自动生成Makefile详解
Makefile.am文件的实例讲解

Makefile.am⽂件的实例讲解Makefile.am是⼀种⽐Makefile更⾼层次的编译规则,可以和configure.in⽂件⼀起通过调⽤automake命令,⽣成Makefile.in⽂件,再调⽤./configure的时候,就将Makefile.in⽂件⾃动⽣成Makefile⽂件了。
所以Makefile.am⽂件是⽐Makefile⽂件更⾼的抽象。
下⾯我根据⾃⼰的⼯作中的⼀些应⽤,来讨论Makefile.am的编写。
我觉得主要是要注意的问题是将编译什么⽂件?这个⽂件会不会安装?这个⽂件被安装到什么⽬录下?可以将⽂件编译成可执⾏⽂件来安装,也可以编译成静态库⽂件安装,常见的⽂件编译类型有下⾯⼏种:1. PROGRAMS。
表⽰可执⾏⽂件2. LIBRARIES。
表⽰库⽂件3. LTLIBRARIES。
这也是表⽰库⽂件,前⾯的LT表⽰libtool。
4. HEADERS。
头⽂件。
5. SCRIPTS。
脚本⽂件,这个可以被⽤于执⾏。
如:example_SCRIPTS,如果⽤这样的话,需要我们⾃⼰定义安装⽬录下的example⽬录,很容易的,往下看。
6. DATA。
数据⽂件,不能执⾏。
⼀,可执⾏⽂件先看⼀个实例:bin_PROGRAMS = clientclient_SOURCES = key.c connect.c client.c main.c session.c hash.cclient_CPPFLAGS = -DCONFIG_DIR=\"$(sysconfdir)\" -DLIBRARY_DIR=\"$(pkglibdir)\"client_LDFLAGS = -export-dynamic -lmemcachednoinst_HEADERS = client.hINCLUDES = -I/usr/local/libmemcached/include/client_LDADD = $(top_builddir)/sx/ \$(top_builddir)/util/ 上⾯就是⼀个全部的Makefile.am⽂件,这个⽂件⽤于⽣成client可执⾏应⽤程序,引⽤了两个静态库和MC等动态库的连接。
cmake configure生成makefile用法

CMake是一个开源的、跨平台的自动化构建工具,它可以生成标准的makefile文件,使得用户可以通过make命令来编译源代码。
下面是一个简单的示例,演示如何使用CMake生成makefile文件。
1.创建一个CMakeLists.txt文件
在源代码的根目录下创建一个CMakeLists.txt文件,这个文件用于描述如何构建你的项目。
在CMakeLists.txt文件中,你需要指定要构建的目标、依赖项和构建规则。
下面是一个简单的CMakeLists.txt文件示例:
在这个示例中,我们指定了要构建一个名为my_program的可执行目标,并指定了该目标的源代码文件为main.cpp。
1.生成makefile文件
在源代码的根目录下打开终端,并进入CMakeLists.txt所在的目录。
然后运行以下命令:
这个命令会在build目录下生成makefile文件,并使用make命令编译源代码。
如果编译成功,你将在build目录下看到可执行文件。
1.自定义构建规则
在CMakeLists.txt文件中,你可以使用各种CMake命令来定义构建规则。
例如,你可以使用add_library 命令来添加静态库或动态库目标,使用add_custom_command命令来添加自定义构建规则等等。
下面是一个更复杂的CMakeLists.txt文件示例:
在这个示例中,我们添加了一个名为my_library的静态库目标,并添加了一个名为my_program的可执行目标。
我们还添加了一个自定义构建规则,该规则指定了my_program目标依赖于my_library 目标。
Makefile

Makefile规则:target … : prerequisites…command……target就是一个目标文件,可以是Object File,也可以是可执行文件。
还可以是一个标签(Lable)。
prerequisites 就是要生成target所需要的文件或目标。
command 就是make需要执行的命令。
文件的依赖关系:target这一个或多个的目标文件依赖于prerequisites中的文件,其生成规则定义在command中。
如果prerequisites中的文件有一个以上的文件比target中的文件要新的话,则需要执行command定义的命令。
(Makefile规则)在Makefile中的反斜杠(\)表示换行的意思。
make命令解析Makefile文件。
如果要删除可执行文件和中间目标文件,只需要执行“make clean”。
edit : main.o kbd.o display.occ –o edit main.o kdb.o display.omain.o : main.c defs.hcc –c main.ckdb.o : kdb.c defs.hcc –c kdb.cdisplay.o : display.c defs.h command.hcc –c display.cclean:rm edit main.o kdb.o kdb.o在上个Makefile中,target(目标文件)包含:可执行文件edit和*.o(所有的中间目标文件)。
