电梯的电气控制系统设计与实现正式版

合集下载

电梯的电气控制系统设计与实现

电梯的电气控制系统设计与实现

专业的论文在线写作平台电梯的电气控制系统设计与实现1 锅炉的腐蚀(1)近几年来,锅炉燃料的供给一直是炼油厂的渣油和采油厂原油稳定站生产的重油,其粘度高、比重大、燃点低、品质差。

过高的粘度致使燃油器喷射时雾化不良,恶化了燃料状况。

重油燃烧不充分,容易产生炭灰。

重油的燃烧必要条件是与空气混合均匀,充分雾化,与空气混合时要风量大,而操作时锅炉的鼓风机配风量达不到要求,造成重油喷射到火焰中心区不能充分扰动,炉内燃烧混合气重油又不能完全燃烧,产生大量积灰。

(2)大型热水锅炉吹灰流程采用蒸汽。

锅炉出厂时,注明可采取蒸汽和空气吹灰,由于蒸汽来源方便,设计时都采用蒸汽吹扫,而重油燃烧时产生大量积灰锅炉房自用蒸汽压力小,仅为0.4MPa,达不到吹灰与清灰所必须的压力,致使积灰大部分沉淀下来,不能被烟气带走,沉积于锅炉尾部。

同时,锅炉尾部的低温区蒸汽不断凝聚,使积灰与冷却水混合,成为泥湖状,加之锅炉的排烟尾管很长暴露于室外,使烟气中的蒸汽凝后聚集倒流回锅炉尾部的低温区,又与积灰汇合在一起,即堵塞了烟道,降低了炉管的热效率,又对炉管产生侵蚀作用。

(3)重油的乳化掺水问题。

重油的乳化掺水电利用水在瞬时汽化的物理作用,尽力使重油滴再分裂成微粒体,促进重油汽化及燃烧。

可是最关键的是掺水量要合理,以前掺水量一般控制于8%~10%左右,乳化加水过量会使锅炉的积灰加重,不易被烟气带走,大量沉淀下来。

同时大量掺水产生大量的蒸汽,造成从烟道回流的冷凝水增多。

这又使烟道被堵塞与炉管被腐蚀。

(4)锅炉的化学腐蚀。

重油与渣油中含硫较高。

它燃烧时产生二氧化硫气体。

重油中的钒受高温作用产生V2O5,它对二氧化硫气体转化。

电梯PLC控制系统的设计与实现

电梯PLC控制系统的设计与实现

昔助P L C控制 软件 可 以实现逻辑控制功能 , r 包 含 了 轿 厢 位 置 判 定 、 定 向 选 层 、 开 启 或 : 关闭轿 门等 。另外 ,在运 行拖动控制系统 借助 P L C控 制系 统就 可 以传 输 电梯 实时 : 状 态之下的反馈信号 ,这样 也可以将对应 制 信 号加 以 明 确 。 就P L C控 制 系 统 原 理 来 看 , 其 运 行 包 含 UN 和 S T O P两 种 。在 RU N 状 态 下 ,P L C ‘ 以接触 反应 控 制要 求 的用户 程序 执行 处 进而满 足电梯控制功能 的操作 。另外,为 I 保输 出可 以及时的响应 电梯运行可 能发生 的 输 入 信 号 , 针 对 用 户 程 序 执 行 , 并且 1 : 可 以完 成 , 而 是 需 要 重 复 性 的 多 次执 行 , 的执 行直至处于 S T OP状态之下 。其 工作 图见 图 2所 示 。

图2 :P L C电梯控制 系统X - 作原理示意 图
简 单 、可 靠 性 高 、 组 装 维 护 方 便 、抗 干 扰
3电梯P L C 控制 系统设计
f 强 ,被 广 泛 应 用 到工 业 控 制 领 域 之 中 。
3 . 1 P L C 单台电梯控制 系统工作流程
图 3为 单 台 控 制 系 统 的 流 程 图 , 从 图 可 以
A u t o ma t i c C o n t r o l ・ 自动化控制
ቤተ መጻሕፍቲ ባይዱ
电梯 P L C控制系统的设计与实现
文/ 叶 俊 杰
2 . 2 安 全 性设 计 安 全 性 指 的 是 紧 急 异 常 状 态 下 系 统 处 于 安全 状 态 。 所 以, 在 系 统 设 计 过 程 中 , 系统 就 应 该 拥有 处 理 事 故 和 故 障 的功 能 。在 主 要 设 备 和 回路 中 设置好 事 故按钮 或者 是 紧急停 车按

