填料塔设计详细计算过程
填料塔的设计

φ
F
泛点因子与液体喷淋密度有关,但为了工程计算方便, 泛点因子与液体喷淋密度有关,但为了工程计算方便,常采用与液 体喷淋密度无关的泛点填料因子的平均值,见数据表11。 体喷淋密度无关的泛点填料因子的平均值,见数据表 。
气相动能因子( 因子) 2) 气相动能因子(F因子)法
气相动能因子简称F因子,其定义为: 气相动能因子简称 因子,其定义为: 因子
(1)温度的确定 )温度的确定——溶解度 溶解度 (2)压力的确定 )压力的确定——溶解度和操作费 溶解度和操作费
二、填料类型的选用
(一)填料类型——散装填料和规整填料 填料类型 散装填料和规整填料
1、散装填料——拉西环、鲍尔环、阶梯环、弧鞍填料、矩 、散装填料 拉西环、 拉西环 鲍尔环、阶梯环、弧鞍填料、 鞍填料、环矩鞍填料等。 鞍填料、环矩鞍填料等。 2、规整填料 、规整填料——网波纹填料和板波纹填料 网波纹填料和板波纹填料
注意: 注意:
实际操作中采用的液体喷淋密度大于最小喷淋密度。若液体喷淋密度小于 实际操作中采用的液体喷淋密度大于最小喷淋密度。 最小喷淋密度,则需进行调整,重新计算塔径。 最小喷淋密度,则需进行调整,重新计算塔径。
(二)填料层高度计算及分段
1)传质单元数法 ) 1、填料层高度计算 、
Z = HOG ⋅ NOG
UV µV αt DV kG = 0.237 αt µV ρV DV RT
UL µL kL = 0.0095 αW kL ρL DL
2/3 −1/ 2
0.7
1/3
µL g ρL
Cs = u
ρ L − ρV
ρV
气相负荷因子法多用于规整填料空塔气速的确定。计算时, 气相负荷因子法多用于规整填料空塔气速的确定。计算时,先求出最大 气相负荷因子; 气相负荷因子;《常用规整填料的最大气相负荷因子可通过有关填料手册查 也可从图22曲线(适于波纹板填料)查得,如为其他填料,可以250Y 22曲线 知,也可从图22曲线(适于波纹板填料)查得,如为其他填料,可以250Y 型波纹板填料为基准,乘以修正系数C 见表12 后按下式计算: 12》 型波纹板填料为基准,乘以修正系数C,见表12》后按下式计算:
填料塔的计算.doc

一、设计方案的确定(一) 操作条件的确定1.1吸收剂的选择1.2装置流程的确定1.3填料的类型与选择1.4操作温度与压力的确定45℃常压(二)填料吸收塔的工艺尺寸的计算2.1基础物性数据①液相物性数据对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据7.熔根据上式计算如下: 混合密度是:1013.865KG/M3 混合粘度0.001288 Pa ·s 暂取CO2在水中的扩散系数表面张力б=72.6dyn/cm=940896kg/h 3②气相物性数据混合气体的平均摩尔质量为 M vm =y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347混合气体的平均密度ρvm ==⨯⨯=301314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m3混合气体粘度近似取空气粘度,手册28℃空气粘度为μV =1.78×10-5Pa ·s=0.064kg/(m •h) 查手册得CO2在空气中的扩散系数为 D V =1.8×10-5m 2/s=0.065m 2/h 由文献时CO 2在MEA 中的亨利常数:在水中亨利系数E=2.6⨯105kPa相平衡常数为m=1.25596.101106.25=⨯=P E 溶解度系数为H=)/(1013.218106.22.997345kPa m kmol E M s•⨯=⨯⨯=-ρ2.2物料衡算进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403 出塔气相摩尔比为Y2= 0.153403×0.05=0.00767 进塔惰性气相流量为V=992.1mol/s=275.58kmol/h该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算,即2121min /X m Y Y Y )V L(--=对于纯溶剂吸收过程,进塔液组成为X2=02121min /X m Y Y Y )V L(--==(0.153403-0.00767)/(0.1534/1.78)=1.78取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67 L=2.67×275.58=735.7986kmol/h ∵V(Y1-Y2)=L(X1-X2) ∴X1=0.054581①塔径计算采用Eckert 