数学必修一函数的单调性学案

合集下载

新人教课标版高中数学必修1《函数的单调性》教案设计

新人教课标版高中数学必修1《函数的单调性》教案设计

课题:§1.3.1函数的单调性教学目的:(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性. 教学重点:函数的单调性及其几何意义. 教学难点:利用函数的单调性定义判断、证明函数的单调性. 教学过程: 一、引入课题1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1 随x 的增大,y 的值有什么变化? ○2 能否看出函数的最大、最小值? ○3 函数图象是否具有某种对称性? 2. 画出下列函数的图象,观察其变化规律:1.f(x) = x○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .2.f(x) = -2x+1○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . 3.f(x) = x 2○1在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ .○2 在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ . 二、新课教学(一)函数单调性定义1.增函数 一般地,设函数y=f(x)的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数(increasing function ).思考:仿照增函数的定义说出减函数的定义.(学生活动) 注意:○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f(x 1)<f(x 2).2.函数的单调性定义如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y=f(x)的单调区间: 3.判断函数单调性的方法步骤 利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤: ○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f(x 1)-f(x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f(x 1)-f(x 2)的正负); ○5 下结论(即指出函数f(x)在给定的区间D 上的单调性). (二)典型例题例1.(教材P 34例1)根据函数图象说明函数的单调性. 解:(略)巩固练习:课本P 38练习第1、2题例2.(教材P 34例2)根据函数单调性定义证明函数的单调性. 解:(略) 巩固练习:○1 课本P 38练习第3题; ○2 证明函数xx y 1+=在(1,+∞)上为增函数. 例3.借助计算机作出函数y =-x 2 +2 | x | + 3的图象并指出它的的单调区间. 解:(略)思考:画出反比例函数xy 1=的图象. ○1 这个函数的定义域是什么? ○2 它在定义域I 上的单调性怎样?证明你的结论. 说明:本例可利用几何画板、函数图象生成软件等作出函数图象. 三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取 值 → 作 差→ 变 形 → 定 号 → 下结论 四、作业布置1. 书面作业:课本P 45 习题1.3(A 组) 第1- 5题.2. 提高作业:设f(x)是定义在R 上的增函数,f(xy)=f(x)+f(y),○1 求f(0)、f(1)的值; ○2 若f(3)=1,求不等式f(x)+f(x-2)>1的解集. 课题:§1.3.1函数的最大(小)值教学目的:(1)理解函数的最大(小)值及其几何意义; (2)学会运用函数图象理解和研究函数的性质; 教学重点:函数的最大(小)值及其几何意义. 教学难点:利用函数的单调性求函数的最大(小)值. 教学过程: 一、引入课题画出下列函数的图象,并根据图象解答下列问题:○1 说出y=f(x)的单调区间,以及在各单调区间上的单调性; ○2 指出图象的最高点或最低点,并说明它能体现函数的什么特征? (1)32)(+-=x x f(2)32)(+-=x x f ]2,1[-∈x (3)12)(2++=x x x f(4)12)(2++=x x x f ]2,2[-∈x二、新课教学(一)函数最大(小)值定义 1.最大值 一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足: (1)对于任意的x ∈I ,都有f(x)≤M ; (2)存在x 0∈I ,使得f(x 0) = M 那么,称M 是函数y=f(x)的最大值(Maximum Value ). 思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value )的定义.(学生活动)注意:○1函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ○2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ).2.利用函数单调性的判断函数的最大(小)值的方法 ○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b); (二)典型例题例1.(教材P 36例3)利用二次函数的性质确定函数的最大(小)值. 解:(略)说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值.巩固练习:如图,把截面半径为 25cm 的圆形木头锯成矩形木料,如果矩形一边长为x ,面积为y试将y 表示成x 的函数,并画出 函数的大致图象,并判断怎样锯 才能使得截面面积最大? 例2.(新题讲解)旅 馆 定 价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:25欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.设y 为旅馆一天的客房总收入,x 为与房价160相比降低的房价,因此当房价为)160(x -元时,住房率为)%102055(⋅+x,于是得 y =150·)160(x -·)%102055(⋅+x.由于)%102055(⋅+x≤1,可知0≤x ≤90. 因此问题转化为:当0≤x ≤90时,求y 的最大值的问题. 将y 的两边同除以一个常数0.75,得y 1=-x 2+50x +17600.由于二次函数y 1在x =25时取得最大值,可知y 也在x =25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的) 例3.(教材P 37例4)求函数12-=x y 在区间[2,6]上的最大值和最小值. 解:(略)注意:利用函数的单调性求函数的最大(小)值的方法与格式. 巩固练习:(教材P 38练习4) 三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取 值 → 作 差→ 变 形 → 定 号 → 下结论 四、作业布置3. 书面作业:课本P 45 习题1.3(A 组) 第6、7、8题.提高作业:快艇和轮船分别从A 地和C 地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h 和15 km/h ,已知AC=150km ,经过多少时间后,快艇和轮船之间的距离最短?ABC。

