医学统计学:方差分析
合集下载
医学统计学 -第08章 方差分析

第一节 方差分析的基本思想
看一个例子
例8-1 为研究钙离子对体重的影响作用,某研究者将36 只肥胖模型大白鼠随机分为三组,每组12只,分别给 予高脂正常剂量钙(0.5%)、高脂高剂量钙(1.0%)和高 脂高剂量钙(1.5%)三种不同的饲料,喂养9周,测其 喂养前后体重的差值。问三组不同喂养方式下大白鼠 体重改变是否不同?
• 三种喂养方式体重改变的平均值各不相同,这种变异 称为组间变异
•
是组内均值
X
与总均值
i
X
之差的平方和
360
340
组间变异反映了:
320
三种喂养方式的差异(影响), 300
同时也包含了随机误差。
280
260
240
k ni
220
SS组间
(Xi X )2
200
i1 j
180
X甲
X
X乙
X丙
甲
乙
丙
3、组内变异(SS组内,variation within groups)
0.05
2、根据公式计算SS、MS及F值,列于方差分析表内(计 算过程省略)
变异来源 总变异 组间 组内(误差)
完全随机设计的方差分析表
平方和 SS 自由度
均方MS
47758.32
35
31291.67
2
15645.83
16466.65
33
498.99
F值
31.36
3、确定P值,作出判断
分子自由度=k-1=2,分母自由度=n-k=33,查F 界值表(方差分析用)
表 8-1 三种不同喂养方式下大白鼠体重喂养前后差值(g)
正常钙(0.5%) 高剂量钙(1.0%) 高剂量钙(1.5%)
医学统计学方差分析(ANOVA)

方差分析是为了比较多个总体样本均数是否存在差别。
该方法有RA.Fisher首先提出,后来由GW.Snedecor完善,为了纪念Fisher,故称方差分析为F检验。
组间均方:MS组间=SS组间/ v组间,SS代表离均差平方和,v代表自由度,组间变异包括处理效应和随机误差。
组内均方:MS组内=SS组内/ v组内,组内差异包括随机误差。
F=MS组间/MS组内,F接近1,说明组间差异不大。
方差分析的基本思想,首先将总变异分为组间和组内变异,然后计算两者的F 值。
F值越大,说明组间差异大,处理起作用,反之,则不起作用,是由随机误差导致的。
方差分析应用条件:1)样本独立;2)来自正态总体;3)方差齐性。
方差分析包括完全随机设计(completely random design)的方差分析,又叫单向(one-way)方差分析和随机区组设计(radomized block design)的方差分析又叫双向(two-way)方差分析。
完全随机设计的方差分析是将受试对象随机化的分配到各个处理组或对照组的方法,未考虑干扰因素的影响,各个组的样本数可以不一样多。
随机区组设计的方差分析将受试对象按照性质相同或相近组成b个区组,每个区组有g个受试对象,分别随机分配到g个处理组,这样各个处理组不仅样本个数相同,生物学特性也比较均衡。
方差分析拒绝H0,接受H1,只说明g个总体均数不全相等,如果想要进一步了解那两个组均数不等,需要进行两两比较或称多重比较,即post-hoc检验。
ANOVA与T test的关系:.。
医学统计学-8-方差分析

第二节 单因素方差分析
单因素方差分析
单因素方差分析:研究的是一个处理因素的 不同水平间效应的差别。
处 理 因 素
水平1 水平2 水平1 水平2 水平c
单因素方差分析
例1、某地用A、B和C三种方案治疗血红蛋 白含量不满10g的婴幼儿贫血患者,A方案 为每公斤体重每天口服2.5%硫酸亚铁1ml, B方案为每公斤体重每天口服2.5%硫酸亚 铁0.5ml,C方案为每公斤体重每天口服3g 鸡肝粉,治疗一月后,记录下每名受试者血 红蛋白的上升克数,资料见下表,问三种治 疗方案对婴幼儿贫血的疗效是否相同?
