医学医学统计学方差分析
医学统计学 -第08章 方差分析

第一节 方差分析的基本思想
看一个例子
例8-1 为研究钙离子对体重的影响作用,某研究者将36 只肥胖模型大白鼠随机分为三组,每组12只,分别给 予高脂正常剂量钙(0.5%)、高脂高剂量钙(1.0%)和高 脂高剂量钙(1.5%)三种不同的饲料,喂养9周,测其 喂养前后体重的差值。问三组不同喂养方式下大白鼠 体重改变是否不同?
• 三种喂养方式体重改变的平均值各不相同,这种变异 称为组间变异
•
是组内均值
X
与总均值
i
X
之差的平方和
360
340
组间变异反映了:
320
三种喂养方式的差异(影响), 300
同时也包含了随机误差。
280
260
240
k ni
220
SS组间
(Xi X )2
200
i1 j
180
X甲
X
X乙
X丙
甲
乙
丙
3、组内变异(SS组内,variation within groups)
0.05
2、根据公式计算SS、MS及F值,列于方差分析表内(计 算过程省略)
变异来源 总变异 组间 组内(误差)
完全随机设计的方差分析表
平方和 SS 自由度
均方MS
47758.32
35
31291.67
2
15645.83
16466.65
33
498.99
F值
31.36
3、确定P值,作出判断
分子自由度=k-1=2,分母自由度=n-k=33,查F 界值表(方差分析用)
表 8-1 三种不同喂养方式下大白鼠体重喂养前后差值(g)
正常钙(0.5%) 高剂量钙(1.0%) 高剂量钙(1.5%)
医疗统计学方差

医疗统计学方差摘要:一、医疗统计学方差的定义与意义1.方差的定义2.方差在医疗统计学中的意义二、医疗统计学方差的计算方法1.总体方差计算2.样本方差计算三、医疗统计学方差的应用1.用于描述数据离散程度2.用于研究变量之间的关系四、医疗统计学方差的局限性与改进1.方差在医疗统计学中的局限性2.改进方差的方法正文:医疗统计学方差是医疗统计学中一个重要的概念,它用于衡量数据的离散程度,揭示变量之间的关系。
本文将对医疗统计学方差的定义、计算方法、应用及局限性进行详细阐述。
一、医疗统计学方差的定义与意义方差是指各个数据与其算术平均数之差的平方和的平均数。
在医疗统计学中,方差主要用于衡量数据的离散程度,反映研究对象的变异程度。
方差越大,数据的离散程度越大,反之亦然。
方差还可以用于研究变量之间的关系,为研究提供依据。
二、医疗统计学方差的计算方法医疗统计学方差的计算方法主要包括总体方差和样本方差。
总体方差是指总体中所有数据与其算术平均数之差的平方和的平均数。
样本方差是指样本中所有数据与其算术平均数之差的平方和的平均数。
总体方差的计算需要知道总体的所有数据,而样本方差只需知道样本数据。
三、医疗统计学方差的应用医疗统计学方差在实际应用中具有重要意义。
首先,方差可以用于描述数据的离散程度,为研究者提供数据分布的信息。
其次,方差可以用于研究变量之间的关系,揭示因变量随自变量变化的规律。
例如,在研究某种疾病与基因之间的关系时,可以通过计算方差分析基因型对疾病的影响。
四、医疗统计学方差的局限性与改进尽管方差在医疗统计学中具有重要意义,但它也存在局限性。
首先,方差受极端值的影响较大,极端值的出现会导致方差增大,而掩盖其他数据的分布情况。
其次,方差不能反映数据之间的相关性。
为克服这些局限性,研究者们提出了许多改进方法,如计算标准差、离散系数等。
综上所述,医疗统计学方差在医疗统计学中具有重要意义,但同时也存在局限性。
医学统计学方差分析(ANOVA)

方差分析是为了比较多个总体样本均数是否存在差别。
该方法有RA.Fisher首先提出,后来由GW.Snedecor完善,为了纪念Fisher,故称方差分析为F检验。
组间均方:MS组间=SS组间/ v组间,SS代表离均差平方和,v代表自由度,组间变异包括处理效应和随机误差。
组内均方:MS组内=SS组内/ v组内,组内差异包括随机误差。
F=MS组间/MS组内,F接近1,说明组间差异不大。
方差分析的基本思想,首先将总变异分为组间和组内变异,然后计算两者的F 值。
F值越大,说明组间差异大,处理起作用,反之,则不起作用,是由随机误差导致的。
方差分析应用条件:1)样本独立;2)来自正态总体;3)方差齐性。
方差分析包括完全随机设计(completely random design)的方差分析,又叫单向(one-way)方差分析和随机区组设计(radomized block design)的方差分析又叫双向(two-way)方差分析。
完全随机设计的方差分析是将受试对象随机化的分配到各个处理组或对照组的方法,未考虑干扰因素的影响,各个组的样本数可以不一样多。
随机区组设计的方差分析将受试对象按照性质相同或相近组成b个区组,每个区组有g个受试对象,分别随机分配到g个处理组,这样各个处理组不仅样本个数相同,生物学特性也比较均衡。
方差分析拒绝H0,接受H1,只说明g个总体均数不全相等,如果想要进一步了解那两个组均数不等,需要进行两两比较或称多重比较,即post-hoc检验。
ANOVA与T test的关系:.。
医学统计学-8-方差分析