函数的单调性教案()

函数的单调性教案()

函数的单调性教案(优秀)第一章:函数单调性的基本概念1.1 函数单调性的定义教学目标:让学生理解函数单调性的概念,掌握函数单调增和单调减的定义。

教学内容:(1) 引入函数单调性的概念。

(2) 讲解函数单调增和单调减的定义。

(3) 举例说明函数单调性的应用。

教学方法:(1) 采用讲解法,讲解函数单调性的定义和例子。

(2) 采用提问法,引导学生思考函数单调性的含义和应用。

教学步骤:(1) 引入函数单调性的概念,引导学生理解函数单调性的意义。

(2) 讲解函数单调增和单调减的定义,举例说明。

(3) 让学生通过例子判断函数的单调性,加深对函数单调性的理解。

(4) 总结函数单调性的应用,如解不等式、求最值等。

1.2 函数单调性的性质教学目标:让学生掌握函数单调性的性质,包括传递性、同增异减等。

教学内容:(1) 讲解函数单调性的传递性。

(2) 讲解函数单调性的同增异减性质。

(3) 举例说明函数单调性性质的应用。

教学方法:(1) 采用讲解法,讲解函数单调性的性质。

(2) 采用提问法,引导学生思考函数单调性性质的含义和应用。

教学步骤:(1) 讲解函数单调性的传递性,举例说明。

(2) 讲解函数单调性的同增异减性质,举例说明。

(3) 让学生通过例子判断函数的单调性,加深对函数单调性性质的理解。

(4) 总结函数单调性性质的应用,如解不等式、求最值等。

第二章:函数单调性的判断方法2.1 利用导数判断函数单调性教学目标:让学生掌握利用导数判断函数单调性的方法。

教学内容:(1) 讲解导数与函数单调性的关系。

(2) 讲解利用导数判断函数单调性的方法。

(3) 举例说明利用导数判断函数单调性的应用。

教学方法:(1) 采用讲解法,讲解导数与函数单调性的关系及判断方法。

(2) 采用提问法,引导学生思考导数判断函数单调性的含义和应用。

教学步骤:(1) 讲解导数与函数单调性的关系,让学生理解导数在判断函数单调性中的作用。

(2) 讲解利用导数判断函数单调性的方法,举例说明。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。

章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。

2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。

3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。

2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。

3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。

章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。

2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。

3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。

章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。

2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。

3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。

4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。

《函数的单调性》教学设计[合集5篇]

《函数的单调性》教学设计[合集5篇]