prerequisites(依赖文件)就是冒号后面的所有文件。
依赖关系:其实就是说明了目标文件是由哪些文件生成的,换言之,就是目标文件是哪些文件更新的。
make命令作用:比较target与prerequisites的日期,如果target日期比prerequisites新,不执行命令;否则(target日期不比prerequisites新或是target不存在),执行command命令,并更新或生成target。
makefile基本使用方法

makefile基本使用方法makefile是一种用来管理和自动化构建程序的工具。
它可以根据源代码文件的依赖关系和编译规则来自动构建目标文件和可执行文件。
makefile的基本使用方法如下:1. 创建makefile文件:在项目的根目录下创建一个名为makefile 的文件。
2. 定义变量:在makefile中,可以使用变量来存储一些常用的参数和路径,以便于后续的使用。
例如,可以定义一个名为CC的变量来指定编译器的名称,如:CC=gcc。
3. 编写规则:在makefile中,可以使用规则来指定如何编译源代码文件和生成目标文件。
一个规则由两部分组成:目标和依赖。
目标是要生成的文件,依赖是生成目标文件所需要的源代码文件。
例如,可以编写以下规则:```target: dependency1 dependency2command1command2```其中,target是目标文件,dependency1和dependency2是依赖的源代码文件,command1和command2是生成目标文件所需要执行的命令。
4. 编写默认规则:在makefile中,可以使用一个默认规则来指定如何生成最终的可执行文件。
默认规则的目标通常是可执行文件,依赖是所有的源代码文件。
例如,可以编写以下默认规则:```all: target1 target2```其中,target1和target2是生成的目标文件。
5. 编写clean规则:在makefile中,可以使用clean规则来清理生成的目标文件和可执行文件。
例如,可以编写以下clean规则: ```clean:rm -f target1 target2```其中,target1和target2是要清理的目标文件。
6. 运行make命令:在命令行中,使用make命令来执行makefile 文件。
make命令会自动根据规则和依赖关系来编译源代码文件和生成目标文件。
例如,可以运行以下命令:``````make命令会根据makefile文件中的规则和依赖关系来编译源代码文件并生成目标文件和可执行文件。
makefile 中 .dep 用法

makefile 中 .dep 用法Makefile是一种常用的自动化构建工具,用于管理软件项目的编译和链接过程。
在Makefile中,.dep是一个特殊的文件,用于记录编译过程中生成的目标文件、依赖关系等信息。
下面介绍Makefile中.dep的用法。
一、.dep文件的作用.dep文件是Makefile自动生成的,用于记录编译过程中的依赖关系和目标文件信息。
在Makefile中,目标文件(target)依赖于源文件(source),当源文件发生变化时,目标文件需要重新编译。
.dep文件记录了这些依赖关系,方便后续的构建过程。
二、.dep文件的生成Makefile会根据源文件和目标文件的依赖关系自动生成.dep文件。
当源文件发生变化时,Makefile会重新编译目标文件,并生成新的.dep文件。
在Makefile中,可以使用$(wildcard)函数和$(if)函数来检查源文件的变动情况,并生成相应的.dep文件。
三、.dep文件的用法在Makefile中,可以使用$(.FORCE)规则来强制执行某些目标文件的构建,并自动生成.dep文件。
$(.FORCE)规则会在目标文件未被构建或依赖的.dep文件不存在时触发执行。
通过使用$(.FORCE)规则,可以确保目标文件的正确构建,并自动生成所需的.dep文件。
四、注意事项在使用.dep文件时,需要注意以下几点:1..dep文件只记录了源文件和目标文件的依赖关系,不包含具体的编译指令。
Makefile会根据源文件和目标文件的依赖关系自动生成编译指令。
2.在使用.dep文件时,需要确保源文件的变动会被正确检测到,否则.dep文件可能不准确。
可以使用$(wildcard)函数和$(if)函数来检测源文件的变动情况。
3.在Makefile中使用$(.FORCE)规则时,需要确保目标文件的构建顺序正确,否则可能会导致构建失败。
综上所述,.dep文件是Makefile中一个重要的工具,用于记录编译过程中的依赖关系和目标文件信息。
(完整版)浅谈手动书写Makefile与自动生成Makefile

最近一直在搞Makefile文件的编辑,一直想通过自己的心得体会与广大网友分享。
Linux学习者只有参与的大多人当中去,才能体会到乐趣。
