医学统计学之方差分析

合集下载

医学统计学 -第08章 方差分析

医学统计学  -第08章  方差分析

第一节 方差分析的基本思想
看一个例子
例8-1 为研究钙离子对体重的影响作用,某研究者将36 只肥胖模型大白鼠随机分为三组,每组12只,分别给 予高脂正常剂量钙(0.5%)、高脂高剂量钙(1.0%)和高 脂高剂量钙(1.5%)三种不同的饲料,喂养9周,测其 喂养前后体重的差值。问三组不同喂养方式下大白鼠 体重改变是否不同?
• 三种喂养方式体重改变的平均值各不相同,这种变异 称为组间变异

是组内均值
X
与总均值
i
X
之差的平方和
360
340
组间变异反映了:
320
三种喂养方式的差异(影响), 300
同时也包含了随机误差。
280
260
240
k ni
220
SS组间
(Xi X )2
200
i1 j
180
X甲
X
X乙
X丙



3、组内变异(SS组内,variation within groups)
0.05
2、根据公式计算SS、MS及F值,列于方差分析表内(计 算过程省略)
变异来源 总变异 组间 组内(误差)
完全随机设计的方差分析表
平方和 SS 自由度
均方MS
47758.32
35
31291.67
2
15645.83
16466.65
33
498.99
F值
31.36
3、确定P值,作出判断
分子自由度=k-1=2,分母自由度=n-k=33,查F 界值表(方差分析用)
表 8-1 三种不同喂养方式下大白鼠体重喂养前后差值(g)
正常钙(0.5%) 高剂量钙(1.0%) 高剂量钙(1.5%)

医学统计学八种检验方法

医学统计学八种检验方法

医学统计学八种检验方法医学统计学是医学研究中一个重要的分支,它通过对医学数据进行收集、整理和分析,以帮助医学研究者得出准确可靠的结论。

而在医学统计学中,检验方法是评价医学研究数据是否具有统计意义的一种重要工具。

下面将介绍医学统计学中常用的八种检验方法。

1.正态性检验:正态性检验是用来检验数据是否符合正态分布的统计性质。

常见的正态性检验方法有Shapiro-Wilk检验和Kolmogorov-Smirnov检验。

2.两独立样本t检验:该方法用于检验两个不相互依赖的样本均值之间是否存在差异。

适用于连续变量的比较,例如治疗前后的体重变化。

3.配对样本t检验:配对样本t检验适用于对同一组研究对象在不同时间或不同条件下进行比较。

如药物治疗前后患者的血压比较。

4.卡方检验:卡方检验是用来检验分类变量之间是否存在关联性的方法。

适用于分组数据的比较,例如男女性别与健康状况之间的关系。

5.方差分析:方差分析是用来检验多个组之间是否存在显著差异的方法。

适用于分析多个因素对结果的影响,如不同年龄组对某种疾病发生率的影响。

6.生存分析:生存分析用于研究事件发生时间和随时间而变化的危险率。

适用于研究患者生存期、疾病复发时间等,常见的分析方法有Kaplan-Meier曲线和Cox比例风险模型。

7.相关分析:相关分析用于研究两个连续变量之间的关系。

常见的相关分析方法包括皮尔逊相关系数和Spearman等级相关系数。

8.回归分析:回归分析用于研究一个或多个自变量对因变量的影响程度和方向的方法。

适用于分析影响因素较多的情况,如探讨年龄、性别、病情等因素对治疗效果的影响。

以上八种检验方法在医学统计学中被广泛运用,每种方法都有其适用的场景和注意事项。

在进行医学研究时,选择合适的检验方法能够提高研究结果的可靠性,从而为临床实践和医学决策提供准确依据。

因此,熟练掌握这些统计方法是每个医学研究者必备的基本技能。

医学统计学方差分析(ANOVA)

医学统计学方差分析(ANOVA)

