高一数学必修一函数的基本性质(单调性)
合集下载
新教材必修第一册第三章3.2函数的基本性质(全套课件)

题型二 求函数的单调区间 【典例 2】 求下列函数的单调区间: (1)f(x)=x-1 1; (2)f(x)=|x2-3x+2|. [思路导引] (1)先求出函数的定义域,再利用定义求解;(2) 作出函数 y=x2-3x+2 的图象,再将 x 轴下方的图象翻折到 x 轴 上方,结合图象写出 f(x)的单调区间.
2.函数的单调区间 如果函数 y=f(x)在区间 D 上 单调递增 或 单调递减 ,
那么就说函数 y=f(x)在这一区间上具有(严格的)单调性,区间 D 叫做函数 y=f(x)的 单调区间.
温馨提示:(1)函数的单调性是对定义域内某个区间而言的,
它是函数的一个局部性质.
(2)函数 f(x)在定义域的某个区间 D 上单调,不一定在定义域 上单调.如 f(x)=x2 等.
[变式] (1)若本例(1)条件改为“函数 f(x)=x2-2(1-a)x+2 的单调递增区间为[4,+∞)”,其他条件不变,如何求解?
(2) 若 本 例 (2) 中 “ 定 义 域 ( - ∞ , + ∞)” 改 为 “ 定 义 域 ( - 1,1)”,其他条件不变,如何求解?
[解] (1)∵f(x)=x2-2(1-a)x+2=[x-(1-a)]2+2-(1- a)2,
题型三 函数单调性的应用 【典例 3】 (1)已知函数 f(x)=x2-2(1-a)x+2 在[4,+∞) 上是增函数,求实数 a 的取值范围. (2)已知 y=f(x)在定义域(-∞,+∞)上是减函数,且 f(1- a)<f(2a-1),求 a 的取值范围. [思路导引] 二次函数的单调性由开口方向及对称轴确定, 与函数值有关的不等式问题依据单调性转化为自变量的不等关 系.
数 M 满足:
①∀x∈I,都有 f(x)≤M
3.2.1第1课时函数的单调性(教学课件)-高中数学人教A版(2019)必修第一册

A.(-∞,1]
B.(-∞,2]
()
C.[1,+∞)
D.[2,+∞)
【答案】B 【解析】∵函数 f(x)=x2-(a-1)x+5 图象的对称轴为 x=a-2 1,且
f(x)在区间12,1上单调递增,∴a-2 1≤21,即 a≤2.
3.(题型3)函数f(x)是定义域上的单调递减函数,且图象过点(-3,2) 和(1,-2),则使|f(x)|<2的x的取值范围是________.
设x1,x2是f(x)定义域某一个子区间M上的两个变量值,如果f(x)满足 以下条件,该函数f(x)是否为增函数?
(1)对任意 x1<x2,都有 f(x1)<f(x2); (2)对任意 x1,x2(x1≠x2),都有(f(x1)-f(x2))(x1-x2)>0; (3)对任意 x1,x2(x1≠x2)都有fxx11- -fx2x2>0.
【答案】-1,12 -1≤x≤1,
【解析】由题意得x<21,
解得-1≤x<12.
题型4 根据函数的单调性求参数的取值范围 已知函数f(x)=x2-2ax-3在区间[1,2]上具有单调性,求实数a
的取值范围. 素养点睛:考查直观想象和数学运算的核心素养. 解:由于二次函数图象的开口向上,对称轴为x=a,故其增区间为
(2)画出函数y=-x2+2|x|+1的 图象并写出函数的单调区间.
素养点睛:考查直观想象和逻 辑推理的核心素养.
【答案】(1)[-2,1] [3,5] [-5, -2] [1,3]
【解析】观察图象可知,y=f(x)的单调区间有[-5,-2],[-2,1], [1,3],[3,5].其中 y=f(x)在区间[-5,-2],[1,3]上具有单调递增,在区 间[-2,1],[3,5]上单调递减.