同时慢慢培养自己的学习linux的兴趣爱好。
与广大网上爱好者互动。
Linux的GNU计划:Linux下构建自己的开源软件使用的是linux下自己带的强大的工具。
Autoconf libtoolize 和automake .这是开源软件必须的基本工具。
如果使用了autoconf和automake,除了编译应用程序,用户并不需要有这些工具。
使用这些工具的目的是创建能在用户环境使用的、可移植的shell脚本和Makefile文件。
Autoconf实际上是一个工具集,其中包含aclocal、autoheader和autoconf等可执行文件。
这些工具生成一个可移植的shell脚本—configure,configure和软件包一起发布给用户。
它探查编译系统,生成Makefile文件和一个特殊的头文件config.h。
由configure生成的文件能适应用户系统的特定环境。
configure脚本从一个称为Makefile.in的模板文件生成每个Makefile文件。
而Makefile.in 有Makefile.am 生成。
Configure.in 有开发者自己手动修改。
Makefile.am 是由开发者自己手写。
Libtool软件包是第三个重要的GNU工具,它的作用是确定共享库在特定平台上的特性。
因为共享库在不同平台上可能会有所不同。
上述是自动生成Makefile的概括。
以后再细讲。
手动书写Makefile:手动书写顾名思义就是自己跳过configure.Scan configure.in configure Makefile.am Makefile.in 的生成过程。
直接书写Makefile 这种方式只能用于相对简单的源代码。
如有几个,几十个或者上百个源文件时,自己编写Makefile往往是可行的,但是如果我们所编写的源文件有几千,几万,几十万甚至更多时,显然手动书写Makefile不是个明智之举。
qmake编译路径

qmake编译路径
qmake是一个自动生成makefile文件的工具,它根据.pro工程文件来生成对应的makefile。
qmake的编译路径可以通过以下方式指定:
1. 在.pro文件中使用DESTDIR变量指定编译路径,例如:
```
DESTDIR = /path/to/build
```
这样生成的makefile会将编译的目标文件放置在指定的路径下。
2. 在.pro文件中使用TARGET变量指定生成的可执行文件路径和名称,例如:
```
TARGET = /path/to/build/myapp
```
这样生成的makefile会将生成的可执行文件放置在指定的路径下,并且名称为myapp。
3. 在命令行中使用qmake的"-o"选项指定编译路径,例如: ```
qmake -o /path/to/build/Makefile myproject.pro
```
这样会生成一个名为Makefile的makefile文件,并将编译的目标文件放置在指定的路径下。
需要注意的是,以上方法可以同时使用,如果多个方法同时使用,会按照优先级来确定最终的编译路径。
makefile 生成依赖关系

一、概述在软件开发过程中,源文件之间的依赖关系是非常重要的。
当一个文件发生变化时,其依赖文件可能也会受到影响,因此需要一个工具来管理这些依赖关系,确保在编译过程中能够正确地处理依赖关系。
makefile就是一个非常强大的工具,能够自动生成依赖关系,本文将详细介绍makefile生成依赖关系的方法。
二、什么是makefilemakefile是一个包含规则和命令的文本文件,用来描述软件项目的编译过程。
它告诉make工具,如何去利用源文件生成目标文件。
makefile通常包含了以下内容:1. 目标(target):表示要生成的文件,可以是可执行文件、中间文件或其他类型的文件。
2. 依赖(dependencies):表示目标文件所依赖的源文件或其他文件。
3. 命令mands):表示生成目标文件的具体操作,通常是编译、信息等。
三、makefile生成依赖关系的原理在编译过程中,一个源文件可能会依赖于其他源文件或头文件,当这些依赖关系发生变化时,我们需要重新编译相关的文件。
makefile 生成依赖关系的原理就是通过分析源文件中的#include语句,自动识别出文件之间的依赖关系,并生成相应的规则。
1. 使用gcc的-M选项gcc是一个非常流行的编译器,在编译过程中,它提供了-M选项来生成依赖关系。
例如:```make.o: .cgcc -c $< -o $ -MMD -MF $*.d```这里,-MMD选项表示生成依赖关系文件,-MF选项指定了依赖关系文件的名称。
通过这样的makefile规则,gcc能够自动生成每个源文件的依赖关系。
2. 使用自定义脚本除了使用gcc的-M选项外,我们也可以编写一个自定义的脚本来生成依赖关系。
这样能够更加灵活地控制依赖关系的生成过程。
五、makefile生成依赖关系的优势1. 自动化:makefile能够自动分析源文件之间的依赖关系,不需要手动维护依赖关系。
2. 灵活性:makefile生成依赖关系的方法非常灵活,可以根据实际需要选择不同的生成方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