通用关联图计算泛点气速 气相质量流量为 W V =13.74kg/s=49464kg/h 液相质量流量计算即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/h Eckert 通用关联图横坐标为0.011799查埃克特通用关联图得226.02.0=••L LV F F g u μρρϕφ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φ s m g u LV F LF /552.21338.112602.99881.9226.0226.02.02.0=⨯⨯⨯⨯⨯==μϕρφρUf=3.964272m/s取u=0.8u F =0.8×3.352=2.6816m/s 由=1.839191m圆整塔径,取D=1.9m 泛点率校核 u=s m /12.26.0785.03600/15002=⨯ = 4.724397m/s100522.212.2⨯=F u u ﹪=84.18%(在允许范围内) =3.352964272/ 4.724397=70.9% 填料规格校核:82425600>==d D =1900/25=76》8 液体喷淋密度校核,取最小润湿速率为 (L W )min =0.08m 3/m ·h 查塑料阶梯环特性数据表得:型号为DN25的阶梯环的比表面积 a t =228 m 2/m 3 U min =(L W )min a t =0.08×228=18.24m 3/m 2·h U=min 251.76.0785.02.998/312121U 。
填料塔的计算

一、 设计方案的确定 (一) 操作条件的确定1.1吸收剂的选择1.2装置流程的确定1.3填料的类型与选择1.4操作温度与压力的确定45℃ 常压(二)填料吸收塔的工艺尺寸的计算2.1基础物性数据①液相物性数据对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据7.熔 根据上式计算如下:混合密度是:1013.865KG/M3混合粘度0.001288 Pa ·s暂取CO2在水中的扩散系数表面张力б=72.6dyn/cm=940896kg/h 3②气相物性数据混合气体的平均摩尔质量为M vm =y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347混合气体的平均密度ρvm = =⨯⨯=301314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m 3混合气体粘度近似取空气粘度,手册28℃空气粘度为μV =1.78×10-5Pa ·s=0.064kg/(m?h)查手册得CO2在空气中的扩散系数为D V =1.8×10-5m 2/s=0.065m 2/h由文献时CO 2在MEA 中的亨利常数:在水中亨利系数E=2.6⨯105kPa 相平衡常数为m=1.25596.101106.25=⨯=P E 溶解度系数为H=)/(1013.218106.22.997345kPa m kmol E M s ∙⨯=⨯⨯=-ρ 2.2物料衡算进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403出塔气相摩尔比为Y2= 0.153403×0.05=0.00767进塔惰性气相流量为V=992.1mol/s=275.58kmol/h 该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算,即 2121min /X m Y Y Y )V L (--=对于纯溶剂吸收过程,进塔液组成为X2=0 2121min /X m Y Y Y )V L (--==(0.153403-0.00767)/(0.1534/1.78)=1.78 取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67L=2.67×275.58=735.7986kmol/h∵V(Y1-Y2)=L(X1-X2)∴X1=0.054581①塔径计算采用Eckert 通用关联图计算泛点气速气相质量流量为 W V =13.74kg/s=49464kg/h液相质量流量计算即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/hEckert 通用关联图横坐标为0.011799 查埃克特通用关联图得226.02.0=∙∙L LV F F g u μρρϕφ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φUf=3.964272m/s取u=0.8u