函数的单调性课件-高一数学人教A版(2019)必修第一册

3.会利用单调性求参数取值范围.(重点)
学运算素养.
新课引入
问题1:观察下面函数图象,从中你发现了图象的哪些特征?
= 2
=
= >0
升降变化、对称性,最高点或最低点等
今天,我们重点研究图象从左到右升降变化的规律。
随的增大而增大(或减小)——
函数的单调性
= 2
1
y
0
那么就称函数 在
区间D上时减函数
y
1
1 2 x
2
0
1 2
x
特别地,只有当函数 在它的定义域上单调递增(递减)时,
我们才称它是增(减)函数。
合作探究
思考1:−1 < 2时,有 −1 < 2 ,
说函数在区间 −1,2 上单增对吗?并说出你的理由。
不对,如图,虽−1 < 2时,有 −1 < 2 ,
函数值随自变量的增大(或减小)的性质叫做函数的单调性.
图形语言:在 轴右侧,从左到右图象是上升的;
也就是说,在区间 , +∞ 上,随的增大而增大
;
你能类比说出函数在y轴右侧的符号表示及单调性吗?
符号语言:
∀ , ∈ , +∞ , = , =
当 < 时,有 < 成立.
结论 这时, f (x)=kx +b是减函数。
结论:一次函数 = + ≠ 的单调性由的正负确定。
> 在R上单调递增; < 在R上单调递减.
k
(k为正常数)告诉我们,
例3、 物理学中的玻意耳定律 p =
学运算素养.
新课引入
问题1:观察下面函数图象,从中你发现了图象的哪些特征?
= 2
=
= >0
升降变化、对称性,最高点或最低点等
今天,我们重点研究图象从左到右升降变化的规律。
随的增大而增大(或减小)——
函数的单调性
= 2
1
y
0
那么就称函数 在
区间D上时减函数
y
1
1 2 x
2
0
1 2
x
特别地,只有当函数 在它的定义域上单调递增(递减)时,
我们才称它是增(减)函数。
合作探究
思考1:−1 < 2时,有 −1 < 2 ,
说函数在区间 −1,2 上单增对吗?并说出你的理由。
不对,如图,虽−1 < 2时,有 −1 < 2 ,
函数值随自变量的增大(或减小)的性质叫做函数的单调性.
图形语言:在 轴右侧,从左到右图象是上升的;
也就是说,在区间 , +∞ 上,随的增大而增大
;
你能类比说出函数在y轴右侧的符号表示及单调性吗?
符号语言:
∀ , ∈ , +∞ , = , =
当 < 时,有 < 成立.
结论 这时, f (x)=kx +b是减函数。
结论:一次函数 = + ≠ 的单调性由的正负确定。
> 在R上单调递增; < 在R上单调递减.
k
(k为正常数)告诉我们,
例3、 物理学中的玻意耳定律 p =
函数的单调性-(新教材)人教A版高中数学必修第一册上课用PPT

探索点三 函数单调性的应用 【例 3】 【例 3】 (1)已知函数 f(x)=x2+2(a-1)x+2 在区间(-∞,4]
上是减函数,则实数 a 的取值范围为 (-∞,-3] .
解析:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a -1)2+2, 所以此二次函数的对称轴为直线x=1-a . 所以f(x)的单调递减区间为(-∞,1-a]. 因为f(x)在(-∞,4]上是减函数, 所以直线x=1-a必须在直线x=4的右侧 或与其 重合, 所以1-a≥4,解得a≤-3,即实数a的取值范 围为(- ∞,-3].
(2) 已 知 y=f(x) 在 定 义 域 (-1,1) 上 是 减 函 数 , 且
f(1-a)<f(2a-1),则 a 的取值范围是
.