A、B、C三种方案治疗婴幼儿贫血的疗效观察表
治疗方案 A n=20
血红蛋白增加量(g) 1.8 1.4 0.5 1.2 2.3 2.3 3.7 0.7 2.4 0.5 2.0 1.4 1.5 1.7 2.7 3.0 1.1 3.2 0.9 2.5
B
n=19
0.2
0.0 2.1 -0.7
0.5
1.6 1.9 1.3
q XA XB
MSe 1 1 2 nA nB
ν=νe
一、q检验
例、在前面对某地用A、B和C三种方案治疗 血红蛋白含量不满10g的婴幼儿贫血患者的 例题(完全随机设计方差分析例1)进行了 方差分析,我们得出三组总体不等的结论。 究竟哪些总体均数之间存在着差别,我们需 要在前方差分析基础之上,再对该资料作两 两比较的q检验。
随机因素是无法避免的,而实质性差异是我们 需要得到的。 如何排除随机因素的干扰,利用样本信息对总 体均数间是否存在差异作出推断?
方差分析的基本思想
按照设计类型将总变异分解为处理因素引 起的变异和随机因素造成的变异; 以处理因素变异与随机因素变异之比来构 造检验统计量F。
医学统计学(方差分析)

03
各种变异的表示方法
04
列举存在的变异及意义
各种变异的表示方法
SS总 总 MS总
SS组内 组内 MS组内
SS组间 组间 MS组间
三者之间的关系: SS总= SS组内+ SS组间 总= 组内+ 组间
F=MS组间/MS组内
自由度: 组间=组数-1
组内=N-组数
通过这个公式计算出统计量F,查表求出对应的P值,与进行比较,以确定是否为小概率事件。
01
计算 C=(Σx) 2/N=(3309.5) 2/30=365093 SS总=Σx2-C=372974.87-365093=7881.87
α=0.05
02
SS组内=SS总-SS组间=7881.87-2384.026=5497.84
Ν总=N-1=29, Ν组间=k-1=2, Ν组内=N-k=30-3=27
159.0
111.0
115.0
合计Σxij
1160
921.5
1228
3309.5(Σx)
ni
11
9
10
30(N)
均数
105.45
102.39
122.80
110.32()
糖尿病
IGT
正常人
xij
106.5
Σ
Σxij2
123509.52
144.0
105.2
124.5
117.0
109.5
105.1
110.0
96.0
76.4
109.0
115.2
95.3
103.
95.3
各种变异的表示方法
04
列举存在的变异及意义
各种变异的表示方法
SS总 总 MS总
SS组内 组内 MS组内
SS组间 组间 MS组间
三者之间的关系: SS总= SS组内+ SS组间 总= 组内+ 组间
F=MS组间/MS组内
自由度: 组间=组数-1
组内=N-组数
通过这个公式计算出统计量F,查表求出对应的P值,与进行比较,以确定是否为小概率事件。
01
计算 C=(Σx) 2/N=(3309.5) 2/30=365093 SS总=Σx2-C=372974.87-365093=7881.87
α=0.05
02
SS组内=SS总-SS组间=7881.87-2384.026=5497.84
Ν总=N-1=29, Ν组间=k-1=2, Ν组内=N-k=30-3=27
159.0
111.0
115.0
合计Σxij
1160
921.5
1228
3309.5(Σx)
ni
11
9
10
30(N)
均数
105.45
102.39
122.80
110.32()
糖尿病
IGT
正常人
xij
106.5
Σ
Σxij2
123509.52
144.0
105.2
124.5
117.0
109.5
105.1
110.0
96.0
76.4
109.0
115.2
95.3
103.