F =0.8×3.352=2.6816m/s由=1.839191m圆整塔径,取D=1.9m泛点率校核 u=s m /12.26.0785.03600/15002=⨯ = 4.724397m/s 100522.212.2⨯=F u u ﹪=84.18%(在允许范围内) = 4.724397=70.9%填料规格校核:82425600>==d D =1900/25=76》8 液体喷淋密度校核,取最小润湿速率为 (L W )min =0.08m 3/m ·h查塑料阶梯环特性数据表得:型号为DN25的阶梯环的比表面积 a t =228 m 2/m 3U min =(L W )min a t =0.08×228=18.24m 3/m 2·h U=min 251.76.0785.02.998/312121U 。
填料塔的计算范文

填料塔的计算范文料塔是一种常见的工程结构,用于储存和输送颗粒状物料。
其设计过程中需要进行一系列计算,以确保料塔具有足够的强度和稳定性,能够安全承载预计的荷载。
本文将介绍料塔的计算方法和步骤,并给出一个具体的例子,展示如何进行料塔的计算。
一、料塔的计算方法和步骤1.确定设计参数:包括预计储存物料的密度、颗粒大小和湿度;预计料塔高度和直径;料塔所处环境的温度、湿度和风速等。
2.计算所需容量:根据预计储存物料的总重量和密度,计算料塔的总容量。
3.确定料塔的结构形式:包括筒形、锥形、碗形等,根据具体情况选择合适的结构形式。
4.计算料塔的自重和荷载:根据料塔的几何形状和预计物料的重量,计算料塔的自重;同时考虑其他荷载,如风荷载、地震荷载等。
5.计算料塔的强度和稳定性:根据材料的弹性模量和抗压强度,计算料塔的强度;同时根据料塔的几何形状和与地面的接触方式,计算料塔的稳定性。
6.进行结构优化:根据计算结果,进行结构优化,满足强度和稳定性的要求;同时尽可能减小材料的使用量和成本。
二、料塔计算范例假设我们需要设计一个筒形料塔,用于储存密度为1.2t/m³的玉米,预计储存量为2000t,料塔的高度为20m,直径为8m。
现在我们按照上述步骤进行料塔的计算。
1.设计参数:玉米的密度为1.2t/m³,预计料塔高度为20m,直径为8m,环境温度为25℃,相对湿度为60%,风速为15m/s。
2.计算所需容量:预计储存量为2000t,根据玉米的密度计算料塔的总容量为2000t/1.2t/m³=1666.7m³。
3.结构形式:选择筒形料塔。
5.强度和稳定性:根据材料的弹性模量和抗压强度,计算料塔的强度;根据料塔的几何形状和与地面的接触方式,计算料塔的稳定性。
6.结构优化:根据计算结果,进行结构优化,满足强度和稳定性的要求,同时尽可能减小材料的使用量和成本。
三、结论料塔的计算是一个复杂而重要的工程问题,涉及材料力学、结构力学、流体力学等多个学科。
填料塔的计算

一、 设计方案的确定(一)操作条件的确定1.1吸收剂的选择1.2装置流程的确定1.3填料的类型与选择1.4操作温度与压力的确定45℃常压(二)填料吸收塔的工艺尺寸的计算2.1基础物性数据①液相物性数据对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据7.熔根据上式计算如下:混合密度是:1013.865KG/M3混合粘度0.001288Pa ·s暂取CO2在水中的扩散系数表面张力б=72.6dyn/cm=940896kg/h3②气相物性数据混合气体的平均摩尔质量为M vm =y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18=20.347 混合气体的平均密度ρvm ==⨯⨯=301314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m3 混合气体粘度近似取空气粘度,手册28℃空气粘度为 μV =1.78×10-5Pa ·s=0.064kg/(m?h)查手册得CO2在空气中的扩散系数为D V =1.8×10-5m 2/s=0.065m 2/h由文献时CO 2在MEA 中的亨利常数:在水中亨利系数E=2.6⨯105kPa相平衡常数为m=1.25596.101106.25=⨯=P E 溶解度系数为H=)/(1013.218106.22.997345kPa m kmol E M s ∙⨯=⨯⨯=-ρ 2.2物料衡算进塔气相摩尔比为Y1=0.133/(1-0.133)=0.153403出塔气相摩尔比为Y2=0.153403×0.05=0.00767进塔惰性气相流量为V=992.1mol/s=275.58kmol/h 