原码反码补码

合集下载

原码、反码、补码课件

原码、反码、补码课件

160
二进制数相加
10000110 + 00011010
10100000
看成补码
-122
+
26
-96
出现问题
• 错误的结果:
11001011 10010001
01011100
-0110101 + -1101111
+1011100
-53 + -111
-+19624
思考:为什么出现了错误?
补码 • 溢出
补码 •补码的求法(1)
• 正数:与原码相同;
• 负数:“求反加一”
例:
x=+1001100B,则[x]补=01001100B=[x]原
x=-1001100B,则[x]补=10110100B
x=-1001100时, [x]补=28-1001100B
11111111 01001100
=256 -1001100B =255 -1001100B +1
溢出
图d 有进无出
补码 • 溢出的判别(3)
• 课堂练习
1、请判断下列8位补码的运算是否会产生溢出?
11001001 11100111
10110000
有进有出,无溢出
01100011 01001010
10101101
有进无出,溢出
补码小结
真值 机器数
无符号数 有符号数
原码 反码
真值的方法 已知[x]补,求[-x]补的方法 溢出
• 拨针方法小结: 8- 2=6
8 + 10 = 6 • 思考:为什么会出现这种现象?计算机中是否
也有这种现象? (表盘是圆的,可循环计时。)

计算机的原码反码补码概念

计算机的原码反码补码概念

计算机中原码、反码和补码的概念
在计算机中,我们使用三种主要的编码方式来表示整数,它们分别是原码、反码和补码。

每种编码方式都有其特定的表示方法和应用场景。

1.原码概念
原码就是将二进制数的最高位作为符号位,其余位表示数值。

正数的符号位为0,负数的符号位为1。

因此,原码表示的整数范围是-2^n-1到2^n-1,其中n是原码的位数。

例如,8位原码可以表示的范围是-128到127。

原码的优点是直观易懂,易于实现。

但原码也存在一些缺点,如不能直接进行加减运算,需要先进行符号扩展。

2.反码概念
反码是用来表示负数的二进制编码方式。

对于正数,反码与其原码相同。

对于负数,反码是将其原码除符号位以外的所有位取反(即0变为1,1变为0)。

例如,8位反码中,+7的编码为00000111,而-7的编码为11111000。

反码的优点是可以直接进行加减运算,不需要进行符号扩展。

但反码的缺点是不易于理解和记忆。

3.补码概念
补码是用来表示负数的另一种二进制编码方式。

与反码不同的是,补码在表示负数时会对符号位以外的所有位取反后加1。

因此,补码可以看作是反码加1的结果。

例如,8位补码中,+7的编码为00000111,而-7的编码为11111001。

补码的优点是可以直接进行加减运算,同时也可以进行减法运算而不需要进行符号扩展。

此外,补码还具有一些其他的优点,如易于理解和记忆、适用于有符号整数等。

因此,在现代计算机系统中,补码被广泛采用。

原码、反码、补码的求法

原码、反码、补码的求法

反码‎在计算‎机内,定点‎数有3种表‎示法:原码‎、反码和补‎码。

‎所谓原码就‎是前面所介‎绍的二进制‎定点表示法‎,即最高位‎为符号位,‎“0”表示‎正,“1”‎表示负,其‎余位表示数‎值的大小。

‎反码‎表示法规定‎:正数的反‎码与其原码‎相同;负数‎的反码是对‎其原码逐位‎取反,但符‎号位除外。

‎补码‎表示法规定‎:正数的补‎码与其原码‎相同;负数‎的补码是在‎其反码的末‎位加1。

‎ 1、原‎码、反码和‎补码的表示‎方法‎(1)原‎码:在数值‎前直接加一‎符号位的表‎示法。

‎例如:‎符号位数‎值位‎[+7]原‎= 0 0‎00011‎1 B‎[-7]‎原= 1 ‎00001‎11 B‎注意:‎a. 数0‎的原码有两‎种形式:‎ [+0‎]原=00‎00000‎0B [-‎0]原=1‎00000‎00B‎b. 8‎位二进制原‎码的表示范‎围:-12‎7~+12‎7(‎2)反码:‎正数‎:正数的反‎码与原码相‎同。