95.3
1071医学统计学方差分析基本思想

计量资料多组均数的比较
知识点:方差分析基本思想
实际案例
• 实际案例:有研究者为探讨雌激素在预防骨质疏松症的作 用,用去卵巢雌性SD大鼠建立绝经后骨质疏松症动物模型, 观察卵巢切除后补充17-雌二醇对大鼠骨量的影响。 该研究者将30只10月龄SD雌性大鼠随机分为假手术组、 卵巢切除组和卵巢切除后补充17-雌二醇组,每组10只, 12周后处死大鼠,取其股骨测定重量,结果见表7.1。
和组内(即误差)变异。
组间变异
组内变异
总变异
(1)总变异:30只大鼠股骨重量的大小不同所引 起的总变异程度,这种变异称为总变异(total variation),其大小用全部观察值与总均数间的 离差的平方和,即离均差平方和(sum of squares of deviations from mean,SS)表示,记为SS总。
反之,若各组的总体均数不同,即处理因素有效 应),此时组间均方应明显大于误差均方,即MS 组间> MS误差,F > 1 。
F值要大到何种程度才有统计学意义,可以通过查 F界值表(方差分析用表)确定P值,作出统计推断。
用组内各鼠的股骨重量与该组均数的离差的平方和 表示(也称误差平方和),记为SS组内(误差),计算公式为
∑∑ k ni
SS误差 = SS组内 =
( xij - X i )2 ,
i=1 j=1
ν误 = ν组内 = N - k
• 以单因素方差分析为例:将总变异和自由度分别 进行分解
SS总 SS组间 SS组内
它反映了实验处理因素引起的变异,也包括了随机 误差引起的变异。
其大小用各组均数与总均数的离差的平方和表示, 记为SS组间,计算公式为:
∑k
SS组间 = ni( X i - X )2 ,
知识点:方差分析基本思想
实际案例
• 实际案例:有研究者为探讨雌激素在预防骨质疏松症的作 用,用去卵巢雌性SD大鼠建立绝经后骨质疏松症动物模型, 观察卵巢切除后补充17-雌二醇对大鼠骨量的影响。 该研究者将30只10月龄SD雌性大鼠随机分为假手术组、 卵巢切除组和卵巢切除后补充17-雌二醇组,每组10只, 12周后处死大鼠,取其股骨测定重量,结果见表7.1。
和组内(即误差)变异。
组间变异
组内变异
总变异
(1)总变异:30只大鼠股骨重量的大小不同所引 起的总变异程度,这种变异称为总变异(total variation),其大小用全部观察值与总均数间的 离差的平方和,即离均差平方和(sum of squares of deviations from mean,SS)表示,记为SS总。
反之,若各组的总体均数不同,即处理因素有效 应),此时组间均方应明显大于误差均方,即MS 组间> MS误差,F > 1 。
F值要大到何种程度才有统计学意义,可以通过查 F界值表(方差分析用表)确定P值,作出统计推断。
用组内各鼠的股骨重量与该组均数的离差的平方和 表示(也称误差平方和),记为SS组内(误差),计算公式为
∑∑ k ni
SS误差 = SS组内 =
( xij - X i )2 ,
i=1 j=1
ν误 = ν组内 = N - k
• 以单因素方差分析为例:将总变异和自由度分别 进行分解
SS总 SS组间 SS组内
它反映了实验处理因素引起的变异,也包括了随机 误差引起的变异。
其大小用各组均数与总均数的离差的平方和表示, 记为SS组间,计算公式为:
∑k
SS组间 = ni( X i - X )2 ,
医学统计学方差分析

SS误差 = SS总- SS处理- SS区组
处理=k-1,
区组= b-1
(1)F处理= MS处理/ MS误差 (2) F区组= MS区组/ MS误差
误差= 总 - 处理- 区组
(1) H0: 三种方法治疗后血红蛋白增加量总体均数相等 H1: ……不等或不全相等
(2) H0:各区组血红蛋白增加量总体均数相等 H1: ……不等或不全相等
问题
某医师用A、B和C三种方案治疗婴幼儿贫血患 者,治疗一个月后,血红蛋白的增加克数如下表,问三 种治疗方案对婴幼儿贫血的疗效是否相同?
