(完整版)必修一函数的单调性专题讲解(经典)
(完整)数学必修1专题1:抽象函数的单调性

数学必修1专题1:抽象函数的单调性1. 三类抽象函数的类型及其单调性分析(1) 已知定义在R 上的函数)(x f 对任意实数y x 、都满足)()()(y f x f y x f +=+,且当0>x 时,0)(>x f .判断)(x f 的单调性并证明.证明:令0==y x ,则)0()0()00(f f f +=+ ∴0)0(=f令x y -=,则0)()()0()(=-+==-x f x f f x x f ∴)()(x f x f =-在R 上任取21x x ,,且使21x x < 0)()()()()(121212<-=-+=-x x f x f x f x f x f 即)()(12x f x f <由定义可知)(x f 在R 上为单调递减函数(2) 已知函数)(x f 的定义域是()∞+,0,满足)()()(y f x f xy f +=,且当1>x 时,0)(>x f .判断)(x f 的单调性并证明.证明:令1==y x ,则)1()1()1(f f f += ∴0)1(=f 令x y 1=,则0)1()()1()1·(=+==x f x f f x x f ∴)()1(x f xf -= 任取()∞+∈,,021x x ,且使21x x <0)()1()()()(121212>=+=-x x f x f x f x f x f 即)()(12x f x f > 由定义可知)(x f 在()∞+,0上为单调递增函数(3) 已知函数)(x f 的定义域是()∞+,0,且对一切00>>y x ,都有)()()(y f x f yx f -=,当1>x 时,有0)(>x f .判断)(x f 的单调性并证明.证明:令1==y x ,则)1()1()1(f f f += ∴0)1(=f任取()∞+∈,,021x x ,且使21x x < 则0)()()(1212>=-x x f x f x f 即)()(12x f x f > 由定义可知)(x f 在()∞+,0上为单调递增函数2. 简短评价(1) 注意三类函数的定义域不同的区别;(2) 其实我们可以看出解题的思路大致一样:求出)0(f 或)1(f ;令x y -=或xy 1=针对练习:1。
数学必修一单调性

目录
• 单调性的定义 • 单调性的判定 • 单调性的应用 • 单调性的性质 • 单调性的扩展知识
01
单调性的定义
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增,那么对于该区间内的任意两个数$x_1$和$x_2$, 当$x_1 < x_2$时,都有$f(x_1) leq f(x_2)$;反之,如果函数在某个区间内单调递减,那么对于该区间内的任意两个数$x_1$和 $x_2$,当$x_1 < x_2$时,都有$f(x_1) geq f(x_2)$。
导数法
利用导数与函数单调性的关系,通过判断导数的正负来判断函数的单调 性。
03
图像法
通过观察函数的图像来判断函数的单调性。如果图像在某区间内从左到
右逐渐上升,则函数在该区间内单调递增;如果图像在某区间内从左到
右逐渐下降,则函数在该区间内单调递减。
单调性判定例题解析
0102Βιβλιοθήκη 0304例题1
判断函数f(x) = x^3在区间(-∞, +∞)上的单调性。
例子
对于函数 (f(x) = x^3),在 (x = 0) 处函数由递减变为递增,因此 (x = 0) 是该函数的极小值点。
单调性在实际问题中的应用
总结词
单调性在实际问题中有着广泛的应用,通过单调性可以分析各种实际问题的变化趋势,从而做出合理的决策。
详细描述
单调性可以用于分析各种实际问题,如经济问题、物理问题等。例如,在经济学中,通过分析需求函数和供给函数的 单调性,可以预测市场的价格变化趋势;在物理学中,通过分析受力函数的单调性,可以判断物体的运动状态。
单调函数在定义域内是单调的
高中数学(人教B版)必修第一册:函数的单调性【精品课件】