3函.2数.1的第单1课调时性-【函新数教的材单】调人性教-A【版新高教中材数】学人必教修A第版 一(册20优19 秀)课高件中 数学必 修第一 册课件( 共28张 PPT)
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件
[基础测试] 1.判断.(正确的画“√”,错误的画“×”) (1)已知 f(x)= ,因为 f(-1)<f(2),所以函数 f(x)是增函数.
() 解析:由函数单调性的定义可知,要证明一个函数是 增函数,需对定义域内的任意的自变量都满足自变量越大, 函数值也越大,而不是个别的自变量. 答案:×
解析:观察图象可知,y=f(x)的单调区间有[-5,-2], [2,1],[1,3],[3,5]. 其 中 y=f(x) 在 区 间 [-5,-2],[1,3] 上 是 增 函 数,在区间[-2,1],[3,5]上是减函数.
上是减函数,则实数 a 的取值范围为 (-∞,-3] .
解析:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a -1)2+2, 所以此二次函数的对称轴为直线x=1-a . 所以f(x)的单调递减区间为(-∞,1-a]. 因为f(x)在(-∞,4]上是减函数, 所以直线x=1-a必须在直线x=4的右侧 或与其 重合, 所以1-a≥4,解得a≤-3,即实数a的取值范 围为(- ∞,-3].
(2) 已 知 y=f(x) 在 定 义 域 (-1,1) 上 是 减 函 数 , 且
f(1-a)<f(2a-1),则 a 的取值范围是
.
3函.2数.1的第单1课调时性-【函新数教的材单】调人性教-A【版新高教中材数】学人必教修A第版 一(册20优19 秀)课高件中 数学必 修第一 册课件( 共28张 PPT)
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件
[基础测试] 1.判断.(正确的画“√”,错误的画“×”) (1)已知 f(x)= ,因为 f(-1)<f(2),所以函数 f(x)是增函数.
() 解析:由函数单调性的定义可知,要证明一个函数是 增函数,需对定义域内的任意的自变量都满足自变量越大, 函数值也越大,而不是个别的自变量. 答案:×
解析:观察图象可知,y=f(x)的单调区间有[-5,-2], [2,1],[1,3],[3,5]. 其 中 y=f(x) 在 区 间 [-5,-2],[1,3] 上 是 增 函 数,在区间[-2,1],[3,5]上是减函数.
人教高中数学A版必修一课件 第3章 第1课时 函数的单调性

第三章 函数的概念与性质
求函数的单调区间 画出函数 y=-x2+2|x|+3 的图象,并指出函数的单调 区间. 【解】 y=-x2+2|x|+3=- -( (xx- +11) )22+ +44, ,xx≥ <00. ,函数图象 如图所示.
第三章 函数的概念与性质
函数在(-∞,-1],[0,1]上是增函数,函数在[-1,0],[1, +∞)上是减函数.所以函数的单调递增区间是(-∞,-1]和[0, 1],单调递减区间是[-1,0]和[1,+∞).
A.(-∞,2]
B.[2,+∞)
C.[3,+∞)
D.(-∞,3]
解析:选 D.y=x2-6x=(x-3)2-9,故减区间为(-∞,3].
第三章 函数的概念与性质
2.设(a,b),(c,d)都是 f(x)的单调增区间,且 x1∈(a,b),x2
∈(c,d),x1<x2,则 f(x1)与 f(x2)的大小关系为( )
函数单调性的判定与证明 证明函数 f(x)=x+4x在(2,+∞)上是增函数.
【证明】 ∀x1,x2∈(2,+∞),且 x1<x2, 则 f(x1)-f(x2)=x1+x41-x2-x42 =(x1-x2)+4(xx21-x2x1)
第三章 函数的概念与性质
=(x1-x2)x1(x2x1x2-4). 因为 2<x1<x2,所以 x1-x2<0,x1x2>4,x1x2-4>0, 所以 f(x1)-f(x2)<0,即 f(x1)<f(x2), 所以函数 f(x)=x+4x在(2,+∞)上是增函数.