autoconf 和automake生成Makefile文件本文介绍了在linux 系统中,通过Gnu autoconf 和automake 生成Makefile 的方法。
主要探讨了生成Makefile 的来龙去脉及其机理,接着详细介绍了配置Configure.in 的方法及其规则。
引子无论是在Linux还是在Unix环境中,make都是一个非常重要的编译命令。
不管是自己进行项目开发还是安装应用软件,我们都经常要用到make或make install。
利用make工具,我们可以将大型的开发项目分解成为多个更易于管理的模块,对于一个包括几百个源文件的应用程序,使用make和makefile工具就可以轻而易举的理顺各个源文件之间纷繁复杂的相互关系。
但是如果通过查阅make的帮助文档来手工编写Makefile,对任何程序员都是一场挑战。
幸而有GNU 提供的Autoconf及Automake这两套工具使得编写makefile不再是一个难题。
本文将介绍如何利用GNU Autoconf 及Automake 这两套工具来协助我们自动产生Makefile文件,并且让开发出来的软件可以像大多数源码包那样,只需"./configure", "make","make install" 就可以把程序安装到系统中。
模拟需求假设源文件按如下目录存放,如图1所示,运用autoconf和automake生成makefile文件。
图1文件目录结构假设src是我们源文件目录,include目录存放其他库的头文件,lib目录存放用到的库文件,然后开始按模块存放,每个模块都有一个对应的目录,模块下再分子模块,如apple、orange。
每个子目录下又分core,include,shell三个目录,其中core和shell目录存放.c文件,include的存放.h文件,其他类似。
样例程序功能:基于多线程的数据读写保护(联系作者获取整个autoconf和automake生成的Makefile工程和源码,E-mail:normalnotebook@)。
工具简介所必须的软件:autoconf/automake/m4/perl/libtool(其中libtool非必须)。
autoconf是一个用于生成可以自动地配置软件源码包,用以适应多种UNIX类系统的shell脚本工具,其中autoconf需要用到m4,便于生成脚本。
automake是一个从Makefile.am 文件自动生成Makefile.in的工具。
为了生成Makefile.in,automake还需用到perl,由于automake创建的发布完全遵循GNU标准,所以在创建中不需要perl。
libtool是一款方便生成各种程序库的工具。
目前automake支持三种目录层次:flat、shallow和deep。
1) flat指的是所有文件都位于同一个目录中。
就是所有源文件、头文件以及其他库文件都位于当前目录中,且没有子目录。
Termutils就是这一类。
2) shallow指的是主要的源代码都储存在顶层目录,其他各个部分则储存在子目录中。
就是主要源文件在当前目录中,而其它一些实现各部分功能的源文件位于各自不同的目录。
automake本身就是这一类。
3) deep指的是所有源代码都被储存在子目录中;顶层目录主要包含配置信息。
就是所有源文件及自己写的头文件位于当前目录的一个子目录中,而当前目录里没有任何源文件。
GNU cpio和GNU tar就是这一类。
flat类型是最简单的,deep类型是最复杂的。
不难看出,我们的模拟需求正是基于第三类deep 型,也就是说我们要做挑战性的事情:)。
注:我们的测试程序是基于多线程的简单程序。
生成Makefile 的来龙去脉首先进入project 目录,在该目录下运行一系列命令,创建和修改几个文件,就可以生成符合该平台的Makefile文件,操作过程如下:1) 运行autoscan命令2) 将configure.scan 文件重命名为configure.in,并修改configure.in文件3) 在project目录下新建Makefile.am文件,并在core和shell目录下也新建makefile.am文件4) 在project目录下新建NEWS、README、ChangeLog 、AUTHORS文件5) 将/usr/share/automake-1.X/目录下的depcomp和complie文件拷贝到本目录下6) 运行aclocal命令7) 运行autoconf命令8) 运行automake -a命令9) 运行./confiugre脚本可以通过图2看出产生Makefile的流程,如图所示:图2生成Makefile流程图Configure.in的八股文当我们利用autoscan工具生成confiugre.scan文件时,我们需要将confiugre.scan重命名为confiugre.in文件。
confiugre.in调用一系列autoconf宏来测试程序需要的或用到的特性是否存在,以及这些特性的功能。