‎负数:负数‎的反码,符‎号位为“1‎”,数值部‎分按位取反‎。

例‎如:符号‎位数值位‎[+‎7]反= ‎0 000‎0111 ‎B[‎-7]反=‎1 11‎11000‎B‎注意:a.‎数0的反‎码也有两种‎形式,即‎ [+0‎]反=00‎00000‎0B‎[- 0]‎反=111‎11111‎Bb‎. 8位二‎进制反码的‎表示范围:‎-127~‎+127‎(3)‎补码的表示‎方法‎1)模的概‎念:把一个‎计量单位称‎之为模或模‎数。

例如,‎时钟是以1‎2进制进行‎计数循环的‎,即以12‎为模。

在时‎钟上,时针‎加上(正拨‎)12的整‎数位或减去‎(反拨)1‎2的整数位‎,时针的位‎置不变。

1‎4点钟在舍‎去模12后‎,成为(下‎午)2点钟‎(14=1‎4-12=‎2)。

从0‎点出发逆时‎针拨10格‎即减去10‎小时,也可‎看成从0点‎出发顺时针‎拨2格(加‎上2小时)‎,即2点(‎0-10=‎-10=-‎10+12‎=2)。

计算机中的原码、补码与反码

计算机中的原码、补码与反码

计算机中的原码、补码与反码⼀、原码: 所谓原码就是当前数字的⼆进制表现形式,int为例,第⼀位表⽰符号 (0正数 1负数)简单期间⼀个字节表⽰ +7的原码为: 00000111 -7的原码为: 10000111 对于原码来说,绝对值相等的正数和负数只有符号位不同。

⼆、反码: 正数的反码就是本⾝。

负数的反码是⼆进制保留符号位。

剩余位取反,⽐如-1的反码是1111 1110;三、补码: 正数的反码、补码、原码都是⼀样的,负数的补码是在其反码的基础上+1,⽐如-1的补码是1111 1111。

为什么要使⽤补码呢: 我们知道,0是不分正数还是负数的,也就是说,如果使⽤原码表⽰0的话,有两种表⽰⽅式,即00000000与10000000,这对计算来说很不⽅便。

如果我们使⽤补码来表⽰的话: 正数的0的表⽰: 因为正数的原码、反码、补码都是相同的。

所以正数0的反码与补码都是00000000; 负数的0的表⽰: 负数的0的原码是10000000,它的补码也就是在其反码的基础上+1,10000000的反码为符号位不变,剩余位取反,即为11111111,再加⼀的话为00000000,这样的话0的正数表⽰与负数表⽰都是00000000。

其实还有⼀个更重要的原因:就是利⽤⾼位溢出,将减法运算变成加法运算。

这样可以简化运算的设计:⽐如计算3-2,我们可以当做3+(-2)来运算:化为⼆进制: 3:0000 0011; -2:原码:1000 0010;反码:1111 1101;补码在反码基础上+1,即为:1111 1110这样3+(-2)的计算为:1000 0010 + 1111 1110 -------------------- ⾼位溢出结果为:0000 0001在计算机系统中,数值都是以补码来表⽰和存储的。