《2024年电梯PLC控制系统的设计与实现》范文

《2024年电梯PLC控制系统的设计与实现》范文

《电梯PLC控制系统的设计与实现》篇一一、引言随着科技的发展,电梯的控制系统也逐步从传统的电气控制向更加智能化、高效化的PLC控制系统过渡。

本文将介绍电梯PLC控制系统的设计与实现过程,探讨其原理和实现方法,以期为相关研究和应用提供参考。

二、系统设计1. 需求分析电梯PLC控制系统需求分析是整个设计过程的基础。

在此阶段,需要明确电梯的基本功能需求,如上下行、载人载物、紧急制动等,以及系统需要具备的特殊功能需求,如楼层识别、智能调度等。

同时,还需考虑系统的可靠性、安全性及维护性。

2. 硬件设计硬件设计是电梯PLC控制系统的基础。

设计时需根据需求分析结果,选择合适的PLC控制器、传感器、执行器等硬件设备。

此外,还需设计电源电路、通信接口等,以确保系统的正常运行。

3. 软件设计软件设计是电梯PLC控制系统的核心。

在软件设计阶段,需要编写PLC程序,实现电梯的各项功能。

程序设计应遵循模块化、结构化的原则,以便于后期维护和升级。

此外,还需考虑程序的抗干扰性、实时性等问题。

三、系统实现1. PLC程序编写与调试根据软件设计的结果,编写PLC程序。

在程序编写过程中,需注意程序的逻辑性、可读性和可维护性。

编写完成后,进行程序调试,确保程序能够正确实现电梯的各项功能。

2. 硬件安装与调试将选定的硬件设备安装到电梯控制系统中,进行硬件调试。

调试过程中需确保各硬件设备能够正常工作,通信正常,且与PLC程序能够正确配合。

3. 系统联调与优化将硬件和软件进行联调,对系统进行优化。

联调过程中需注意系统的稳定性、响应速度等问题,根据实际情况对程序和硬件进行调整,以达到最佳效果。

四、系统测试与验收1. 功能性测试对电梯PLC控制系统进行功能性测试,检查系统是否能够正确实现各项功能。

测试过程中需注意系统的安全性和可靠性。

2. 性能测试对电梯PLC控制系统的性能进行测试,包括响应速度、稳定性、抗干扰性等方面。

测试结果应符合相关标准和要求。

《2024年电梯PLC控制系统的设计与实现》范文

《2024年电梯PLC控制系统的设计与实现》范文

《电梯PLC控制系统的设计与实现》篇一一、引言随着现代建筑业的飞速发展,电梯作为垂直运输的重要设备,其安全性和效率性日益受到人们的关注。

为了满足这一需求,电梯PLC控制系统应运而生。

PLC(Programmable Logic Controller)即可编程逻辑控制器,其具有高可靠性、灵活性和易维护性等特点,被广泛应用于电梯控制系统中。

本文将详细介绍电梯PLC控制系统的设计与实现过程。

二、系统设计1. 需求分析在系统设计阶段,首先需要进行需求分析。

根据电梯的实际使用情况,确定系统的功能需求,如上下行控制、楼层选择、安全保护等。

同时,还需考虑系统的可靠性、稳定性和可维护性。

2. 硬件设计硬件设计是电梯PLC控制系统的基础。

主要包括PLC控制器、传感器、执行器、电源等设备的选型和配置。

其中,PLC控制器是核心部件,需要根据电梯的规格和需求选择合适的型号。

传感器和执行器负责采集电梯状态信息和控制电梯运行,需要选用高精度、高可靠性的产品。

3. 软件设计软件设计是实现电梯PLC控制系统的关键。

主要包括PLC 程序的编写、人机界面设计、通信协议制定等。

PLC程序需要根据电梯的实际情况,编写合理的控制逻辑,实现电梯的上下行控制、楼层选择、安全保护等功能。

人机界面需要设计友好、易操作,方便用户使用。

通信协议需要制定标准,保证系统各部分之间的数据传输畅通。

三、系统实现1. 编程与调试在硬件和软件设计完成后,需要进行编程与调试。

根据软件设计的要求,编写PLC程序,并进行反复测试和调试,确保程序的正确性和稳定性。

同时,还需要对人机界面进行测试,确保其功能完善、操作便捷。