《函数的单调性》教学设计[合集5篇]第一篇:《函数的单调性》教学设计《函数的单调性》教学设计一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.二、教学目标(1)知识与技能目标:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;(2)过程与方法目标:引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.三、教法学法分析教法分析:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.学法分析:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.四、教学过程函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.(一)创设情境,提出问题(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:[教师活动]引导学生观察图象,提出问题:问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.(二)探究发现建构概念[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答. [教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,这一情形进行描述.引导学生回答:对于自变量8<10,f(t1)=1,t2=10时,f(t2)=4”对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.在学生对于单调增函数的特征有一定直观认识时,进一步提出:问题3:对于任意的t1、t2∈[4,16]时,当t1<t2时,是否都有f(t1)<f(t2)呢? [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当x1<x2时,都有f(x1)<f(x2)”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述.[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.(三)自我尝试运用概念1.为了理解函数单调性的概念,及时地进行运用是十分必要的.[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:并画出函数的草图,根据函数的图象说出函数的单调区间.[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?[教师活动]问题6:证明f(x)=1在区间(0,+ ∞)上是单调减函数.x[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难.[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(四)回顾反思深化概念 [教师活动]给出一组题:1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R 上的单调增函数还是单调减函数?2、若定义在R上的单调减函数f(x)满足f(1+a)<f(3-a),你能确定实数的取值范围吗?[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:(1)阅读课本P29例1、2(2)书面作业:必做:教材作业选做:二次函数y=x2+bx+c在[0,+∞)是增函数,满足条件的实数b的值唯一吗?探究:函数y=x在定义域内是增函数,函数y=1有两个单调减区间,由这两个基本函x数构成的函数y=x+1的单调性如何?请证明你得到的结论.x[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.五、教学评价学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.第二篇:函数单调性教学设计函数单调性教学设计关于函数的单调性习题课教学设计,本人在听了专家的讲解后感到受益匪浅,结合平时的教学,有些教学方面的心得如下,希望专家和同行批评指正。

最新人教版高中数学必修一函数的单调性优质教案

最新人教版高中数学必修一函数的单调性优质教案

1.3.1(1)函数的单调性(教学设计)教学目标(一)知识与技能目标学生通过经历观察、归纳、总结、证明等数学活动能够:1、理解增函数、减函数的概念及函数单调性的定义2、会根据函数的图像判断函数的单调性3、能根据单调性的定义证明函数在某一区间上是增函数还是减函数(二)过程目标1、培养学生利用数学语言对概念进行概括的能力2、学生利用定义证明单调性,进一步加强逻辑推理能力及判断推理能力的培养(三)情感、态度和价值观1、通过本节课的教学,启发学生养成细心观察,认真分析,严谨论证的良好习惯2、通过问题链的引入,激发学生学习数学的兴趣,学生通过积极参与教学活动,获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心教学重点:函数单调性的定义及单调性判断和证明一、复习回顾,新课引入1、函数与映射的定义。

2、函数的常用表示方法3、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:①随x的增大,y的值有什么变化?②能否看出函数的最大(小)值?③函数图象是否具有某种对称性?4、作出下列函数的图象:(1)y=x ; (2)y=x 2;二、师生互动,新课讲解:观察函数y=x 与y=x 2的图象,当x 逐渐增大时,y 的变化情况如何?可观察到的图象特征:(1)函数x x f =)(的图象由左至右是上升的;(2)函数2)(x x f =的图象在y 轴左侧是下降的,在y 轴右侧是上升的;也就是图象在区间]0,(-∞上,随着x 的增大,相应的)(x f 随着减小,在区间),0(+∞上,随着x 的增大,相应的)(x f 也随着增大.归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同.函数图象的这种变化规律就是函数性质的反映.1.如何用函数解析式2)(x x f =描述“随着x 的增大,相应的)(x f 随着减小”,“随着x 的增大,相应的)(x f 也随着增大”?在区间),0(+∞上任取x 1,x 2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数2)(x x f =,经过师生讨论得出:在区间),0(+∞上,任取两个21,x x ,当21x x <时,有)()(21x f x f <.这时,我们就说函数2)(x x f =在区间),0(+∞上是增函数.课堂练习请你仿照刚才的描述,说明函数2)(x x f =在区间]0,(-∞上是减函数.2.增函数和减函数的定义设函数)(x f 的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数(increasing function ).区间D 叫做函数的增区间。