计算机计算过程是先转换成补码,再按位相加。

原码、反码、补码的定义

原码、反码、补码的定义

原码、反码、补码的定义所有的负数的反码等于原码各位取反;补码等于反码加一.十六进制也是先化成2进制的在化补码。

补码的用途是让机器学会减法运算的。

应为所有的处理器是电路做的,电路其实只是加法器,只能做加法。

如何能让电脑做减法呢,就用补码啊。

减去一个数就等于加上她的补码。

一、原码、反码、补码的定义1、原码的定义①小数原码的定义[X]原=X 0≤X<1 1-X-1<X≤0例如:X=+0.1011,[X]原=01011 X=-0.1011[X]原=11011②整数原码的定义[X]原=X 0≤X<2n 2n-X-2n<X≤0 2、补码的定义①小数补码的定义[X]补=X 0≤X<1 2+X-1≤X<0例如:X=+0.1011,[X]补=01011 X=-0.1011,[X]补=10101②整数补码的定义[X]补=X 0≤X<2n 2n+1+X-2n≤X<0 3、反码的定义①小数反码的定义[X]反=X 0≤X<1 2-2n-1-X-1<X≤0例如:X=+0.1011[X]反=01011 X=-0.1011[X]反=10100②整数反码的定义[X]反=X 0≤X<2n 2n+1-1-X-2n<X≤0 4.移码:移码只用于表示浮点数的阶码,所以只用于整数。

①移码的定义:设由1位符号位和n位数值位组成的阶码,则[X]移=2n+X-2n≤X≤2n例如:X=+1011[X]移=11011符号位"1"表示正号X=-1011[X]移=00101符号位"0"表示负号②移码与补码的关系:[X]移与[X]补的关系是符号位互为反码,例如:X=+1011[X]移=11011[X]补=01011 X=-1011[X]移=00101[X]补=10101③移码运算应注意的问题:◎对移码运算的结果需要加以修正,修正量为2n,即对结果的符号位取反后才是移码形式的正确结果。

简述原码、补码和反码的含义

简述原码、补码和反码的含义

简述原码、补码和反码的含义原码、补码和反码是用于表示有符号整数的三种不同的编码方式。

它们在计算机系统中用于处理带符号数的溢出和运算问题。

1. 原码(Sign and Magnitude):
•原码是最直观的一种表示方法,其中整数的符号用最高位表示(0表示正,1表示负),其余位表示数值的绝对值。

•例如,+5的8位原码表示为 00000101,-5表示为 10000101。

2. 反码(Ones' Complement):
•反码的符号位与原码相同,但是数值位取反。

即,正数的反码与原码相同,负数的反码是将其原码中的每一位取反。

•例如,+5的8位反码表示为 00000101,-5的8位反码表示为11111010。

3. 补码(Two's Complement):
•补码是计算机系统中最常用的表示方法,它解决了反码中的0有两个表示的问题。

•正数的补码与原码相同,而负数的补码是其反码加1。

•例如,+5的8位补码表示为 00000101,-5的8位补码表示为11111011。

这三种表示方法中,原码、反码和补码都有其优缺点。

补码在进行加减运算时更为方便,而且只有一种表示0的方式,因此在计算机中广泛应用。

在补码表示中,正数、负数的加法和减法可以通过相同的硬件电路实现,简化了计算机的设计。

(数电知识)原码、反码与补码知识

(数电知识)原码、反码与补码知识

2.1 原码、反码与补码在计算机内的数(称之为“机器数”)值有3种表示法:原码、反码和补码。

所谓原码就是带正、负号的二进制数,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。

反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。

补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。

由此可见,这三种表示法中,关键是负数的表示方式不一样。

2.2.1 正负数表示、定点数与浮点数在计算机内,通常把1个二进制数的最高位定义为符号位,用“0”表示正数,“1”表示负数;其余位表示数值。

规定小数点位置固定不变的数称为“定点数”;小数点的位置不固定,可以浮动的数称为“浮点数”。

2.2.2 原码原码表示法是定点数的一种简单的表示法。

用原码表示带符号二进制数时,符号位用0表示正,1表示负;数值位保持不变。

原码表示法又称为符号-数值表示法。

1. 小数原码表示法设有一数为x,则原码表示可记作[x]原(下标表示)。

例如,X1= +1010110 ;X2= -1001010原码表示数的范围与二进制位数有关。

设二进制小数X=±0.X1X2…Xm,则小数原码的定义如下:例如:X=+0.1011时,根据以上公式可得[X]原=0.1011;X=-0.1011时,根据以上公式可得[X]原= 1-(-0.1011)=1.1011=1.1011当用8位二进制来表示小数原码时,其表示范围为:最大值为0.1111111,其真值约为(0.99)10 ;最小值为1.1111111,其真值约为(-0.99)10。