下面我们就来目睹一下confiugre.scan的庐山真面目:# Process this file with autoconf to produce a configure script.AC_PREREQ(2.59)AC_INIT(FULL-PACKAGE-NAME, VERSION, BUG-REPORT-ADDRESS)AC_CONFIG_SRCDIR([config.h.in])# Checks for programs.AC_PROG_CC# Checks for libraries.# FIXME: Replace `main' with a function in `-lpthread':AC_CHECK_LIB([pthread], [main])# Checks for header files.# Checks for typedefs, structures, and compiler characteristics.# Checks for library functions.AC_OUTPUT每个configure.scan文件都是以AC_INIT开头,以AC_OUTPUT结束。
我们不难从文件中看出confiugre.in文件的一般布局:AC_INIT测试程序测试函数库测试头文件测试类型定义测试结构测试编译器特性测试库函数测试系统调用AC_OUTPUT上面的调用次序只是建议性质的,但我们还是强烈建议不要随意改变对宏调用的次序。
现在就开始修改该文件:$mv configure.scan configure.in$vim configure.in修改后的结果如下:# -*- Autoconf -*-# Process this file with autoconf to produce a configure script.AC_PREREQ(2.59)AC_INIT(test, 1.0, normalnotebook@)AC_CONFIG_SRCDIR([src/ModuleA/apple/core/test.c])AM_INIT_AUTOMAKE(test,1.0)# Checks for programs.AC_PROG_CC# Checks for libraries.# FIXME: Replace `main' with a function in `-lpthread':AC_CHECK_LIB([pthread], [pthread_rwlock_init])AC_PROG_RANLIB# Checks for header files.# Checks for typedefs, structures, and compiler characteristics.# Checks for library functions.AC_OUTPUT([Makefilesrc/lib/Makefilesrc/ModuleA/apple/core/Makefilesrc/ModuleA/apple/shell/Makefile])其中要将AC_CONFIG_HEADER([config.h])修改为:AM_CONFIG_HEADER(config.h), 并加入AM_INIT_AUTOMAKE(test,1.0)。
由于我们的测试程序是基于多线程的程序,所以要加入AC_PROG_RANLIB,不然运行automake命令时会出错。
在AC_OUTPUT输入要创建的Makefile文件名。
由于我们在程序中使用了读写锁,所以需要对库文件进行检查,即AC_CHECK_LIB([pthread], [main]),该宏的含义如下:其中,LIBS是link的一个选项,详细请参看后续的Makefile文件。
由于我们在程序中使用了读写锁,所以我们测试pthread库中是否存在pthread_rwlock_init函数。
由于我们是基于deep类型来创建makefile文件,所以我们需要在四处创建Makefile文件。
即:project目录下,lib目录下,core和shell目录下。
Autoconf提供了很多内置宏来做相关的检测,限于篇幅关系,我们在这里对其他宏不做详细的解释,具体请参看参考文献1和参考文献2,也可参看autoconf信息页。
实战Makefile.amMakefile.am是一种比Makefile更高层次的规则。
只需指定要生成什么目标,它由什么源文件生成,要安装到什么目录等构成。
表一列出了可执行文件、静态库、头文件和数据文件,四种书写Makefile.am文件个一般格式。
表1Makefile.am一般格式对于可执行文件和静态库类型,如果只想编译,不想安装到系统中,可以用noinst_PROGRAMS代替bin_PROGRAMS,noinst_LIBRARIES代替lib_LIBRARIES。
Makefile.am还提供了一些全局变量供所有的目标体使用:表2 Makefile.am中可用的全局变量在Makefile.am中尽量使用相对路径,系统预定义了两个基本路径:表3Makefile.am中可用的路径变量在上文中我们提到过安装路径,automake设置了默认的安装路径:1) 标准安装路径默认安装路径为:$(prefix) = /usr/local,可以通过./configure --prefix=<new_path>的方法来覆盖。