE)中,即序列的每个点与RE一一对应。

在62个子载波的两边各有5个子载波,不再映射其他数据。

PSS的主要功能是: 获得物理层小区ID,完成符号同步SSS的主要功能是: 完成帧同步 ,获得CP长度信息CQI按照测量带宽分为宽带CQI,窄带CQI,全子带CQI ,Best-MCQI什么是MIMO?可带来哪些增益?MIMO(Multiple Input Multiple Output)即多收多发,指在发送端或接收端采用多天线进行数据传输并结合一定的信息处理技术来达到系统容量最大化,质量最优的技术的集合。

常用的MIMO有DL 4*2及DL 2*2 MIMO。

DL 4*2表示基站侧有4根天线进行发射数据,UE侧采用2天线接收。

无线空口技术在时域及频域的使用达到极限,如何更高的容量达以满足日益发展的需求?MIMO能够利用空间维度的资源、提高频谱效率。

使信号获得更大的系统容量、更广的覆盖和更高的用户速率。

MIMO是LTE系统的重要技术,理论计算表明,信道容量随发送端和接收端最小天线数目线性增长,所有MIMO模式下信道容量大于单天线模式下的信道容量。

MIMO能够更好的利用空间维度的资源、提高频谱效率。

使信号在空间获得阵列增益、分集增益、复用增益和干扰抵消增益等,从而获得更大的系统容量、更广的覆盖和更高的用户速率。

l 复用增益在相同带宽,相同总发射功率的前提下,通过增加空间信道的维数(即增加天线数目)获得的吞吐量增益。

l 分集增益MIMO系统对抗信道衰落对性能的影响,利用各天线上信号深衰落的不相关性,减少合并后信号的衰落幅度(即信噪比的方差)而获得性能增益。

l 阵列增益 MIMO系统利用各天线上信号的相关性和噪声的非相关性,提高合并后信号的平均SINR而获得的性能增益。

l 干扰抵消增益通过利用IRC(Interference Rejection Combining)或其它多天线干扰抵消算法,为系统带来的干扰场景下的增益。

写出MIMO的八种模式。

TM 1:单天线端口传输TM 2:发送分集TM 3:开环空间复用+发送分集TM 4:闭环空间复用+发送分集TM 5:多用户MIMO+发送分集TM 6:闭环Rank=1的预编码+发送分集TM 7:波束赋形+发送分集TM8:双流波束赋形1. TM1,单天线端口传输:主要应用于单天线传输的场合,属于开环。

2. TM2,发送分集模式:适合于小区边缘信道情况比较复杂,干扰较大的情况,有时候也用于高速的情况,分集能够提供分集增益。

3. TM3,大延迟分集:合适于终端(UE)高速移动的情况。

4. TM4,闭环空间复用:适合于信道条件较好的场合,用于提供高的数据率传输。

5. TM5,MU-MIMO传输模式:主要用来提高小区的容量。

6. TM6,Rank1的传输:主要适合于小区边缘的情况,属于开环,是单独的MIMO 流。

7. TM7,Port5的单流Beamforming模式:主要也是小区边缘,能够有效对抗干扰。

8. TM8,双流Beamforming模式:可以用于小区边缘也可以应用于其他场景。

9. TM9, 传输模式9是LTE-A中新增加的一种模式,可以支持最大到8层的传输,主要为了提升数据传输速率。

相关文档
最新文档