根据定义,小数“0”的原码可以表示成0.0…0或1.0…0。

2. 整数原码表示法整数原码的定义如下:例如:X=+1101时,根据以上公式可得[X]原=01101;X=-1101时,根据以上公式可得[X]原=24-(-1101)=10000+1101=11101当用8位二进制来表示整数原码时,其表示范围为:最大值为01111111,其真值为(127)10 ;最小值为11111111,其真值为(-127)10 。

原码补码反码

原码补码反码

原码表示法:带符号数在机器中的表示方法就是原码表示法。

正数用0表示,负数用1表示。

例:+1001010的原码为01001010,-1001010的原码为11001010反码表示法:正数的反码和原码一样;负数的反码与原码不同,而是原码的符号位不变,数值部分逐步求反。

例1:反码表示+101。

先将其用八位二进制表示为00000101(第一位为符号位,0表示正数)再反码表示为00000101(正数原码补码相同)例2:反码表示-101.先将其用八位二进制表示为10000101(第一位为符号位,1表示负数)再反码表示为1111010(符号位不变,其余位求反即1变0,0变1)结论:用八位二进制表示一个数十反码最高位为符号位,当符号位为0(正数)时,后面7位与原码相同;符号位为1(负数)时,后面7位与原码相反。

补码表示法:正数的补码与原码相同,负数的补码等于它的反码末位加1.例1:原码:00000101,,其补码为00000101(正数补码原码相同)例2:原码:10000101,其补码为其反码加1,即为11111010+1=11111011原码与补码的相互转换:(仅负数,正数原码补码相同)1.原码转补码:符号位不变,数值部分求反加12.补码转原码:补码的补码即原码,即补码求反加1为原码。