第二节 单因素方差分析
单因素方差分析
单因素方差分析:研究的是一个处理因素的 不同水平间效应的差别。
处 理 因 素
水平1 水平2 水平1 水平2 水平c
单因素方差分析
例1、某地用A、B和C三种方案治疗血红蛋 白含量不满10g的婴幼儿贫血患者,A方案 为每公斤体重每天口服2.5%硫酸亚铁1ml, B方案为每公斤体重每天口服2.5%硫酸亚 铁0.5ml,C方案为每公斤体重每天口服3g 鸡肝粉,治疗一月后,记录下每名受试者血 红蛋白的上升克数,资料见下表,问三种治 疗方案对婴幼儿贫血的疗效是否相同?
A、B、C三种方案治疗婴幼儿贫血的疗效观察表
治疗方案 A n=20
血红蛋白增加量(g) 1.8 1.4 0.5 1.2 2.3 2.3 3.7 0.7 2.4 0.5 2.0 1.4 1.5 1.7 2.7 3.0 1.1 3.2 0.9 2.5
B
n=19
0.2
0.0 2.1 -0.7
0.5
1.6 1.9 1.3
q XA XB
MSe 1 1 2 nA nB
ν=νe
一、q检验
例、在前面对某地用A、B和C三种方案治疗 血红蛋白含量不满10g的婴幼儿贫血患者的 例题(完全随机设计方差分析例1)进行了 方差分析,我们得出三组总体不等的结论。 究竟哪些总体均数之间存在着差别,我们需 要在前方差分析基础之上,再对该资料作两 两比较的q检验。
随机因素是无法避免的,而实质性差异是我们 需要得到的。 如何排除随机因素的干扰,利用样本信息对总 体均数间是否存在差异作出推断?
方差分析的基本思想
按照设计类型将总变异分解为处理因素引 起的变异和随机因素造成的变异; 以处理因素变异与随机因素变异之比来构 造检验统计量F。
医学统计学8 方差分析

组间变异 组内变异
总变异
观察值总变异可以分解为组间变异和组内变异
14
变异
1. 总变异(Total variation): 全部测量值Xij与总 均数X 间的差异
2. 组间变异(between group variation ): 各组的 均数 Xi 与总均数 X 间的差异
3. 组内变异(within group variation ):每组的 每个测量值 X ij与该组均数 X i 的差异
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 25.49 7.19
基本步骤
(1)建立假设,确定检验水准
H0:三个总体均数相等,即三组工作人员的 体重指数总体均数相等
(x j
x)2,自由度ni-1
组内:SS总-SS处理-SS区组,自由度N-k-ni-1
案例分析
为探讨Rgl对镉诱导大鼠睾丸损伤的保护作用, 某研究者将同一窝别的3只大鼠随机地分到T1、T2 、T3三组,进行不同处理, 共观察了10个窝别大 鼠的睾丸MT含量(μg/g)。试问不同处理对大鼠 MT含量有无影响?
可用离均差平方和反映变异的大小
总变异
所有测量值之间总的变异程度,SS总
医学统计学(方差分析)

各种变异的表示方法
04
列举存在的变异及意义
各种变异的表示方法
SS总 总 MS总
SS组内 组内 MS组内
SS组间 组间 MS组间
三者之间的关系: SS总= SS组内+ SS组间 总= 组内+ 组间
F=MS组间/MS组内
自由度: 组间=组数-1
组内=N-组数
通过这个公式计算出统计量F,查表求出对应的P值,与进行比较,以确定是否为小概率事件。
01
计算 C=(Σx) 2/N=(3309.5) 2/30=365093 SS总=Σx2-C=372974.87-365093=7881.87
α=0.05
02
SS组内=SS总-SS组间=7881.87-2384.026=5497.84
Ν总=N-1=29, Ν组间=k-1=2, Ν组内=N-k=30-3=27
159.0
111.0
115.0
合计Σxij
1160
921.5
1228
3309.5(Σx)
ni
11
9
10
30(N)
均数
105.45
102.39
122.80
110.32()
糖尿病
IGT
正常人
xij
106.5
Σ
Σxij2
123509.52
144.0
105.2
124.5
117.0
109.5
105.1
110.0
96.0
76.4
109.0
115.2
95.3
103.
95.3
医学统计学方差分析