该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算,即2121min /X m Y Y Y )V L (--=对于纯溶剂吸收过程,进塔液组成为X2=0 2121min /X m Y Y Y )V L (--==(0.153403-0.00767)/(0.1534/1.78)=1.78 取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67L=2.67×275.58=735.7986kmol/h∵V(Y1-Y2)=L(X1-X2)∴X1=0.054581①塔径计算采用Eckert 通用关联图计算泛点气速气相质量流量为W V =13.74kg/s=49464kg/h液相质量流量计算即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/hEckert 通用关联图横坐标为0.011799 查埃克特通用关联图得226.02.0=∙∙L LV F F g u μρρϕφ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φUf=3.964272m/s取u=0.8u F =0.8×3.352=2.6816m/s由=1.839191m圆整塔径,取D=1.9m泛点率校核u=s m /12.26.0785.03600/15002=⨯=4.724397m/s 100522.212.2⨯=F u u ﹪=84.18%(在允许范围内) =4.724397=70.9% 填料规格校核:82425600>==d D =1900/25=76》8 液体喷淋密度校核,取最小润湿速率为(L W )min =0.08m 3/m ·h查塑料阶梯环特性数据表得:型号为DN25的阶梯环的比表面积a t =228m 2/m 3U min =(L W )min a t =0.08×228=18.24m 3/m 2·h U=min 251.76.0785.02.998/312121U 。
填料塔的设计

西北大学化工学院化工原理课程设计说明书设计名称: 填料吸收塔设备的设计 年级专业: 2008级化学工程与工艺 姓 名:指导老师:姚瑞清2011年1月10日目录一.设计任务-----------------------------------2 二.填料选择-----------------------------------3 三.计算所需物性参数---------------------------3 四.设计计算过程-------------------------------4 五.塔附件选择---------------------------------10 六.工艺流程说明-------------------------------15 七.心得体会-----------------------------------16 八.参考文献-----------------------------------18 九.工艺流程图---------------------------------19一. 设计任务原料气入塔温度为25℃,用清水吸收原料气体中的SO2气体,混合气体的处理量为2000m3/h,其中含有SO2的摩尔分数为0.07,SO2的吸收率为90%,气体入口温度为25℃.水入口温度为20℃。
已知:20℃时,E=3.55 10³kPa, L/G=1.5(L/G)min;操作压力:常压;操作温度:液体20℃; 气体:25℃;填料类型:乱堆塑料鲍尔环;要求设计填料吸收塔,求所需塔高,塔径,塔内件,塔接管尺寸,绘制流程图,吸收塔工艺条件图,设计过程评述。
二.填料选择该系统属于易分离系统,可采用散装填料,系统中含SO2有一定腐蚀性,故考虑选用Ф50mm塑料鲍尔环,由于系统对压降无特殊要求,考虑到不同尺寸鲍尔环的性能采用乱堆Ф50mm塑料鲍尔环。
鲍尔环特性:鲍尔环是在拉西环的基础上发展起来的,是近期具有代表性的一种填料。
填料塔计算和设计

填料塔计算和设计填料塔计算和设计Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】填料塔设计2012-11-20一、填料塔结构填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。
填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。
在填料的上方安装填料压板,以限制填料随上升气流的运动。
液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。