函数的单调性教案

函数的单调性教案

函数的单调性教案第一章:函数单调性的基本概念1.1 引入:引导学生回顾初中阶段学过的函数概念,复习一次函数、二次函数的图像和性质。

提问:函数的图像是否具有单调性?如何描述函数的单调性?1.2 单调性的定义:讲解函数单调性的定义,引导学生理解单调递增和单调递减的概念。

举例说明:如y=x,y=2x+1等函数的单调性。

1.3 单调性的判断:教授如何判断函数的单调性,引导学生掌握利用导数或图像判断单调性的方法。

第二章:单调递增函数的性质2.1 单调递增的定义:复习单调递增的定义,强调函数值随着自变量的增加而增加的特点。

举例说明:如y=x,y=2x+1等函数的单调递增性质。

2.2 单调递增函数的图像:讲解单调递增函数的图像特点,引导学生理解函数图像随着x的增加而上升的趋势。

2.3 单调递增函数的性质:教授单调递增函数的性质,如凹凸性、极值等。

第三章:单调递减函数的性质3.1 单调递减的定义:复习单调递减的定义,强调函数值随着自变量的增加而减少的特点。

举例说明:如y=-x,y=-2x-1等函数的单调递减性质。

3.2 单调递减函数的图像:讲解单调递减函数的图像特点,引导学生理解函数图像随着x的增加而下降的趋势。

3.3 单调递减函数的性质:教授单调递减函数的性质,如凹凸性、极值等。

第四章:单调性的应用4.1 最大值和最小值:讲解如何利用函数的单调性求解最大值和最小值问题。

4.2 函数的单调区间:讲解如何确定函数的单调递增区间和单调递减区间。

4.3 函数的单调性与方程的解:讲解如何利用函数的单调性来解决方程的解的问题。

第五章:单调性的综合应用5.1 函数图像的变换:讲解如何利用单调性来分析和理解函数图像的平移、翻折等变换。

5.2 函数的单调性与实际问题:引导学生将函数的单调性应用于解决实际问题,如优化问题、经济问题等。

5.3 单调性的进一步探讨:引导学生思考单调性的局限性,如非单调函数的特殊情况。

第六章:复合函数的单调性6.1 复合函数的概念:引导学生回顾复合函数的定义,理解复合函数是由两个或多个基本函数通过函数运算组合而成的。

最新人教版高中数学必修一函数的单调性优质教案

最新人教版高中数学必修一函数的单调性优质教案

1.3.1(1)函数的单调性(教学设计)教学目标(一)知识与技能目标学生通过经历观察、归纳、总结、证明等数学活动能够:1、理解增函数、减函数的概念及函数单调性的定义2、会根据函数的图像判断函数的单调性3、能根据单调性的定义证明函数在某一区间上是增函数还是减函数(二)过程目标1、培养学生利用数学语言对概念进行概括的能力2、学生利用定义证明单调性,进一步加强逻辑推理能力及判断推理能力的培养(三)情感、态度和价值观1、通过本节课的教学,启发学生养成细心观察,认真分析,严谨论证的良好习惯2、通过问题链的引入,激发学生学习数学的兴趣,学生通过积极参与教学活动,获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心教学重点:函数单调性的定义及单调性判断和证明一、复习回顾,新课引入1、函数与映射的定义。

2、函数的常用表示方法3、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:①随x的增大,y的值有什么变化?②能否看出函数的最大(小)值?③函数图象是否具有某种对称性?4、作出下列函数的图象:(1)y=x ; (2)y=x 2;二、师生互动,新课讲解:观察函数y=x 与y=x 2的图象,当x 逐渐增大时,y 的变化情况如何?可观察到的图象特征:(1)函数x x f =)(的图象由左至右是上升的;(2)函数2)(x x f =的图象在y 轴左侧是下降的,在y 轴右侧是上升的;也就是图象在区间]0,(-∞上,随着x 的增大,相应的)(x f 随着减小,在区间),0(+∞上,随着x 的增大,相应的)(x f 也随着增大.归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同.函数图象的这种变化规律就是函数性质的反映.1.如何用函数解析式2)(x x f =描述“随着x 的增大,相应的)(x f 随着减小”,“随着x 的增大,相应的)(x f 也随着增大”?在区间),0(+∞上任取x 1,x 2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数2)(x x f =,经过师生讨论得出:在区间),0(+∞上,任取两个21,x x ,当21x x <时,有)()(21x f x f <.这时,我们就说函数2)(x x f =在区间),0(+∞上是增函数.课堂练习请你仿照刚才的描述,说明函数2)(x x f =在区间]0,(-∞上是减函数.2.增函数和减函数的定义设函数)(x f 的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数(increasing function ).区间D 叫做函数的增区间。