SS误差 = SS总- SS处理- SS区组
处理=k-1,
区组= b-1
(1)F处理= MS处理/ MS误差 (2) F区组= MS区组/ MS误差
误差= 总 - 处理- 区组
(1) H0: 三种方法治疗后血红蛋白增加量总体均数相等 H1: ……不等或不全相等
(2) H0:各区组血红蛋白增加量总体均数相等 H1: ……不等或不全相等
问题
某医师用A、B和C三种方案治疗婴幼儿贫血患 者,治疗一个月后,血红蛋白的增加克数如下表,问三 种治疗方案对婴幼儿贫血的疗效是否相同?
表 5 .1 三 种 方 案 治 疗 后 血 红 蛋 白 增 加 量 ( g / L )
A
B
C
24
20
20
36
18
11
25
17
6
14
10
3
26
19
0
34
24
-1
23
4
5
合计
n
7
6
8
21
Σ jΧ
182
108
48
338
Σ jΧ 2
5054
2050
608
7712
X
26
18
6
22.8
第四章 方差分析
Analysis of variance ANOVA
第四章 方差分析
•方差分析的基本思想
•应用与资料要求 • 完全随机设计资料的方差分析 •随机区组设计资料的方差分析 •拉丁方设计资料的方差分析 •交叉设计资料的方差分析 •多个样本均数间的多重比较 •析因设计资料的方差分析 •正交设计资料的方差分析 •多元方差分析 •常用的数据转换方法 •课堂讨论
医学统计学 方差分析