■名师点拨 (1)增减函数定义中 x1,x2 的三个特征 ①任意性:定义中符号“∀”不能去掉,应用时不能以特殊代 替一般; ②有大小:一般令 x1<x2; ③同区间:x1 和 x2 属于同一个单调区间. (2)增减函数与自变量、函数值的互推关系 ①x1<x2,f(x1)<f(x2),符号一致⇔增函数; ②x1<x2,f(x1)>f(x2),符号相反⇔减函数.
高一数学科必修一知识考点

○1 任取 x1,x2∈D,且 x1 ○2 作差 f(x1)-f(x2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差 f(x1)-f(x2)的正负); ○5 下结论(指出函数 f(x)在给定的区间 D 上的单调性).(B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数 f[g(x)]的单调性与构成它的函数 u=g(x),y=f(u)的单调性密切相关,其 规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相 同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质)(1)偶函数 一般地,对于函数 f(x)的定义域内的任意一个 x,都有 f(-x)=f(x),那么 f(x)就叫 做偶函数.(2).奇函数 一般地,对于函数 f(x)的定义域内的任意一个 x,都有 f(-x)=—f(x),那么 f(x)就 叫做奇函数.(3)具有奇偶性的函数的图象的特征 偶函数的图象关于 y 轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性 的步骤: ○1 首先确定函数的定义域,并判断其是否关于原点对称; ○2 确定 f(-x)与 f(x)的关系; ○3 作出相应结论:若 f(-x)=f(x)或 f(-x)-f(x)=0,则 f(x)是偶函数;若 f(-x)=f(x)或 f(-x)+f(x)=0,则 f(x)是奇函数. (2)由 f(-x)±f(x)=0 或 f(x)/f(-x)=±1 来判定;(3)利用定理,或借助函数的图象 判定.
注意:函数的单调性是函数的局部性质;(2)图象的特点
如果函数 y=f(x)在某个区间是增函数或减函数,那么说函数 y=f(x)在这一区间上具 有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左 到右是下降的.
(3).函数单调区间与单调性的判定(A)定义法:(1)任取 x1,x2∈D,且 x1(2)作差 f(x1)-f(x2);或者做商(3)变形(通常是因式分解和配方);(4)定号(即判断差 f(x1)-f(x2) 的正负);
高一数学人教版必修1课件:1.3 1.第一课时 函数的单调性

x),所以
x-2<1-x,解得
3 x<2
②.
由①②得 1≤x<32. [答案] 1,32
[类题通法] 1.上题易忽视函数的定义域为[-1,1],直接利用单调性得 到不等式 x-2<1-x,从而得出 x<32的错误答案. 2.解决此类问题的关键是利用单调性“脱去”函数符号 “f”,从而转化为熟悉的不等式.若函数 y=f(x)在区间 D 上是增 函数,则对任意 x1,x2∈D,且 f(x1)<f(x2),有 x1<x2;若函数 y =f(x)在区间 D 上是减函数,则对任意 x1,x2∈D,且 f(x1)<f(x2), 有 x1>x2.需要注意的是,不要忘记函数的定义域.
由图象可知函数在(-∞,a]和[a,+∞ )上分别单调,因此 要使函数 f(x)在区间[1,2]上单调,只需 a≤1 或 a≥2(其中当 a≤1 时,函数 f(x)在区间[1,2]上单调递增;当 a≥2 时,函数 f(x)在区 间[1,2]上单调递减),从而 a∈(-∞,1]∪[2,+∞).
[类题通法] “函数的单调区间为 I”与“函数在区间 I 上单调”的区别 单调区间是一个整体概念,说函数的单调递减区间是 I,指 的是函数递减的最大范围为区间 I.而函数在某一区间上单调,则 指此区间是相应单调区间的子区间.所以我们在解决函数的单调 性问题时,一定要仔细读题,明确条件含义.