2. 系统安装与调试系统安装与调试是电梯PLC控制系统实现的重要环节。

首先,需要根据现场实际情况,将硬件设备安装到指定位置。

然后,进行系统联调,确保各部分设备之间的数据传输畅通,系统运行稳定。

最后,进行实际运行测试,验证系统的性能和可靠性。

四、系统应用与效果电梯PLC控制系统的应用,有效提高了电梯的安全性和效率性。

《2024年基于PLC的电梯控制系统设计及实现》范文

《2024年基于PLC的电梯控制系统设计及实现》范文

《基于PLC的电梯控制系统设计及实现》篇一一、引言随着社会的进步和科技的不断发展,电梯在各类建筑物中得到了广泛的应用。

因此,确保电梯的稳定运行及安全性成为重要的议题。

而PLC(可编程逻辑控制器)技术的应用为电梯控制系统带来了全新的发展机遇。

本文将探讨基于PLC的电梯控制系统的设计及实现,以期为相关领域的研发人员提供参考。

二、系统设计1. 硬件设计基于PLC的电梯控制系统硬件主要包括PLC控制器、人机界面(HMI)、传感器、执行器等部分。

其中,PLC控制器是整个系统的核心,负责接收传感器信号,执行控制算法,并控制执行器完成电梯的各项动作。

HMI则用于实现人与系统的交互,显示电梯的运行状态和接收用户的指令。

传感器部分包括楼层检测传感器、门状态传感器、安全传感器等,用于检测电梯的实时状态。

执行器部分包括电机、继电器等,负责驱动电梯完成各项动作。

2. 软件设计软件设计是PLC电梯控制系统的关键部分,主要包括控制算法的设计和程序编写。

控制算法的设计应考虑到电梯的响应速度、平稳性、安全性等因素。

程序编写则应遵循模块化、结构化的原则,以提高系统的可读性和可维护性。

在软件设计中,应采用先进的控制策略,如模糊控制、神经网络控制等,以提高电梯的舒适性和安全性。

同时,还应考虑到系统的故障诊断和恢复功能,确保在出现故障时能够及时恢复运行。

三、系统实现1. 开发环境搭建首先需要搭建开发环境,包括PLC控制器、HMI设备以及相关的软件开发工具。

其中,PLC控制器的选择应考虑到其处理速度、内存大小、可靠性等因素。

HMI设备则应具备友好的人机界面和良好的交互性能。

2. 程序编写与调试程序编写应遵循模块化、结构化的原则,将系统功能划分为若干个模块,分别进行编程和调试。

在程序编写过程中,应充分考虑系统的实时性和可靠性,确保程序的正确性和稳定性。

程序调试是系统实现的关键环节,应采用仿真测试、实际测试等多种方法进行调试,确保系统的各项功能正常运行。

电梯的电气控制系统设计与实现

电梯的电气控制系统设计与实现

电梯的电气控制系统设计与实现
首先,电梯的电气控制系统需要具备运行方向控制功能。

电梯可以向上或向下运行,所以需要设计一个控制器来判断电梯当前的运行方向,并根据乘客的指令来使电梯向对应的方向运动。

在设计这个功能时,可以使用PLC(可编程逻辑控制器)或者单片机来实现控制逻辑。

其次,电梯的电气控制系统还需要实现停靠楼层控制功能。

当电梯到达其中一楼层时,需要精确地停下来以便乘客上下电梯。

为了实现精确停靠,可以使用光电传感器来探测电梯与楼层之间的距离,并通过控制电机的启停来实现的电梯的停靠。

另外,电梯的电气控制系统还需要具备安全保护功能。

例如,当电梯超载时,需要停止电梯的运行以避免危险。

此外,当电梯门没有完全关闭时,电梯也不应该运行,否则会造成安全隐患。

因此,需要在电气控制系统中加入相关的安全控制机制,如传感器检测电梯的负载或者门的关闭状态,并在相应的情况下触发相应的动作,例如关闭电梯的运行。

在实现电梯的电气控制系统时,还需要考虑许多其他因素,如紧急停止按钮、故障检测与报警机制等。

同时,还需要确保电气控制系统的可靠性和稳定性,以及检查系统的灵敏度和精确度,以提高电梯的运行效率和安全性。

总结起来,电梯的电气控制系统设计与实现需要考虑运行方向控制、停靠楼层控制、安全保护等功能,同时要考虑紧急停止按钮、故障检测与报警机制等因素,确保系统的可靠性和安全性。