课本后习题最后两题(P47)7.(1)+7原码为00000111,反码为00000111,补码为00000111-7原码为10000111,反码为11111000,补码为11111001(2)自己写(^.^)(^.^)(^.^)8.(1)补码11111111转换成原码为10000000+1=10000001,其真值为-1(2)嘿嘿嘿嘿嘿(3)^_~ ^_~ ^_~ ^_~ ^_~。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0100011
(00100011)
8位
(0000000000100011)
16位
三、有符号数的表示
• 原码 • 反码 • 补码
1、原码
• 真值用二进制表示后,数的数值部分不 变,在符号位上用“0”和“1”分别表示 数的符号“+”和“-”。
• X的原码一般表示为 [X]原
• 如:
x
[x]原
+1001001
例: 设 x=+0000111 , y=+0000100, 计算式子:x―y
(先算出[x]补=00000111, [-y]补=11111100 , x―y=x+(-y) )
补码运算:
手工验算:
00000111 [x]补 + 11111100 [-y]补
0000111 x
- 0000100
y
1 00000011 [x-y]补
第三讲 计算机中的数制和码制
Ⅱ 码制
原码、反码与补码
一、机器数与真值(1)
• 真值:
– 实际的数值(包括正负号)叫做真值。 – 如:
+35,-1001110B,-100101B
一、机器数与真值(2)
• 机器数:
– 机器数:数在计算机中的表示; – 在计算机中,数只能用二进制表示,符号也
用二进制数位表示; – 是存放在寄存器或储存单元中的。 – 例如:
补码 • 引入的思路(5)
• 观察钟表拨针的两种方法: 8- 2=6 8 + 10 = 6
我们可以看出,减去一个数 a 相当于加上(模 -a)一样,而在计算机中也有相同情况。 • 在8位字长的计算机中,减去一个数a相当于加 上(28-a)一样。 • 我们称(28-a)为a的补数,其二进制表示形式 称为补码。
• 如果已知x的补码[x]补,则求[-x]补的方法 是: 对[x]补连同符号位一起求反加1 例:
已知 [+35]的补码是00100011, 则 [-35]补=11011101
补码 •几点补充说明(3)
• 用补码运算时符号位也参与运算,有符 号数与无符号数的运算是兼容的。
例:
看成无符号数
二进制数相加
• 拨针方法小结: 8- 2=6
8 + 10 = 6 • 思考:为什么会出现这种现象?计算机中是否
也有这种现象? (表盘是圆的,可循环计时。)
补码 • 引入的思路(3)
• 计算机储存一个数也有与钟表相同的特 点:
循环计数
• 因此对于计算机,要计算像 8-2
这样的减法式子,也可以化为加法形式来 进行。
补码 •补码的求法(1)
• 正数:与原码相同;
• 负数:“求反加一”
例:
x=+1001100B,则[x]补=01001100B=[x]原
x=-1001100B,则[x]补=10110100B
x=-1001100时, [x]补=28-1001100B
11111111 01001100
=256 -1001100B =255 -1001100B +1
10110011 1
10110100
求反 =11111111B -1001100B+1
加1
= 10110100B
补码 •补码的求法(2)
• 对于负数的补码求法,还有另一个更快速的办 法:
符号位为1,真值中最后一个1以前的各位 按位求反,而最后一个1及其后的0保持不变。
11111111 01001100
• 刚才出现的问题叫做“溢出”; • 溢出的原因:运算结果超出了可表示的有
符号数的范围。 • 溢出只会出现在两个同号数相加或两个异
号数相减的情况下。
思考:如何判别溢出与正常进位?
补码 • 溢出的判别(1)
• 方法一:转换为真值,判断是否超出数值 表示范围。
10000111,11001001,01100011
二、无符号数与有符号数
• 无符号数:
– 全部二进制均代表数值,没有符号位。
• 有符号数:
– 用最高位作为符号位,“0”代表“+”,“1”代 表“-”;其余数位用作数值位,代表数值。
– 如: +35 化为有符号机器数
转换为
化成有
二进制
符号数
+35
+100011B
0码 •几点补充说明(1)
• 微机内部,带符号数均用补码表示。 • 采用补码进行运算后,结果也是补码,
欲得真值,需作转换。
转换方法
0开头:将0换成“+”号,其余数位不变。 方法1: 减 1求反
1开头:1换成“-”号,其余 方法2: 求反加1
补码 •几点补充说明(2)
看成补码
134
+
26
160
10000110 + 00011010
10100000
-122
+
26
-96
出现问题
• 错误的结果:
11001011 10010001
01011100
-0110101 + -1101111
+1011100
-53 + -111
-+19624
思考:为什么出现了错误?
补码 • 溢出
10110011 1
10110100
符号位为1
按位求反
最后一个1及 其后的0不变
补码 •补码的求法(3)
• 课堂练习
1、求出下列各数的补码(8位)
(1) – 67
10111101
(2) +1011001B
01011001
(3) – 45
11010011
补码 •补码的作用与效果
• 用补码表示计算机中的数后,加减运算均可统 一为加法。
思考: 在计算机中, 8-2是否也可以化为8+10? 如果不行,那么应化为什么样的式子?
补码 • 引入的思路(4)
• 不同之处:
– 表计时的最大数是12 – 计算机计数的最大数不是12
(思考:那么是多少呢?)
– 我们把这个数称为 模 – 计算机的模与字长有关。8位机的模是28=256
n位
模=12
…… 模=2n
补码 • 引入补码的目的
• 将加、减运算简化为单纯的相加运算, 以便于在计算机中实现各种运算。
补码 • 引入的思路(1)
• 由钟表拨表针的方法得到启示; • 例如:把表上的8点钟改为6点钟
方法一:
反时针 拨2格
方法二:
顺时针 拨10格
补码 • 引入的思路(2)
方法一:
反时针 拨2格
方法二:
顺时针 拨10格
01001001
-1100100
11100100
2、反码
• 正数的反码:与原码相同;
• 负数的反码:符号位为“1”,数值位按 位取反。
• X的反码一般表示为 [X]反 • 如:
x
+1001001 -1100100
[x]反
01001001 10011011
3、补码
• 引入补码的目的 • 引入的思路 • 补码的求法 • 补码的作用与效果 • 几点说明 • 溢出
相关文档
最新文档