气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。
填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。
二、填料的类型及性能评价填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。
填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。
散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料;填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。
1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优;2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。
三、填料塔设计基本步骤1.根据给定的设计条件,合理地选择填料;2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸;3.计算填料层的压降;4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。
四、填料塔设计1.填料的选择填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。
填料塔计算公式

填料塔计算公式填料塔是化工、环保等领域中常用的气液传质设备,要想设计和操作好填料塔,掌握相关的计算公式那可是相当重要!先来说说填料塔的塔径计算公式。
这就好比给塔选一件合适的“衣服”,太大了浪费材料,太小了又影响工作效率。
塔径的计算主要考虑气体的体积流量、空塔气速等因素。
计算公式大致是:D = √(4Vs / πu),这里的 D 表示塔径,Vs 是气体体积流量,u 是空塔气速。
咱就拿一个实际例子来说吧,之前我在一个化工厂实习的时候,就碰到了填料塔塔径计算的问题。
当时厂里要对一个旧的填料塔进行改造,以提高生产效率。
我们首先得确定气体的流量,这可不是个简单的事儿,得通过各种测量仪表,像流量计啥的,获取准确的数据。
然后再根据工艺要求和经验,确定合适的空塔气速。
这个空塔气速的选择可不能马虎,选高了,气体阻力增大,能耗增加;选低了,塔的处理能力又不够。
我们那时候是反复讨论、计算,才最终确定了一个比较理想的塔径。
再来说说填料层高度的计算公式。
这就像是给塔盖房子,得盖多高才能让气液充分接触,完成传质任务呢?常用的计算公式有传质单元数法和等板高度法。
传质单元数法呢,需要先计算出传质单元数,然后乘以传质单元高度,就得到了填料层高度。
等板高度法呢,是先确定理论板数,再乘以等板高度。
我记得有一次,在设计一个新的填料塔时,为了确定填料层高度,我们可是费了好大的劲儿。
先是在实验室里做小试,模拟实际的操作条件,测量各种数据。
然后根据实验结果进行计算和分析,不断调整参数,优化设计方案。
那几天,我们办公室的灯常常亮到很晚,大家都在为了这个项目努力。
还有填料的压降计算也不能忽视。
压降大了,会增加能耗;压降小了,又可能影响传质效果。
总之,填料塔的计算公式虽然看起来有点复杂,但只要我们认真研究,结合实际情况,多做实验和计算,就一定能设计出性能优良的填料塔,为生产和环保事业做出贡献。
希望我讲的这些能让您对填料塔的计算公式有更清楚的了解,在实际应用中少走弯路,提高工作效率和质量!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酸盐增加。吸入高浓度二氧化硫,可引起支气管炎、肺炎,严重时可发生肺水肿 及呼吸中枢麻痹。 二氧化硫进入呼吸道后,因其易溶于水,故大部分被阻滞在上呼吸道,在湿 润的粘膜上生成具有腐蚀性的亚硫酸、硫酸和硫酸盐,使刺激作用增强。上呼吸 道的平滑肌因有末梢神经感受器,遇刺激就会产生窄缩反应,使气管和支气管的 管腔缩小,气道阻力增加。上呼吸道对二氧化硫的这种阻留作用,在一定程度上 可减轻二氧化硫对肺部的刺激。 但进入血液的二氧化硫仍可通过血液循环抵达肺 部产生刺激作用。 二氧化硫进入血液可引起全身性毒作用,破坏酶的活性,影响糖及蛋白质 的代谢;对肝脏有一定损害。液态二氧化硫可使角膜蛋白质变性引起视力障碍。 二氧化硫与烟尘同时污染大气时,两者有协同作用。因烟尘中含有多种重金属及 其氧化物,能催化二氧化硫形成毒性更强的硫酸雾。因加剧其毒性作用。