在实际应用中,还需要根据具体的需求和现场情况进行适当的调整和优化。

《2024年基于PLC的电梯控制系统设计及实现》范文

《2024年基于PLC的电梯控制系统设计及实现》范文

《基于PLC的电梯控制系统设计及实现》篇一一、引言随着城市化进程的加速,电梯作为建筑物中垂直运输的主要工具,其安全性和效率性变得越来越重要。

为了提高电梯的可靠性和用户满意度,采用先进的控制技术显得尤为重要。

可编程逻辑控制器(PLC)因其高度的稳定性和灵活性,被广泛应用于电梯控制系统中。

本文将介绍基于PLC的电梯控制系统设计及实现,以期为相关研究和应用提供参考。

二、系统设计1. 硬件设计基于PLC的电梯控制系统硬件主要包括PLC、输入/输出设备、通信模块、驱动装置以及电梯的机械部分等。

其中,PLC作为核心控制单元,负责接收传感器信号、处理逻辑控制算法、输出控制指令等。

输入/输出设备包括按钮、楼层显示器、门机等,用于实现人机交互。

通信模块用于实现PLC与上位机或其他设备之间的数据传输。

驱动装置则包括电机、变频器等,负责电梯的升降和停靠。

2. 软件设计软件设计是电梯控制系统设计的关键部分。

首先,需要根据电梯的运行需求,设计合理的逻辑控制算法。

这些算法应考虑到电梯的升降、停靠、开门、关门等过程,以及应急情况下的处理策略。

其次,需要编写PLC的程序,实现这些逻辑控制算法。

程序应具有高度的稳定性和可靠性,以确保电梯的安全运行。

此外,还需要设计友好的人机交互界面,提高用户体验。

三、实现过程1. 硬件搭建根据设计要求,搭建电梯控制系统的硬件平台。

包括PLC、传感器、执行器、通信设备等的选型和连接。

确保各部分之间的连接正确、稳定,以满足电梯运行的需求。

2. 程序设计及调试编写PLC的程序,实现电梯的逻辑控制算法。

在编写过程中,需要进行反复的调试和优化,以确保程序的正确性和稳定性。

同时,还需要对程序进行仿真测试,以验证其在实际运行中的可行性。

3. 系统联调及优化将编写好的程序烧录到PLC中,与硬件平台进行联调。

在联调过程中,需要不断优化程序和硬件配置,以提高电梯的运行效率和安全性。

同时,还需要对系统进行性能测试和故障诊断,以确保其在实际运行中的可靠性和稳定性。

《2024年电梯PLC控制系统的设计与实现》范文

《2024年电梯PLC控制系统的设计与实现》范文

《电梯PLC控制系统的设计与实现》篇一一、引言随着现代建筑技术的不断进步,电梯作为垂直交通工具在建筑物中扮演着越来越重要的角色。

为了提高电梯运行的安全性和效率,电梯PLC控制系统应运而生。

本文将详细介绍电梯PLC 控制系统的设计与实现过程,包括系统架构、硬件设计、软件设计以及实际应用效果等方面。

二、系统架构设计电梯PLC控制系统主要由PLC控制器、传感器、执行器等组成。

系统架构设计是整个系统的核心,它决定了系统的稳定性和可靠性。

首先,我们需要选择合适的PLC控制器。