函数的单调性教学设计(经典)

函数的单调性教学设计(经典)

1.3.1函数的性质(一)函数的单调性教学设计一、教材内容分析本节课《函数的单调性》是人教A版《高中数学必修1》第一章第三节的内容,函数的性质由研究函数单调性开始,它既是函数基本特征之一,为后面基本初等函数的研究提供了一般方法,为研究不等关系提供了重要依据。

探究方法对研究函数的其他性质有很强的启发与示范作用。

函数单调性的实质是对函数两个变量运动趋势相关性的研究,研究函数单调性是从观察具体图象的变化趋势入手,通过图象分析数值之间的关系,最终抽象出用数学符号表述的定义。

二、教学目标知识目标(学习目标)(1)能通过函数图象分析函数的单调性。

掌握一次函数、二次函数、反比例函数的单调性。

(2)准确概括出增、减函数的定义并理解。

(3)会用增、减函数的定义证明函数的单调性。

能力目标培养学生数形结合的数学思想,指导学生形成研究问题从特殊到一般,从具体到抽象的研究方法。

指导学生形成科学的利用时间进行有效复习的学习方法。

情感态度与价值观目标通过对函数单调性的探究过程培养学生细心观察图象并进行分析最后严谨论证的良好思维习惯,并激发学生利用现代的设备技术去探索数学问题的兴趣。

三、教学(学习)重点难点重点:形成增、减函数的形式化定义。

难点:形成增、减函数概念的过程中,如何从图象升降的直观认识过渡到函数增减的数学符号语言表达;用定义证明函数的单调性。

四、学情分析所教授的班级学生为高一学生,在初中通过三类简单的函数图象分析已经对函数的单调性有了一定的直观认识,但是还欠缺对函数单调性用数学符号的定义概括和进一步去理解函数的单调性。

学生思维活跃,小组合作探究已经比较默契。

课前学生可以利用ipad观看微课并检测自学效果,也可以利用图形计算器绘制函数图象,对初中没有接触的函数的图象有直观认识。

但学生欠缺规范表述函数的单调性和单调区间。

五、教学策略选择与设计教学设计思路:通过对函数单调性的研究让学生经历从直观到抽象,从图形语言到数学语言,理解增函数、减函数,单调区间概念的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学必修一函数的单调性学案
学习目标要求:
1.理解函数单调性的概念;
2.掌握判断函数单调性的一般方法;
3.体验数形结合思想在函数性质研究中的价值,掌握其应用。

一、函数单调性的概念
1:增函数
(1)定义:设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数,区间D称为函数f(x)的单调递增区间。

(2)几何意义:函数f(x)的图象在区间D上是上升的,如图所示:
2:减函数
(1)定义:设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数,区间D称为函数f(x)的单调递减区间。

(2)几何意义:函数f(x)的图象在区间D上是下降的,如图所示:
3:单调性与单调区间
定义:如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。

思考:
(1)单调性是函数在定义域上的“整体”性质吗?
不是,由定义中“定义域I内某个区间D”知函数的单调递增区间或单调递减区间是其定义域的子集,这说明单调性是与“区间”紧密相关的,一个函数在定义域的不同区间可以有不同的单调性。

(2)定义中的“x1、x2”具备什么特征?
定义中的x1、x2有以下几个特征:一是任意性,即任意取x1,x2,证明单调性时更不可随意以两个特殊值替换;二是有大小,通常规定x1<x2;三是属于同一个单调递增区间或单调递减区间。