方差分析是为了比较多个总体样本均数是否存在差别。

该方法有RA.Fisher首先提出,后来由GW.Snedecor完善,为了纪念Fisher,故称方差分析为F检验。

组间均方:MS组间=SS组间/ v组间,SS代表离均差平方和,v代表自由度,组间变异包括处理效应和随机误差。

组内均方:MS组内=SS组内/ v组内,组内差异包括随机误差。

F=MS组间/MS组内,F接近1,说明组间差异不大。

方差分析的基本思想,首先将总变异分为组间和组内变异,然后计算两者的F 值。

F值越大,说明组间差异大,处理起作用,反之,则不起作用,是由随机误差导致的。

方差分析应用条件:1)样本独立;2)来自正态总体;3)方差齐性。

方差分析包括完全随机设计(completely random design)的方差分析,又叫单向(one-way)方差分析和随机区组设计(radomized block design)的方差分析又叫双向(two-way)方差分析。

完全随机设计的方差分析是将受试对象随机化的分配到各个处理组或对照组的方法,未考虑干扰因素的影响,各个组的样本数可以不一样多。

随机区组设计的方差分析将受试对象按照性质相同或相近组成b个区组,每个区组有g个受试对象,分别随机分配到g个处理组,这样各个处理组不仅样本个数相同,生物学特性也比较均衡。

方差分析拒绝H0,接受H1,只说明g个总体均数不全相等,如果想要进一步了解那两个组均数不等,需要进行两两比较或称多重比较,即post-hoc检验。

ANOVA与T test的关系:.。

医学统计学-8-方差分析

医学统计学-8-方差分析

第二节 单因素方差分析
单因素方差分析
单因素方差分析:研究的是一个处理因素的 不同水平间效应的差别。
处 理 因 素
水平1 水平2 水平1 水平2 水平c
单因素方差分析
例1、某地用A、B和C三种方案治疗血红蛋 白含量不满10g的婴幼儿贫血患者,A方案 为每公斤体重每天口服2.5%硫酸亚铁1ml, B方案为每公斤体重每天口服2.5%硫酸亚 铁0.5ml,C方案为每公斤体重每天口服3g 鸡肝粉,治疗一月后,记录下每名受试者血 红蛋白的上升克数,资料见下表,问三种治 疗方案对婴幼儿贫血的疗效是否相同?
A、B、C三种方案治疗婴幼儿贫血的疗效观察表
治疗方案 A n=20
血红蛋白增加量(g) 1.8 1.4 0.5 1.2 2.3 2.3 3.7 0.7 2.4 0.5 2.0 1.4 1.5 1.7 2.7 3.0 1.1 3.2 0.9 2.5
B
n=19
0.2
0.0 2.1 -0.7
0.5
1.6 1.9 1.3
q XA XB


MSe 1 1 2 nA nB
ν=νe
一、q检验
例、在前面对某地用A、B和C三种方案治疗 血红蛋白含量不满10g的婴幼儿贫血患者的 例题(完全随机设计方差分析例1)进行了 方差分析,我们得出三组总体不等的结论。 究竟哪些总体均数之间存在着差别,我们需 要在前方差分析基础之上,再对该资料作两 两比较的q检验。
随机因素是无法避免的,而实质性差异是我们 需要得到的。 如何排除随机因素的干扰,利用样本信息对总 体均数间是否存在差异作出推断?
方差分析的基本思想
按照设计类型将总变异分解为处理因素引 起的变异和随机因素造成的变异; 以处理因素变异与随机因素变异之比来构 造检验统计量F。

医学统计学(方差分析)