PLC控制器是整个系统的核心,它负责接收传感器信号、处理数据并控制执行器动作。

在选择PLC控制器时,我们需要考虑其处理速度、稳定性、可靠性以及扩展性等因素。

其次,我们需要设计传感器的布局和类型。

传感器负责实时监测电梯的运行状态和位置信息,包括门状态、楼层位置、载重情况等。

传感器的布局和类型需要根据电梯的具体情况进行设计,以确保能够准确监测电梯的各项参数。

最后,我们需要设计执行器的类型和数量。

执行器负责根据PLC控制器的指令进行动作,包括电机控制、门禁控制等。

执行器的类型和数量需要根据电梯的负载能力和运行要求进行设计,以确保电梯能够正常运行并满足用户需求。

三、硬件设计硬件设计是电梯PLC控制系统设计与实现的重要环节。

主要包括PLC控制器的选择、传感器的选型与布局、执行器的选型与安装等。

在选择PLC控制器时,我们需考虑其运算速度、内存容量、接口类型等关键参数,确保其能够满足电梯控制的高精度和高效率要求。

传感器的选型与布局需根据电梯的实际结构和运行需求进行设计,如楼层位置传感器、载重传感器、门状态传感器等,以确保系统能够实时准确地监测电梯的运行状态。

执行器的选型与安装需根据电梯的负载能力和运行要求进行选择,如电机驱动器、门禁控制器等,以确保电梯的顺畅运行和安全性能。

四、软件设计软件设计是电梯PLC控制系统设计与实现的关键环节。

主要包括PLC控制程序的编写、人机界面设计以及故障诊断与处理等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal.
电梯的电气控制系统设计
与实现正式版
电梯的电气控制系统设计与实现正式

下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。

文档可以直接使用,也可根据实际需要修订后使用。

电梯是当前高层建筑不可缺少的垂直方向的交通运输工具,随着计算机及微电子技术的快速发展,电梯控制技术发生了巨大变化,其中PLC控制系统代替传统的继电器控制以及电梯采用了对电动机实现线性调速的调压调频技术,能达到电梯安全平稳运行。

随着人们生活水平的提高及高层建筑的普及,电梯是当前高层建筑不可缺少的垂直方向的交通工具,电梯是集机电一体的复杂系统,涉及机械传动、电气控制和土建等工程领域多种领域专业与一体的综
合技术。

随着社会的发展及对安全的重视,在设计电梯的时候,应具有高度的安全性。

这样就对建筑内的电梯的调速精度、调速范围等静态和动态特性提出了更高的要求。

当前由可编程序控制器(PLC)和微机组成的电梯运行逻辑控制系统具有可靠性高、维护方便、开发周期短,对机械零部件和电器元件都采取了很大的安全系数和保险系数。

电梯的控制是相对比较复杂的,PLC可编程控制器把机械与电气部件有机地结合在一个设备内,把仪表、电子和计算机的功能综合在一起,使得电梯过程控制更平稳、可靠,抗干扰性能增强,电梯运行更加可靠,并具有很大的灵活性,可以完成更为复杂的控制任务,己成
为电梯控制的发展方向。