由函数的单调性求参数的取值范围 [例 3] (1)已知 y=f(x)在定义域(-1,1)上是减函数,且 f(1 -a)<f(2a-1),则 a 的取值范围是________. (2)已知函数 f(x)=x2-2ax-3 在区间[1,2]上单调,求实数 a 的取值范围.
(1)[解析]由题意可知--11<<12-a-a<1<1,1
数学必修一单调性

数学必修一单调性
目录
• 单调性的定义 • 单调性的判定 • 单调性的应用 • 单调性的性质 • 单调性的扩展知识
01
单调性的定义
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增,那么对于该区间内的任意两个数$x_1$和$x_2$, 当$x_1 < x_2$时,都有$f(x_1) leq f(x_2)$;反之,如果函数在某个区间内单调递减,那么对于该区间内的任意两个数$x_1$和 $x_2$,当$x_1 < x_2$时,都有$f(x_1) geq f(x_2)$。
导数法
利用导数与函数单调性的关系,通过判断导数的正负来判断函数的单调 性。
03
图像法
通过观察函数的图像来判断函数的单调性。如果图像在某区间内从左到
右逐渐上升,则函数在该区间内单调递增;如果图像在某区间内从左到
右逐渐下降,则函数在该区间内单调递减。
单调性判定例题解析
0102Βιβλιοθήκη 0304例题1
判断函数f(x) = x^3在区间(-∞, +∞)上的单调性。
例子
对于函数 (f(x) = x^3),在 (x = 0) 处函数由递减变为递增,因此 (x = 0) 是该函数的极小值点。
单调性在实际问题中的应用
总结词
单调性在实际问题中有着广泛的应用,通过单调性可以分析各种实际问题的变化趋势,从而做出合理的决策。
详细描述
单调性可以用于分析各种实际问题,如经济问题、物理问题等。例如,在经济学中,通过分析需求函数和供给函数的 单调性,可以预测市场的价格变化趋势;在物理学中,通过分析受力函数的单调性,可以判断物体的运动状态。
单调函数在定义域内是单调的
目录
• 单调性的定义 • 单调性的判定 • 单调性的应用 • 单调性的性质 • 单调性的扩展知识
01
单调性的定义
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增,那么对于该区间内的任意两个数$x_1$和$x_2$, 当$x_1 < x_2$时,都有$f(x_1) leq f(x_2)$;反之,如果函数在某个区间内单调递减,那么对于该区间内的任意两个数$x_1$和 $x_2$,当$x_1 < x_2$时,都有$f(x_1) geq f(x_2)$。
导数法
利用导数与函数单调性的关系,通过判断导数的正负来判断函数的单调 性。
03
图像法
通过观察函数的图像来判断函数的单调性。如果图像在某区间内从左到
右逐渐上升,则函数在该区间内单调递增;如果图像在某区间内从左到
右逐渐下降,则函数在该区间内单调递减。
单调性判定例题解析
0102Βιβλιοθήκη 0304例题1
判断函数f(x) = x^3在区间(-∞, +∞)上的单调性。
例子
对于函数 (f(x) = x^3),在 (x = 0) 处函数由递减变为递增,因此 (x = 0) 是该函数的极小值点。
单调性在实际问题中的应用
总结词
单调性在实际问题中有着广泛的应用,通过单调性可以分析各种实际问题的变化趋势,从而做出合理的决策。
详细描述
单调性可以用于分析各种实际问题,如经济问题、物理问题等。例如,在经济学中,通过分析需求函数和供给函数的 单调性,可以预测市场的价格变化趋势;在物理学中,通过分析受力函数的单调性,可以判断物体的运动状态。
单调函数在定义域内是单调的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增函数、减函数的概念:
一般地,设函数f(x)的定义域为I.
1.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)<f(x2),那么就说f(x)在这个区间上是 增函数. 2.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)>f(x2),那么就说f(x)在这个区间上是 减函数.