医学统计学(方差分析)
03
各种变异的表示方法
04
列举存在的变异及意义
各种变异的表示方法
SS总 总 MS总
SS组内 组内 MS组内
SS组间 组间 MS组间
三者之间的关系: SS总= SS组内+ SS组间 总= 组内+ 组间
F=MS组间/MS组内
自由度: 组间=组数-1
组内=N-组数
通过这个公式计算出统计量F,查表求出对应的P值,与进行比较,以确定是否为小概率事件。
01
计算 C=(Σx) 2/N=(3309.5) 2/30=365093 SS总=Σx2-C=372974.87-365093=7881.87
α=0.05
02
SS组内=SS总-SS组间=7881.87-2384.026=5497.84
Ν总=N-1=29, Ν组间=k-1=2, Ν组内=N-k=30-3=27
159.0
111.0
115.0
合计Σxij
1160
921.5
1228
3309.5(Σx)
ni
11
9
10
30(N)
均数
105.45
102.39
122.80
110.32()
糖尿病
IGT
正常人
xij
106.5
Σ
Σxij2
123509.52
144.0
105.2
124.5
117.0
109.5
105.1
110.0
96.0
76.4
109.0
115.2
95.3
103.
95.3

1071医学统计学方差分析基本思想

1071医学统计学方差分析基本思想
计量资料多组均数的比较
知识点:方差分析基本思想
实际案例
• 实际案例:有研究者为探讨雌激素在预防骨质疏松症的作 用,用去卵巢雌性SD大鼠建立绝经后骨质疏松症动物模型, 观察卵巢切除后补充17-雌二醇对大鼠骨量的影响。 该研究者将30只10月龄SD雌性大鼠随机分为假手术组、 卵巢切除组和卵巢切除后补充17-雌二醇组,每组10只, 12周后处死大鼠,取其股骨测定重量,结果见表7.1。
和组内(即误差)变异。
组间变异
组内变异
总变异
(1)总变异:30只大鼠股骨重量的大小不同所引 起的总变异程度,这种变异称为总变异(total variation),其大小用全部观察值与总均数间的 离差的平方和,即离均差平方和(sum of squares of deviations from mean,SS)表示,记为SS总。
反之,若各组的总体均数不同,即处理因素有效 应),此时组间均方应明显大于误差均方,即MS 组间> MS误差,F > 1 。
F值要大到何种程度才有统计学意义,可以通过查 F界值表(方差分析用表)确定P值,作出统计推断。
用组内各鼠的股骨重量与该组均数的离差的平方和 表示(也称误差平方和),记为SS组内(误差),计算公式为
∑∑ k ni
SS误差 = SS组内 =
( xij - X i )2 ,
i=1 j=1
ν误 = ν组内 = N - k
• 以单因素方差分析为例:将总变异和自由度分别 进行分解
SS总 SS组间 SS组内
它反映了实验处理因素引起的变异,也包括了随机 误差引起的变异。
其大小用各组均数与总均数的离差的平方和表示, 记为SS组间,计算公式为:
∑k
SS组间 = ni( X i - X )2 ,

医学统计学方差分析

医学统计学方差分析

SS误差 = SS总- SS处理- SS区组
处理=k-1,
区组= b-1
(1)F处理= MS处理/ MS误差 (2) F区组= MS区组/ MS误差
误差= 总 - 处理- 区组
(1) H0: 三种方法治疗后血红蛋白增加量总体均数相等 H1: ……不等或不全相等
(2) H0:各区组血红蛋白增加量总体均数相等 H1: ……不等或不全相等
问题
某医师用A、B和C三种方案治疗婴幼儿贫血患 者,治疗一个月后,血红蛋白的增加克数如下表,问三 种治疗方案对婴幼儿贫血的疗效是否相同?
表 5 .1 三 种 方 案 治 疗 后 血 红 蛋 白 增 加 量 ( g / L )



24
20
20
36
18
11
25
17
6
14
10
3
26
19
0
34
24
-1
23
4
5
合计
n
7
6
8
21
Σ jΧ
182
108
48
338
Σ jΧ 2
5054
2050
608
7712
X
26
18
6
22.8
第四章 方差分析
Analysis of variance ANOVA
第四章 方差分析
•方差分析的基本思想
•应用与资料要求 • 完全随机设计资料的方差分析 •随机区组设计资料的方差分析 •拉丁方设计资料的方差分析 •交叉设计资料的方差分析 •多个样本均数间的多重比较 •析因设计资料的方差分析 •正交设计资料的方差分析 •多元方差分析 •常用的数据转换方法 •课堂讨论