x
则称 y f (x) 在 I 上是增函数(也称在 I 上单调递增),
(1) y
如图(1)所示;
f (x1)
(2)
如果对任意 x1, x2 I ,当 x1
x2 时,都有
f (x1)
f ( x ) , f (x2) 2
O
x1
x2
x
则称 y f (x) 在 I 上是减函数(也称在 I 上单调递减),
(1)当 a
0 时,
f
x
在
,
b 2a
上单调递_____,在
b 2a
,
上单调递
_____,函数没有最_____值,但有最____值________________;
(2)当 a
0 时,
f
x
在
,
b 2a
上单调递_____,在
b 2a
,
上单调递
_____,函数没有最_____值,但有最____值_________________.
f
x2
x2
f x1
x1
,
则:
(1) y f x 在 I 上是增函数的充要条件是 y 0 在 I 上恒成立;
x
(2) y f x 在 I 上是减函数的充要条件是 y 0 在 I 上恒成立.
x
定义:
一般地,当 x1 x2 时,称
f f x2 f x1
x
x2 x1
为函数 y f (x) 在区间x1, x2 x1 x2时或x2, x1 x2 x1时 上的平均变化率.
x
想一想:能否说 f x 2 在定义域内是增函数?为什么?
x
新知提炼:
(1)单调区间是定义域的子区间,对于单调性,首先要考虑函数的 定义域。因此,单调性是函数的局部性质.
必修一函数的单调性精品PPT课件

x2 x
从左至右,图象下降
y随x的增大而减小
在区间I内
y
y=f(x)
f(x2)
图 象 f(x1)
·
在区间I内
y
· f(x1)
y=f(x)
·
f(x2)
·
0
x1
x2 x
0
x1
x2 x
图象 特征
从左至右,图象上升
数量 y随x的增大而增大 特征 当x1<x2时, f(x1) < f(x2)
从左至右,图象下降
y=x
f(x1)
1·
O 1· x1 x
此函数在区间(-∞, +∞ )内y随x的增大而增
大,在区间
y随x的增大而减小;
引例2:画出下列函数的图象
(2)y = x2
引例2:画出下列函数的图象
(2)y = x2
y
y = x2
1·
O 1· x
引例2:画出下列函数的图象
(2)y = x2
y
y = x2
1·
y = x2
x
此函数在区间 大,在区间
内y随x的增大而增 内y随x的增大而减小。
引例2:画出下列函数的图象
(2)y = x2
y
y = x2
f(x1) 1·
x1 O 1· x
此函数在区间 大,在区间
内y随x的增大而增 内y随x的增大而减小。
引例2:画出下列函数的图象
(2)y = x2
y
y = x2
说明气温在哪些时间段内是逐渐升高的或下降的?
引例2:画出下列函数的图象
(1)y = x
引例2:画出下列函数的图象
y (1)y = x
高一数学必修一函数的基本性质(单调性)精品PPT课件

观察图像变化规律
图像在对称轴左边呈下降, 在对称轴后边呈下降趋势。
x
y
O
x
y
O
x
y
O
自变量递增,函数递减
x
y
O
x
y
O
x
y
O
自变量递增,函数递增
增函数、减函数的概念:
增函数、减函数的概念:
一般地,设函数f(x)的定义域为I.
1.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)<f(x2),那么就说f(x)在这个区间上是 增函数.
2.两种方法:
判断函数单调性的方法 有图象法、定义法. 下一课时我们会重点练习
课堂小结
1.阅读教材P.27 -P.30; 2.教材课后练习:1、2、3.
课后作业
谢谢欣赏
一般地,设函数f(x)的定义域为I.
增函数、减函数的概念:
函数最大值→图像最高点
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足: (1)对于任意的x∈I,都有f(x)≤M (2)存在x0∈I,使得f(x0)=M. 那么我们称M是函数y=f(x)的最大值 .
函数最小值→图像最低点
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足: (1)对于任意的x∈I,都有f(x)≥M (2)存在x0∈I,使得f(x0)=M. 那么我们称M是函数y=f(x)的最小值 .
-2
3
2
1
-1
y
-3
-4
4
O
x
2
-2
3
1
-3
-1
必修一导数的单调性专题讲解(经典)