12
3 4 5x
以及在每一单调区
-2
间上, y=f(x)是增函数还是减函数-3 .以及函数
的最大值和最小值.
解:函数y=f(x)的单调区间有[-5,-2),[-2, 1),[1,
3),[3, 5],其中y=f(x)在[-5,-2),[1, 3)上是减函 数,在区间[-2, 1),[3, 5]上是增函数.在x=-2时取 得最小值,最小值是-2;在x=1时取得最大值是3.
课堂小结
1.四个定义:增函数、减函数. 最大值、最小值.
课堂小结
1.四个定义:增函数、减函数. 最大值、最小值.
2.两种方法: 判断函数单调性的方法 有图象法、定义法.
课堂小结
1.四个定义:增函数、减函数. 最大值、最小值.
2.两种方法: 判断函数单调性的方法 有图象法、定义法. 下一课时我们会重点练习
函数最小值→图像最低点
一般地,设函数y=f(x)的定义域为I,如
果存在实数M满足:
(1)对于任意的x∈I,都有f(x)≥M (2)存在x0∈I,使得f(x0)=M. 那么我们称M是函数y=f(x)的最小值 .
例1 右图是定义在 闭区间[-5, 5]上
y
3
2
的函数y=f(x)的图
1
象,根据图象说出
如果函数 y=f(x)在某区间上是增函 数或减函数,那么就说函数 f(x)在这一 区间具有(严格的)单调性,这一区间叫 做 y=f(x)的单调区间.
在单调区间上增函数的图象是上升 的,减函数的图象是下降的.
函数最大值→图像最高点
一般地,设函数y=f(x)的定义域为I,如
果存在实数M满足:
(1)对于任意的x∈I,都有f(x)≤M (2)存在x0∈I,使得f(x0)=M. 那么我们称M是函数y=f(x)的最大值 .
增函数、减函数的概念:
一般地,设函数f(x)的定义域为I.
1.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)<f(x2),那么就说f(x)在这个区间上是 增函数. 2.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)>f(x2),那么就说f(x)在这个区间上是 减函数.
1.3 函数的基本性质 ——单调性与最大(小)值
Page 1
观察图像变化规律
y y=x
Ox
观察图像变化规律
y y=x
O
图像在定义域内呈上升趋势; 图像经过原点。
x
观察图像变化规律
y y=x
O
y
2
x 图图像像在经定过义原域点内 。呈上升趋x势;
y y y=x2
O
12 x
观察图像变化规律
y y=x
O
y
2
x 图图像像在经定过义原域点内 。呈上升趋x势;
y y y=x2
O
12 x
图像在对称轴左边呈下降, 在对称轴后边呈下降趋势。
y
y x2
x O
y f ( x1 )
x1 O
y x2
x
y
f ( x1 )
x1O
自
y x2
变 量
递
增
,
函
数
递
x减
y
y x2
f ( x1 )
x
O x1
y=f(x)的单调区间,
-5
-4
-3Biblioteka -2-1 O -1
12
3 4 5x
以及在每一单调区
-2
间上, y=f(x)是增函数还是减函数-3 ,以及函
数的最大值和最小值.
例1 右图是定义在 闭区间[-5, 5]上
y
3
2
的函数y=f(x)的图
1
象,根据图象说出
y=f(x)的单调区间,
-5
-4
-3
-2
-1 O -1
课后作业
1.阅读教材P.27 -P.30; 2.教材课后练习:1、2、3.
y
y x2
f ( x1 )
x
O x1
y
y x2
自 变
量
f ( x1 )
递 增
,
函
数
x
递 增
O
x1
增函数、减函数的概念:
增函数、减函数的概念:
一般地,设函数f(x)的定义域为I.
增函数、减函数的概念:
一般地,设函数f(x)的定义域为I.
1.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)<f(x2),那么就说f(x)在这个区间上是 增函数.