医学统计学 方差分析

医学统计学 方差分析

100.66
110.31
4
367.60
5
80.57
97.90
115.76
103.56
4
397.79
6
102.77
81.20
90.30
138.54
4
412.81
ni
6
6
6
6
24( n )
Xi
550.01
537.30
618.19
726.28
2431.78( X )
Xi
91.67
89.55
103.03
2 =32 得: F0.05(2,32) 3.30, F0.01(2,32) 5.34 ,P<0.01。按 =0.05 水准,拒绝 H0 ,
差别有统计学意义,可以认为喂养三种不同饲料的大鼠红细胞数的总体均数不 全相同。
随机区组设计的两因素方差分析
例9.2 利用随机区组设计研究不同温
度对家兔血糖浓度的影响,某研究者进行 了如下实验:将 24只家兔按窝别配成6个 区组, 每组 4 只, 分别随机分配到温度 15℃、 20℃、 25℃、 30℃的4个处理组 中,测量家兔的血糖浓度值(mmol/L),结 果如下表9.4所示,分析4种温度下测量家 兔的血糖浓度值是否不同?
23
3742.5521
3
1247.5174 8.2717
1491.2744
5
298.2549 1.9776
2262.2511
15
150.8167
P
<0.01 >0.05
3. 确定 P 值,作出统计推断
根据处理组 F 值的分子的自由度处理 ,分母的自由度 误差 ;区组 F 值的分子的 自由度区组 ,分母的自由度 误差 查 F 界值表(附表 4),得到处理组和区组的 P 值。 根据表 9.6,按 =0.05 水准,对于不同区组间,不拒绝 H0 ,尚不能认为不同窝 别家兔血糖浓度值不同;对于不同处理组间,拒绝 H0 ,接受 H1 ,差异具有统 计学意义,可以认为 4 种温度下家兔血糖浓度值不全相同,即处理组 4 个总体 均数中至少有 2 个不同。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MS组间
SS组间
组间
MS组内
SS组内
组内
二、F 值与F分布
如果各组样本的总体均数相等(H0: 1 2 … k ),
即各处理组的样本来自相同总体,无处理因素的作用,,则组
间变异同组内变异一样,只反映随机误差作用的大小。组间 均方与组内均方的比值称为 F 统计量
F MS组间 MS组内
5
单向方差分析
One-way analysis of variance
第一节 方差分析的基本思想
将所有测量值间的总变异按照其变异的 来源分解为多个部份,然后进行比较,评价 由某种因素所引起的变异是否具有统计学意 义。
6
一、离均差平方和的分解
组间变异 组内变异
总变异
7
对于实例(完全随机设计) 资料,共有三种不同的变异
下面用离均差平方和(sum of squares of
deviations from mean,SS)反映变异的大小
8
1. 总变异: 所有测量值之间总
的变异程度,计算公式
a ni
SS总 Yij Y
2
a
Y ni 2 ij
C
i1 j1
i1 j1
N
Yij2 C=(N1)S2
i, j
总 N 1
a ni
480 20.0
j Yij2
2233.0 4790.0 2162.0 1431.0
10616.0
四种解毒药的解毒效果是否相同?
4
一 个 因 素 ( f a c t o r ): 解 毒 药 四 个 水 平 ( l e v e l )( a = 4 个 处 理 组 ): A 、 B 、
C 、 空 白 对 照 D, i=1,2,3,4 分 别 代 表 A、 B、 C、 D 每 水 平 有 ni=6 只 大 白 鼠 , 分 别 表 示 为 j=1,2,…,6 应 变 量 用 Yij 表 示 , 即 第 i 组 第 j 号 大 白 鼠 的 血
SS总 = SS组间 + SS组内,
且 ν总 =ν组间 +ν组内
组内变异 SS 组内:
随机误差
组间变异 SS 组间:处理因素 + 随机误差
One-Factor ANOVA Partitions of Total Variation
Total Variation SST