电梯自动控制系统特点
从电梯结构分析电梯由机械系统和控制系统组成。

电梯机械部分主要由轿厢、牵引系统、导轨门系统、平衡系统、导向系统以及机械安全保护装置等部分组成;而电气控制部分由电力控制系统、运行逻辑功能控制系统组成。

轿箱是用来运送乘客或货物的电梯组件,由轿箱架和轿箱体组成。

对中装置位于井道内,通过拽引绳井拽引轮与轿箱连接。

其中装有控制板,乘客通过控制板的相应按钮把需要到达的层次信号传输给控制系统,也可直接控制开关门。

在电梯运行过程中,对中装置通过对重导靴在对中到柜上滑行,起到平衡
作用。

牵引部分包括安装在轿厢顶部的牵引钢缆、滑轮组、机房内的电机和钢缆绞轮以及加在牵引钢缆另一端的配重。

当电机带动钢缆绞轮转动时,通过摩擦使钢缆运动牵引电梯升降。

为了安全,电梯由一组钢缆牵引,每根钢缆都能单独承受所牵引的重量。

牵引动力的传递一般分为减速器式和无减速器式两种。

前者通过涡轮涡杆减速器把电机主轴的转动传递给钢缆绞轮;后者把钢缆绞轮直接安装在电机主轴上,通过改变流过电机电流的大小来控制转速。

为使轿厢和配重在垂直运动过程中不发生横向运动,分别设置轿厢导轨和配重导轨。

常用的自动电梯采用集选控制方式,控制系统由轿厢内控制板、候梯门控制板、层次控制存储器和升降控制柜组成。

控制板的作用是传递乘客指令信号。

层次控制存储器把轿厢内和候梯门外乘客的指令存储起来,并按高层优先等规则编排停靠层次程序,发出升、降、停指令。

升降控制柜根据升、降、停指令控制电机的加速、减速、正转、反转和停机。

大型高层建筑中的多台电梯常采用自动群控操纵方式,由3~8台电梯组成一群控系统,根据轿厢内乘客人数、轿厢内外的指令、呼梯信号和轿厢所在位置等条件自动调度电梯运行。

电梯性能指标及控制要求
2.1.电梯的主要性能指标
电梯作为建筑物的垂直交通工具,其性能好坏直接影响到人们的生产生活,越来越引起人们的关注。

电梯的可靠性直接或间接地影响着人们生产、生活,对电梯性能的要求,一般有安全性、可靠性、舒适感和快速性停站准确性、振动、噪声及电磁干扰、节能和装潢等几项。

电梯是运送乘客的,即使载货电梯通常也有人伴随,对电梯的第一要求便是安全,电梯的安全与设计、制造、安装调试及检修各环节都有密切联系。

电梯的故障主要表现在电力拖动控制系统中,电梯的拖动应尽量采用鼠笼型异步电动机。

超速保护装置主要由限速器和安全钳组成,轿厢的安全
钳、限速器动作速度应不低于轿厢额定速度的115%。

若中途停电或电气系统故障不能正常运行时,应有轿厢慢速移动措施。

乘客舒适感与电梯速度无关,而与加速度和减速度有关,所以考虑生理系数
ρ=da/dt的影响,电梯行业一般ρ<1.3米/秒3
,比较符合人体的要求。

2.2. 电梯的控制要求
电梯的控制系统采用集中控制方式,主要包括信号控制系统和拖动控制系统两大部分。

图1为电梯PLC电梯控制系统框图,主要硬件包括PLC主机及扩展、轿厢操纵盘、呼梯盘、安全装置、显示装置、调速装置与主拖动系统等。

控制系统的核
心为可编程控制器(PLC),操纵盘、呼梯盒、位置、安全保护及变频器工作状态等信号输入PLC,经PLC运算处理后由输出接口分别向显示电路发出呼梯、定向等显示信号,通过变频器向主拖动电动机发出控制信号。

电梯控制系统实现的功能及逻辑要求,每层电梯入口设有上下请求开关,电梯内设有乘客到达层次的停靠站请求开关。

其逻辑控制功能主要包括以下几个方面:①指示装置应显示电梯所在位置指示装置及电梯运行模式(上升或下降);②行车方向由内选信号决定,顺向优先执行,行车途中如遇呼梯信号时,顺向截车,反向不截车;③电梯到达有停靠站的请求的楼
层后,经过一定延时后电梯门打开,开门指示灯亮,开门四秒后,电梯门关闭(开门指示灯灭),电梯继续运行,无内选时延时5s自动关门,但不能自动行车,直到执行完组后一个请求信号后停靠在当前层;
④能记忆电梯所有的内外的请求信号,并按照电梯的运行规则次序响应,每个请求信号保留至执行后消除。

电梯的电气控制系统采用PLC控制,提高了电梯控制系统运行的平稳性、工作的可靠性,操作与维护也很方便,可实现电梯速度、位移的闭环控制,增加了电梯运行的安全性。

——此位置可填写公司或团队名字——。

相关文档
最新文档