表 5 .1 三 种 方 案 治 疗 后 血 红 蛋 白 增 加 量 ( g / L )
A
B
C
24
20
20
36
18
11
25
17
6
14
10
3
26
19
0
34
24
-1
23
4
5
合计
n
7
6
8
21
Σ jΧ
182
108
48
338
Σ jΧ 2
5054
2050
608
7712
X
26
18
6
22.8
第四章 方差分析
Analysis of variance ANOVA
第四章 方差分析
•方差分析的基本思想
•应用与资料要求 • 完全随机设计资料的方差分析 •随机区组设计资料的方差分析 •拉丁方设计资料的方差分析 •交叉设计资料的方差分析 •多个样本均数间的多重比较 •析因设计资料的方差分析 •正交设计资料的方差分析 •多元方差分析 •常用的数据转换方法 •课堂讨论
医学统计学 方差分析

100.66
110.31
4
367.60
5
80.57
97.90
115.76
103.56
4
397.79
6
102.77
81.20
90.30
138.54
4
412.81
ni
6
6
6
6
24( n )
Xi
550.01
537.30
618.19
726.28
2431.78( X )
Xi
91.67
89.55
103.03
2 =32 得: F0.05(2,32) 3.30, F0.01(2,32) 5.34 ,P<0.01。按 =0.05 水准,拒绝 H0 ,
差别有统计学意义,可以认为喂养三种不同饲料的大鼠红细胞数的总体均数不 全相同。
随机区组设计的两因素方差分析
例9.2 利用随机区组设计研究不同温
度对家兔血糖浓度的影响,某研究者进行 了如下实验:将 24只家兔按窝别配成6个 区组, 每组 4 只, 分别随机分配到温度 15℃、 20℃、 25℃、 30℃的4个处理组 中,测量家兔的血糖浓度值(mmol/L),结 果如下表9.4所示,分析4种温度下测量家 兔的血糖浓度值是否不同?
23
3742.5521
3
1247.5174 8.2717
1491.2744
5
298.2549 1.9776
2262.2511
15
150.8167
P
<0.01 >0.05
3. 确定 P 值,作出统计推断
根据处理组 F 值的分子的自由度处理 ,分母的自由度 误差 ;区组 F 值的分子的 自由度区组 ,分母的自由度 误差 查 F 界值表(附表 4),得到处理组和区组的 P 值。 根据表 9.6,按 =0.05 水准,对于不同区组间,不拒绝 H0 ,尚不能认为不同窝 别家兔血糖浓度值不同;对于不同处理组间,拒绝 H0 ,接受 H1 ,差异具有统 计学意义,可以认为 4 种温度下家兔血糖浓度值不全相同,即处理组 4 个总体 均数中至少有 2 个不同。
医学统计学(课件)方差分析

要点二
原理
通过将因变量和协变量之间的关系线 性化,进行线性回归分析,并控制其 他因素的影响。
要点三
应用
医学研究中用于研究疾病与基因型、 环境因素之间的关系,社会科学中用 于研究收入和教育水平的关系等。
多重比较方法
01
定义
多重比较方法是方差分析的一种补充 方法,用于比较多个组之间的差异。
02
原理
通过比较每个组与对照组或其他组之 间的差异,推断各组之间的差异是否 具有统计学显著性。
重复测量方差分析
定义
重复测量方差分析是方差分析的另一种拓展,用于比较多次测量或重复观测的差异。
原理
通过将多次测量视为不同的观察对象,对测量误差进行控制和调整。
应用
医学研究中常用于比较不同治疗方案的效果,以及社会科学中研究时间序列数据的变化等。
协方差分析
要点一
定义
协方差分析是方差分析与其他统计方 法的结合,通过控制一个或多个协变 量对因变量的影响。
偏度检验
检查数据分布的偏斜程度。
峰度检验
检查数据分布的峰态。
正态性检验
通过图形和统计量判断数据是否符合正态分布。