= Variation Due to Treatment SSB
1. 总变异(Total variation):全部测量值Yij与
总均数 Y 20.0 间的差异
2. 组间变异( between group variation ):各
组的均数 Y i 与总均数 Y 间的差异
3. 组内变异(within group variation ):每组的
每个测量值Yij与该组均数 Y i 的差异
+
Commonly referred to as:
Sum of Squares Among, or
Sum of Squares Between, or
Sum of Squares Model, or
Among Groups Variation
Variation Due to Random Sampling SSW
个受试对象接受的处理相同,但测量值仍各不相同,
这种变异称为组内变异,也称SS误差。 用各组内各测量值Yij与其所在组的均数差值的
平方和来表示,反映随机误差的影响。计算公式为
SS组内
a
ni
(Yij
Yi ) 2
i 1 j 1
a
(ni
1)
S
2 i
i 1
组内 Na
三种“变异”之间的关系
离均差平方和分解:
方差分析
Analysis of Variance (ANOVA )
4/9/2020
1
ANOVA 由英国统 计学家R.A.Fisher首 创,为纪念Fisher,
以F命名,故方差分析 又称 F 检验 (F
test)。用于推断多 个总体均数有无差异
2
基本概念
因素也称为处理因素(factor)(名义分类变量),每一处 理因素至少有两个水平(level)(也称“处理组”)。
组号 i
胆 硷 脂 酶 含 量 (Yij)
ni
j Yij
1 23 12 18 16 28 14
6
111
Yi
18.5
2 28 31 23 24 28 34
6
168 28.0
3 14 24 17 19 16 22
6
112 18.7
4
8 12 21 19 14 15
6
8 14.8
9
合计 73 79 79 78 86 85 24
Commonly referred to as: Sum of Squares Within, or Sum of Squares Error, or Within Groups Variation
均方差,均方(mean square,MS)
变异程度除与离均差平方和的大小有关外, 还与其 自由度 有关,由于各部分自由度不相等, 因此各部分离均差平方和不能直接比较,须将 各部分离均差平方和除以相应自由度,其比值 称为均方差,简称 均方 (mean square ,MS)。组 间均方和组内均方的计算公式为 :
一个因素(水平间独立)
——单向方差分析
两个因素(水平间独立或相关)——双向方差分析
一个个体多个测量值——重复测量资料的方差分析
ANOVA与回归分析相结合——协方差分析
目的:用这类资料的样本信息来推断各处理组间多个总体均
数的差别有无统计学意义。
3
不 同 解 毒 药 对 应 的 大 白 鼠 血 中 胆 硷 脂 酶 含 量 (μ /ml)
中 胆 硷 脂 酶 含 量 (μ /ml) 按 完 全 随 机 化 设 计 方 法 将 N = 24 只 动 物 随 机 等
分成4个组 ( 将 动 物 编 成 1~24 号 , 用 计 算 器 ( 机 ) 对 每
一个动物产生一个随机数,然后按随机数从小到 大的顺序排序,前面 6 个动物分为第一组,紧接着的 6 个 动 物 分 成 第 二 组 , …)
1
组间 , 2 组内
F 值接近于 l,就没有理由拒绝 H0;反之,F 值越大,拒绝 H0 的理由越充分。数理统计的理论证明,当 H0 成立时,F 统计量服从 F 分布。
(Yij
)2
N
(Yij )2
校正系数: C i1 j1
i,j
N
N
2.组间变异:各组均数与总均数的
离均差平方和,计算公式为
a
a
ni
(
Y)2 ij
SS组间 ni(Yi Y)2Leabharlann i1i1j1
ni
C
组间 a 1
SS组间反映了各组均数 Y i 的变异程度
组间变异=①随机误差+②处理因素效应
3.组内变异:在同一处理组内,虽然每
相关文档
最新文档