(3)增(减)函数定义的核心是一组不等关系,据此你还能得出什么结论?
增函数有错误!未找到引用源。

>0,减函数有错误!未找到引用源。

<0
二、判断函数单调性的一般方法
(1)定义法:利用定义严格判断。

一般步骤如下:
①取值:任选定义域中同一单调区间D上的自变量值x1,x2,且设x1<x2;
②作差:求f(x2)-f(x1);
③变形:即将②中的差式f(x2)-f(x1)进一步化简变形,变到利于判断f(x2)-f(x1)的正负为止;变形的主要技巧:
A、因式分解:当原函数是多项式函数时,作差后的变形通常进行因式分解;
B、通分:当原函数是分式函数时,作差后往往进行通分,然后对分子进行因式分解;
C、配方:当原函数是二次函数时,作差后可以考虑配方,便于判断符号;
D、分子或分母有理化:当原函数是根式函数时,作差后往往考虑分子或分母有理化,如f(x)=错误!未找到引用源。

④定号:根据变形结果,确定f(x2)-f(x1)的符号;
⑤判断:根据x1与x2的大小关系及f(x1)与f(x2)的大小关系,结合单调性定义得出结论。

典型例题
例1:证明函数f(x)=x+错误!未找到引用源。

在(0,1)上为减函数。

例2:用单调性的定义证明函数x
)
(2在R上是减函数。

=1
x
x
f-
+
(2)图象法:作出函数的图象,用数形结合的方法确定函数的单调性。

(3)直接法:对于我们所熟悉的函数,直接得到函数的单调性,如一次函数、二次函数、反比例函数等。

(4)记住几条常用的结论:
a.函数y=f(x)与y=-f(x)的单调性相反;
b.当f(x)>0或f(x)<0时,函数y=错误!未找到引用源。

与y=f(x)的单调性相反;
c.在公共区间内,“增+增=增”,“减+减=减”,“增-减=增”,“减-增=减”。

思考:
(1)单调区间的端点值如何取舍?
对于单独的一点,由于它的函数值是唯一确定的常数,没有增减的变化,所以不存在单调性问题,因此在写单调区间时,可以包括区间端点,也可以不包括区间端点,但当函数在某些端点无意义时,单调区间就不能包括这些点。

(2)多个单调递增(减)区间之间能否用“∪”连接?
不能取这些区间的并集,而应用“,”将它们隔开或用“和”字连接。

三、函数单调性的应用
1、已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围。

名师导引:(1)二次函数的单调性取决于什么?
开口方向(a>0,开口向上;a<0,开口向下)与对称轴(-b/2a)
(2)(-∞,4]是函数的单调递减区间吗?
可能不是,可能是其子集。

解:
∵f(x)= x2+2(a-1)x+2,
∴此二次函数图象的对称轴为x=1-a,
∴f(x)的单调递减区间为(-∞,1-a],
∵f(x)在(-∞,4]上是减函数,
∴对称轴x=1-a必须在直线x=4的右侧或与其重合,
∴1-a≥4,解得a≤-3,
即实数a的取值范围为(-∞,-3]。

思考:
“函数f(x)的单调区间是(a,b)”与“f(x)在区间(a,b)上单调”有何不同的含义?
前者表明区间(a,b)是其单调区间的全部,而后者表明区间(a,b)是其单调区间的子集。

2、(2011~2012学年度广东惠阳高级中学上学期高一第一次段考)函数y=x2-2mx+3在区间[1,3]上具有单调性,则m的范围为——————。

解析:∵函数图象的对称轴为x=m,
∴函数在(-∞,m]上递减,[m,+∞)上递增,
∵函数在[1,3]上具有单调性,
∴m≤1或m≥3.
答案:(-∞,1]∪[3,+∞)
3、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求a的取值范围。

解:f(1-a)<f(3a-2)⇔错误!未找到引用源。

解得错误!未找到引用源。

<a<错误!未找到引用源。

.
∴a的取值范围是(错误!未找到引用源。

,错误!未找到引用源。

).。

相关文档
最新文档