动物试 验证明,二氧化硫慢性中毒后,机体的免疫受到明显抑制。大量吸入可引起肺水 肿、喉水肿、声带痉挛而致窒息。 急性中毒:轻度中毒时,发生流泪、畏光、咳嗽,咽、喉灼痛等;严重中毒 可在数小时内发生肺水肿; 极高浓度吸入可引起反射性声门痉挛而致窒息。皮肤 或眼接触发生炎症或灼伤。 慢性影响:长期低浓度接触,可有头痛、头昏、乏力等全身症状以及慢性鼻 炎、咽喉炎、支气管炎、嗅觉及味觉减退等。少数工人有牙齿酸蚀症。 二氧化硫浓度为 10~15ppm 时, 呼吸道纤毛运动和粘膜的分泌功能均能受到 抑制。浓度达 20ppm 时,引起咳嗽并刺激眼睛。若每天吸入浓度为 100ppm 8 小 时,支气管和肺部出现明显的刺激症状,使肺组织受损。浓度达 400ppm 时可使 人产生呼吸困难。 二氧化硫与飘尘一起被吸入,飘尘气溶胶微粒可把二氧化硫带 到肺部使毒性增加 3~4 倍。若飘尘表面吸附金属微粒,在其催化作用下,使二 氧化硫氧化为硫酸雾, 其刺激作用比二氧化硫增强约 1 倍。长期生活在大气污染 的环境中,由于二氧化硫和飘尘的联合作用,可促使肺泡纤维增生。如果增生范 围波及广泛,形成纤维性病变,发展下去可使纤维断裂形成肺气肿。二氧化硫可 以加强致癌物苯并(α)芘的致癌作用。据动物试验,在二氧化硫和苯并(α)
液体表面张力 σ L = 73dyn / cm = 92.71× 10 4 kg / h 2
五、 设计要求
1、设计计算说明书一份 2、填料塔图(2 号图)一张
第二章 SO2 净化技术和设备 一、SO2 的来源、性质及其危害
二氧化硫的来源包括微生物活动,火山活动,森林火灾以及海水飞沫。主要 有自然来源和人为来源两大类: 自然来源主要是火山活动, 喷出的火山气体中含有大量的二氧化硫气体,地 质深处的天然硫元素在火山喷发过程中燃烧氧化为二氧化硫, 随火山灰一起喷射 到大气中。地球上 57%的二氧化硫来自自然界,沼泽、洼地、大陆架等处所排放 的硫化氢,进入大气,被空气中的氧氧化为二氧化硫。自然排放大约占大气中全 部二氧化硫的一半,通过自然循环过程,自然排放的硫基本上是平衡的。 人为来源则指在人类进行生产、生活活动中,使用含硫及其化合物的矿石进 行燃烧,以及硫矿石的冶炼和硫酸、磷肥纸浆的生产等产生的工业废气,从而使 其中一部分或全部的硫以二氧化硫的形式排放到大气中,形成二氧化硫污染。这 部分二氧化硫占地球上二氧化硫来源的 43%。随着化石燃料消费量的不断增加, 全世界认为排放的二氧化硫在不断在增加, 其中北半球排放的二氧化硫占人为排
5
过吸收去除其中的二氧化硫,湿法脱硫所用设备较简单,操作容易,脱硫效率较 高。但脱硫后烟气温度降低,于烟囱排烟扩散不利。由于使用不同的吸收剂可获 得不同的副产物而加以利用,因此湿法是全国研究最多的方法。 湿法脱硫效率较高,而且设备简单,操作运行方便,运行成本低,产生的副 产物如硫酸盐和压硫酸盐,可回收利用,作为工业原料。所以在本设计中选取湿 法脱硫。
1
四、气体及液体的物性数据 1、气体的物性:气体粘度 uG = 0.0652kg / ( m ⋅ h )
气体扩散系数 DG = 0.0393m2 / s 气体密度 ρG = 1.383kg / m3
2、液体的物性:液体粘度 µL=3.6 kg /(m·h); 液体扩散系数 DL=5.3×10-6m2/s; 密度ρL=998.2 kg /m3;
操作弹 浮阀, 泡罩等具有 性 液气比 L/V 的 范围 大的操作弹性
6
清洗的 方便性 对腐蚀 介质的 适应性 塔中持 液量 塔中换 热的可 能性 材料要 求 安装维 修 重量
清洗较方便 因结构复杂, 较难 用防腐蚀材料制 作, 但无溢流栅板 塔等可以 持液量大
清洗费时
易用防腐蚀材料制作
持液量小,尤其是高效丝网 填料有利于精密分离
4
芘的联合作用下, 动物肺癌的发病率高于单个因子的发病率,在短期内即可诱发 肺部扁平细胞癌。 二氧化硫对植物的危害: 大气中含二氧化硫过高,对叶子的危害首先是对叶肉的海绵状软组织部分, 其次是对栅栏细胞部分。侵蚀开始时,叶子出现水浸透现象,特别是介于叶边和 叶脉之间的部分损害尤为严重。干燥后,受影响的叶面部分呈白色或乳白色。 如果二氧化硫的浓度为(0.3-0.5)× 10 −6 ,并持续几天后,就会对敏感性 植物产生慢性损害。 二氧化硫直接进入气孔,叶肉中的植物细胞使其转化为亚硫 酸盐,再转化成硫酸盐。当过量的二氧化硫存在时,植物细胞就不能尽快地把亚 硫酸盐转化成硫酸盐,并开始破坏细胞结构。菠菜,莴苣和其他叶状蔬菜对二氧 化硫最为敏感。棉花和苜蓿也都很敏感。松针也受其影响,不论叶尖或是整片针 叶都会变成褐色,并且很脆弱。 二氧化硫对建筑物及其它的危害: 大气中的二氧化硫及其生成的酸雾、 酸滴等, 能使金属表面产生严重的腐蚀, 使纺织品、纸品、皮革制品等腐蚀破损,使金属涂料变质,降低其保护效果。造 成金属腐蚀最为有害的污染物一般是二氧化硫, 已观察到城市大气中金属的腐蚀 率约是农村环境中腐蚀率的 1.5-5 倍。 温度尤其是相对湿度皆显著影响着腐蚀速 度。含硫物质或硫酸会侵蚀多种建筑材料,如石灰石、大理石、花岗岩、水泥砂 浆等,这些建筑材料先形成较易溶解的硫酸盐,然后被雨水冲刷掉。尼龙织物, 尤其是尼龙管道等, 其老化显然是由二氧化硫或硫酸气溶胶造成的。长期的酸雨 作用还将对土壤和水质产生不可估量的损失, 对生态环境会产生严重的影响。