100.66
110.31
4
367.60
5
80.57
97.90
115.76
103.56
4
397.79
6
102.77
81.20
90.30
138.54
4
412.81
ni
6
6
6
6
24( n )
Xi
550.01
537.30
618.19
726.28
2431.78( X )
Xi
91.67
89.55
103.03
2 =32 得: F0.05(2,32) 3.30, F0.01(2,32) 5.34 ,P<0.01。按 =0.05 水准,拒绝 H0 ,
差别有统计学意义,可以认为喂养三种不同饲料的大鼠红细胞数的总体均数不 全相同。
随机区组设计的两因素方差分析
例9.2 利用随机区组设计研究不同温
度对家兔血糖浓度的影响,某研究者进行 了如下实验:将 24只家兔按窝别配成6个 区组, 每组 4 只, 分别随机分配到温度 15℃、 20℃、 25℃、 30℃的4个处理组 中,测量家兔的血糖浓度值(mmol/L),结 果如下表9.4所示,分析4种温度下测量家 兔的血糖浓度值是否不同?
23
3742.5521
3
1247.5174 8.2717
1491.2744
5
298.2549 1.9776
2262.2511
15
150.8167
P
<0.01 >0.05
3. 确定 P 值,作出统计推断
根据处理组 F 值的分子的自由度处理 ,分母的自由度 误差 ;区组 F 值的分子的 自由度区组 ,分母的自由度 误差 查 F 界值表(附表 4),得到处理组和区组的 P 值。 根据表 9.6,按 =0.05 水准,对于不同区组间,不拒绝 H0 ,尚不能认为不同窝 别家兔血糖浓度值不同;对于不同处理组间,拒绝 H0 ,接受 H1 ,差异具有统 计学意义,可以认为 4 种温度下家兔血糖浓度值不全相同,即处理组 4 个总体 均数中至少有 2 个不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个因素(水平间独立或相关)——双向方差分析
一个个体多个测量值——重复测量资料的方差分析
ANOVA与回归分析相结合——协方差分析
目的:用这类资料的样本信息来推断各处理组间多个总体均 数的差别有无统计学意义。
1/8/2019 2:11:49 PM
2
不 同 解 毒 药 对 应 的 大 白 鼠 血 中 胆 硷 脂 酶 含 量 (μ
2 Y ij j
2233.0 4790.0 2162.0 1431.0
79
79
78
86
85
24
480
20.0
10616.0
四 种 解 毒 药 的 解 毒 效 果 是 否 相 同 ?
Si 值
1/8/2019 2:11:49 PM
S1 5.99
S2 4.15
S3 3.78
S4 4.71
合计 PM
4
单向方差分析
One-way analysis of variance 第一节 方差分析的基本思想
将所有测量值间的总变异按照其变异的 来源分解为多个部份,然后进行比较,评价 由某种因素所引起的变异是否具有统计学意 义。
1/8/2019 2:11:49 PM
5
一、离均差平方和的分解
ANOVA 由英国统 计学家R.A.Fisher首 创,为纪念Fisher, 以F命名,故方差分析 又称 F 检验 (F test)。用于推断多 个总体均数有无差异
1/8/2019 2:11:49 PM
1
基本概念
因素也称为处理因素(factor)(名义分类变量),每一处 理因素至少有两个水平(level)(也称“处理组”)。
3. 组内变异(within group variation ):每组的 每个测量值Yij与该组均数 Y 的差异
i
下面用离均差平方和(sum of squares of deviations from mean,SS)反映变异的大小
1/8/2019 2:11:49 PM
7
1. 总变异: 所有测量值之间总
i 1
a
2 i
组内 N a
三种“变异”之间的关系
离均差平方和分解:
SS总 = SS组间 + SS 组内 ,
且
ν总 =ν组间 +ν组内
组内变异 SS 组内: 随机误差 组间变异 SS 组间:处理因素 + 随机误差
One-Factor ANOVA Partitions of Total Variation
一 个 因 素 ( factor) :解毒药 四 个 水 平 ( level) ( a=4 个 处 理 组 ) : A、 B 、 C 、 空 白 对 照 D, i=1,2,3,4 分 别 代 表 A、 B、 C、 D 每 水 平 有 ni=6 只 大 白 鼠 , 分 别 表 示 为 j=1,2,…,6 应 变 量 用 Yij 表 示 , 即 第 i 组 第 j 号 大 白 鼠 的 血 中 胆 硷 脂 酶 含 量 (μ /ml) 按 完 全 随 机 化 设 计 方 法 将 N = 24 只 动 物 随 机 等 分成4个组 ( 将 动 物 编 成 1~24 号 , 用 计 算 器 ( 机 ) 对 每 一个动物产生一个随机数,然后按随机数从小到 大的顺序排序,前面 6 个动物分为第一组,紧接着的 6 个 动 物 分 成 第 二 组 , …)
( Yij )
i, j
N
2
N
2 .组间变异: 各组均数与总均数的
离均差平方和,计算公式为
SS组间 ni (Yi Y )
2 i 1 i 1
a
a
( Yij )
j 1
ni
2
组间 a 1
SS组间反映了各组均数 Yi 的变异程度
ni
C
组间变异=①随机误差+②处理因素效应
/ml)
组 号 i 1 2 3 4 合 计 73 23 28 14 8
胆 硷 脂 酶 含 量 (Yij) 12 31 24 12 18 23 17 21 16 24 19 19 28 28 16 14 14 34 22 15
ni
6 6 6 6
Y j ij
111 168 11 2 8 9
Yi
18.5 28.0 18.7 14.8
的变异程度,计算公式
SS总 Yij Y Y C
a 2 a i 1 j 1 i 1 j 1 2 ij ni ni
Y C=(N 1) S
i, j 2 ij
N
2
总 N 1
2
校正系数: C
( Yij )
i 1 j 1
a ni
N
3 .组内变异: 在同一处理组内,虽然每
个受试对象接受的处理相同,但测量值仍各不相同,
这种变异称为组内变异,也称SS误差。 用各组内各测量值 Yij 与其所在组的均数差值的 平方和来表示,反映随机误差的影响。计算公式为
SS组内 (Yij Yi )
i 1 j 1
a
ni
2
( ni 1) S
Total Variation SST
Variation Due to Treatment SSB Commonly referred to as: Sum of Squares Among, or Sum of Squares Between, or Sum of Squares Model, or Among Groups Variation Variation Due to Random Sampling SSW Commonly referred to as: Sum of Squares Within, or Sum of Squares Error, or Within Groups Variation
=
+
均方差,均方(mean square,MS)
变异程度除与离均差平方和的大小有关外, 还与其自由度有关,由于各部分自由度不相等, 因此各部分离均差平方和不能直接比较,须将 各部分离均差平方和除以相应自由度,其比值 称为均方差,简称均方 (mean square , MS ) 。组 间均方和组内均方的计算公式为 :
组间变异 组内变异
总变异
1/8/2019 2:11:49 PM
6
对于实例(完全随机设计) 资料,共有三种不同的变异
1. 总变异(Total variation):全部测量值Yij与 总均数 Y 20.0 间的差异 2. 组间变异( between group variation ):各 组的均数 Yi 与总均数 Y 间的差异