必修一导数的单调性专题讲解(经典)引言在高中数学中,导数是一个非常重要的概念,掌握导数的基本概念和求法对于我们后续研究数学和工程等学科都有很大的帮助。
其中,本篇文档将着重讲解导数的单调性。
一阶导数的单调性对于一个函数$f(x)$,它的一阶导数为$f'(x)$。
如果$f'(x)>0$,则称函数$f(x)$单调递增;如果$f'(x)<0$,则称函数$f(x)$单调递减。
需要注意的是,函数$f(x)$在某个区间内单调递增或单调递减并不能保证函数在整个定义域内单调递增或单调递减。
此外,当$f'(x)=0$时,函数在该点上的单调性无法确定。
二阶导数的单调性对于一个函数$f(x)$,它的二阶导数为$f''(x)$。
如果$f''(x)>0$,则称函数$f(x)$在该点上取极小值;如果$f''(x)<0$,则称函数$f(x)$在该点上取极大值。
需要注意的是,当$f''(x)=0$时,函数在该点上的极值无法确定。
此外,如果$f''(x)$在某个区间内恒大于(或恒小于)$0$,则$f(x)$在该区间内的单调性与$f'(x)$的单调性相同。
必备技能要想熟练掌握导数的单调性,需要掌握函数的求导方法和二阶导数的求法。
在此基础上,就可以通过对导数符号的分析来确定函数的单调性。
结论导数的单调性是高中数学中比较重要和常出现的考点,掌握好导数的单调性对我们后续研究物理、工程等学科都有着很重要的帮助。
新教材人教版高中数学必修第一册 3-2-1-1 单调性与最大(小)值——函数的单调性 教学课件

2.单调性与单调区间 如果函数 y=f(x)在区间 D 上单调递增或单调递减,那么就说函数 y =f(x)在这一区间具有(严格的)单调性,区间 D 叫做 y=f(x)的_单__调__区__间__. [ 思考] 若函数 f(x)是其定义域上的增函数且 f(a)>f(b),则 a,b 满足什么关 系,如果函数 f(x)是减函数呢? 提示:若函数 f(x)是其定义域上的增函数,那么当 f(a)>f(b)时,a> b;若函数 f(x)是其定义域上的减函数,那么当 f(a)>f(b)时,a<b.
第二十八页,共四十一页。
(3)由题知--11<<12-a-a<1<1,1, 1-a>2a-1,
解得 0<a<23,即所求 a 的取值范围是
0,23.
[答案] (1)①(-∞,-4] ②-4
(2)(-4,-2) (3)0,23
第二十九页,共四十一页。
[方法技巧] (1)区间 D 是函数 f(x)的定义域的子集,x1,x2 是区间 D 中的任意两 个自变量,且 x1<x2, ①f(x)在区间 D 上单调递增,则 x1<x2⇔f(x1)<f(x2). ②f(x)在区间 D 上单调递减,则 x1<x2⇔f(x1)>f(x2).
第十八页,共四十一页。
题型二 求函数的单调区间 [学透用活]
(1)如果函数 f(x)在其定义域内的两个区间 A,B 上都是增(减)函数, 则两个区间用“,”或“和”连接,不能用“∪”连接.
(2)书写单调区间时,若函数在区间的端点处有定义,则写成闭区间、 开区间均可,但若函数在区间的端点处无定义,则必须写成开区间.
C.a+b>0
D.a>0,b>0
第三十二页,共四十一页。
必修一函数的单调性讲义