填料 操作的关键结构
7
力降低 填料支承 液体喷淋器 支承填料,并使气流分布均匀 使液体均匀地喷淋在填料上 防止气速过大, 在塔顶出塔的气 除雾器 体中带出大量液体 除雾效率高,压力降小 自由截面积大,应>=65%。强度大 喷洒均匀,防堵
五、工艺流程及工艺ຫໍສະໝຸດ 程图:气体从填料塔的下端由鼓风机 1 鼓入,吸收液由填料塔上端进入从塔底流 出,进行充分的接触、吸收。送入贮液槽 2 中加药、沉淀,然后被水泵打到进水 管, 循环进行吸收。 在进水管处装有转子流量计 4, 测量进液管中吸收液的流量。
三、吸收设备:板式塔与填料塔的比较
板式塔与填料塔的比较 塔型 项目 板式塔 Ф600 以下,安装 较困难 每块塔板的效率 填料塔 普通填料塔 Ф800 以下造价 一般较板式塔便宜,直径大 则昂贵 工业塔等板高度与板式塔 由于填料塔造价随体 积几乎正比的增大, 单位体积造价降低 备注
造价
大塔效率 差不多,但塔径增大效率下 分离效 较稳定, 率 比小塔效率有所 提高 生产能 力 压降 允许空塔速度较 高, 生产能力较大 压降较大 降,高效填料可以达到高的 分离效率,有利于塔高降低 允许空塔速度较高,生产能 力较小 压降小,尤其是丝网填料 操作弹性较小 填料塔采用鲍尔环等 操作弹性有了扩大 版式塔中,虽然 L 小, 液气比的适应范 围大 小的 L\V 时,分离效率差 仍能保持一定液层, 填料塔中喷淋密度太 小,就不能充分润湿
2
放总量的 90%。我国的能源主要依靠煤炭和石油,而我国的煤炭、石油一般含硫 量较高,因此,火力发电厂、钢铁厂、冶炼厂、化工厂和炼油厂排放出的大量二 氧化硫和二氧化碳是造成我国大气污染的主要原因。 由于我国部分地区燃用高硫 煤,燃煤设备未能采取脱硫措施,致使二氧化硫排放量不断增加,造成严重的环 境污染。 2、二氧化硫的性质 (1)物理性质: 二氧化硫又名亚硫酸酐,英文名称: sulfur dioxide 。无色气体,有强烈 刺激性气味。分子量 64.07 密度为 1.4337kg/m3 (标准状况下) ,密度比空气 大。溶解度:9.4g/mL(25℃) 熔点-76.1℃(200.75K) 沸点-10℃ (263K) 蒸汽压 338.32kPa(2538mmHg,21.11℃)易溶于水,在 338.32kPa 水中溶解度为 8.5% (25℃) ; 易容于甲醇和乙醇;容于硫酸、乙酸、氯仿和乙醚等。易液化(mp: -10℃) 。 (2)化学性质: 二氧化硫是一种酸性氧化物,它极易溶于水,其水溶液呈酸性,为亚硫酸水 溶液。实际上,二氧化硫水溶液中成分为 SO2·7H2O,仅含有微量的亚硫酸,但 是亚硫酸盐含有亚硫酸根离子。所谓的亚硫酸水溶液能被空气逐渐氧化成硫酸, 其浓度越低氧化越快,而且一经加热就会有自行氧化。 二氧化硫在完全燃烧干燥时几乎不与氧气发生反应, 当在有初生态氧的燃烧 环境下, 或者对二氧化硫与氧气的混合物进行放电, 则有氧化反应发生。 氧化性: SO2+2H2S=3S+2H2O ;还原性:能被 Cl2、Br2、I2、Fe3+、KMnO4、HNO3 等强氧化剂氧 化成高价态硫元素。 SO2+X2+2H2O=H2SO4+2HX 3 、二氧化硫的危害 二氧化硫对人体及动物健康的危害: 主要是对眼角膜和上呼吸道粘膜的强烈刺激作用。 其浓度与反应关系如下: 0.4 毫克/立方米时无不良反应;0.7 毫克/立方米时,普遍感到上呼吸道及眼睛 的刺激;2.6 毫克/立方米时,短时间作用即可反射性的引起器官、支气管平滑 肌收缩, 使呼吸道阻力增加。 一般认为空气中二氧化硫浓度达 1.5 毫克/立方米, 对人体健康即为有危害,长期接触主要引起鼻、咽、支气管,嗅觉障碍和尿中硫
二、净化技术
当前应用的脱硫方法,大致可分为两类,即干法脱硫和湿法脱硫。 干法脱硫:该法是用粉状、粒状吸收剂,吸附剂或催化剂去除废气中的二氧 化硫。干法的最大优点是治理中无废水、废酸排出,减少了二次污染;缺点是脱 硫效率低,设备庞大,操作要求高。 湿法脱硫: 该法是采用液体吸收剂如水或碱溶液洗涤含二氧化硫的烟气, 通