变式练习 2:判断函数 f(x)= x 4 在(0,+∞)上的单调性。 x
2
注意:定义法证明单调性的等价形式,设 x1、x2∈[ a , b ],x1≠x2,则
(1)(x1-x2)×[f(x1)-f(x2)]>0
f (x1 ) f (x2 ) >0 f(x)在[ a , b ]是增函数; x1 x2
意两个自变量的值 x1、x2 ,当. x.1.<.x.2. 时.,.都.有.f.(.x.1.).>.f.(.x.2.).,.那么就说 f(x)
在区间 D 上是减函数。
y y f (x)
f (x1 )
图 f (x2 ) 象
上 升
O x1
x2 x
y
图
f (x1)y f (x) f (x2 )
象 下
(2a 1)x 7a 1, x
f(x)=
a
x
,
x
1
1
在(-∞,+∞)上单调递减,则实
数 a 的取值范围是____________。
【解析】:
1 4
,
1 2
变式练习 3:函数 f (x) ax 1 在区间(-2,+∞)上是增函数,那么 a 的取值范围是( ) x2
降
O x1
xx 2
如果 y=f(x)(在某个区间上是增函数或减函数,那么就说函数 y=f(x)在这一区间具有(严格 的)单调性,这个区间叫做 y=f(x)的单调区间。
注意:(1)区间 D,必须在定义域 I 内,即 D I,一个函数在不同区间上的单
调性可以不同。 (2)自变量的大小关系与函数的大小关系有直接联系,如:f(x)是增函数,则 x1<x2 f(x1)<f(x2)。 (3)函数在其单调区间上的图象特征:f(x)在 D 上是增函数,则图象在 D 上从 左到右呈上升趋势;f(x)在 D 上是减函数,则图象在 D 上从左到右呈下降趋势。 (4)函数单调性受区间限制。如函数 f(x)= 1 分别在(-∞,0),(0,+∞)上是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 函数的基本性质之单调性
一、基本知识
1.定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当
21x x <时,都有
))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。
重点 2.证明方法和步骤:
(1) 取值:设21,x x 是给定区间上任意两个值,且21x x <; (2) 作差:)()(21x f x f -; (3) 变形:(如因式分解、配方等);
(4) 定号:即0)()(0)()(2121<->-x f x f x f x f 或; (5) 根据定义下结论。
3.常见函数的单调性
时,
在R 上是增函数;k<0时,
在R 上是减函数
(2),在(—∞,0),(0,+∞)上是增函数,
(k<0时),在(—∞,0),(0,+∞)上是减函数,
(3)二次函数的单调性:对函数c bx ax x f ++=2
)()0(≠a ,
当0>a 时函数)(x f 在对称轴a b
x 2-
=的左侧单调减小,右侧单调增加; 当0<a 时函数)(x f 在对称轴a
b
x 2-=的左侧单调增加,右侧单调减小;
4.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表:
)(u f y = 增 ↗ 减 ↘ )(x g u = 增 ↗ 减 ↘ 增 ↗ 减 ↘ ))((x g f y =
增 ↗
减 ↘
减 ↘
增 ↗
以上规律还可总结为:“同向得增,异向得减”或“同增异减”。
在函数)(x f 、)(x g 公共定义域内,
增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数. 5.函数的单调性的应用:
判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。
例题分析
例1:证明函数f(x)=在(0,+∞)上是减函数。
例2:证明在定义域上是增函数。
例3:证明函数f(x)=x3的单调性。
例4:讨论函数y=1-x2在[-1,1]上的单调性.例5:讨论函数f(x)=的单调性.
例6:讨论函数
1
()(0)
f x x x
x
=+≠的单调性
例7:求函数的单调区间。
习题:求函数的单调
区间。
例8:设f(x)在定义域内是减函数,且f(x)>0,在其定义域内判断函数y =[f(x)]2
.的单调性
例9:若f(x)=⎩
⎪⎨
⎪⎧
(x -1)2
x≥0
x +1 x <0,则f(x)的单调增区间是________,单调减区间是________.
例10:对于任意x >0,不等式x 2
+2x-a >0恒成立,求实数a 的取值范围。
例11:若函数在上是增函数,在上是减函数,则实数m 的值为
习题:若函数,在上是增函数,则实数m 的范围为;
例12:若定义在R 上的单调减函数f(x)满足,求a 的取值范围。
习题:若定义在上的单调减函数f(x)满足,求a 的取值范围。
针对性训练
一、选择题(每小题5分,共20分) 1.函数y =-x 2
的单调减区间为( )
A .(-∞,0]
B .[0,+∞)
C .(-∞,0)
D .(-∞,+∞) 2.若函数y =kx +b 是R 上的减函数,那么( ) A .k<0 B .k>0 C .k≠0 D.无法确定 3.下列函数在指定区间上为单调函数的是( ) A .y =2
x ,x∈(-∞,0)∪(0,+∞)
B .y =2
x -1,x∈(1,+∞)
C .y =x 2
,x∈R D .y =|x|,x∈R
4.已知函数f(x)=x 2
+bx +c 的图象的对称轴为直线x =1,则( ) A .f(-1)<f(1)<f(2) B .f(1)<f(-1)<f(2) C .f(2)<f(-1)<f(1) D .f(1)<f(2)<f(-1) 二、填空题(每小题5分,共10分)
5.若f(x)是R 上的增函数,且f(x 1)>f(x 2),则x 1与x 2的大小关系是________. 6.设函数f(x)是(-∞,+∞)上的减函数,则f(a 2
+1)与f(a)的大小是________. 三、解答题(每小题10分,共20分)
7.求函数f(x)=x +2
x +1的单调区间,并证明f(x)在其单调区间上的单调性.
8.定义在(-1,1)上的函数f(x)是减函数,且满足f(1-a)<f(a),求实数a 的取值范围.
9.(10分)函数f(x)=x 2
-2ax -3在区间[1,2]上单调,求a 的取值范围.。