方差齐性检验
• 方差齐性检验:通过Levene's Test或Bartlett's Test检验各组方差是否相等。
主效应检验
将数据按照分组变量进行分组,并 对每个分组变量的平均值进行计算 。
方差分析还可以与其他统计方法结合 使用,例如与回归分析结合可进行协 方差分析和混合线性模型分析等。
02
方差分析基本原理
数学模型
数学模型的假设
假定每个总体均数之间有差异,且每个总体均数与模型中其他变量的关系已知。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SS总
k
i 1
ni
(
j 1
xij
x)2
x 2
(x)2
/
n
总 n1
总变异=方差=SS总/ν总 2 ( X )2 s2 ( X X )2
N
n1
10
(2)组间变异及自由度
方差分析基本思想
组间变异:4组家兔血清ACE浓度的均数各不相同
原因:处理因素、个体差异和随机测量误差
x 组间离均差平方和为各组样本均数( xi )与总均数( )
3
方差分析的提出
❖ 为了有效地控制Ⅰ型错误,多 个样本均数比较时不宜用 t 检 验和 u 检验,而宜用方差分析。
❖ 方差分析(analysis of variance, ANOVA)由英国统计学家 R.A.Fisher首先提出,以F命名 其统计量,故方差分析又称F 检验。
4
一、方差分析的基本思想
( xi )差值的平方和之和。
k ni
SS组内
i 1
(
j 1
xij
xi
)2
组内=n k
组内变异=MS组内=SS组内/ν组内
12
三种“变异”之间的关系
数理统计证明:
SS总 SS组间 SS组内
总 组间 组内
13
均方之比=F value
方差分析的检验统计量:F MS 组间 / MS 组内
H0:各组样本的总体均数相等; H1:各组样本的总体均数不等或不全相等; 如果H0 成立,即各处理组的样本来自相同的总体,无 处理因素的作用,则组间变异同组内变异一样,只反 映随机误差作用的大小。 F值接近于l,就没有理由拒绝H0;反之,F值越大, 拒绝H0的理由越充分。 数理统计理论证明,当H0成立时,F统计量服从F分布。
差值的平方和,反映了各组均数间的变异程度。
k
SS组间
i 1
ni
( xi
x)2
SS组间
k
(
ni
j 1
xij )2
n i1 i
C
组间变异=MS组间=SS组间/ν组间
组间 k 1
11
(3)组内变异及自由度
方差分析基本思想
组内变异:组内不同家兔血清ACE浓度各不相同 原因:个体差异和随机测量误差
组内离均差平方和为各处理组内观察值与其均数
F MS 组间 / MS 组内
17
★方差分析的应用条件
多个样本均数比较的方差分析应用条件为 ①各样本是相互独立的随机样本; ②各样本来自正态分布总体; ③各总体方差相等,即方差齐。
18
★方差分析的用途
①两个或多个样本均数间的比较; ②分析两个或多个因素间的交互作用; ③回归方程的线性假设检验; ④多元线性回归分析中偏回归系数的假设检验。
7
方差分析基本思想
方差分析
以完全随机设计资料为例说明各部分变异的计 算方法。 将n个受试对象随机分为 k 组,分别接受不同 的处理。 归纳整理数据的格式、符号如下表:
8
完全随机设计资料的数据格式与符号
x ij
合计
1
x 11 x12
…
x 1n1
n1
j 1
x1
j
处理组 i
2
3 …k
x 21
x 31
…
19
二、完全随机设计资料的方差分析
完全随机设计(completely random design)资料的 方差分析,亦称单因素方差分析(one-way ANOVA)。 应用:用于完全随机设计的多个样本均数比较 的资料。 研究目的:分析不同处理因素间或某处理因素 不同水平间有无差异,不考虑个体差异的影响。
14
F 分布曲线
1.4 f( F)
1.2
1 1, 2 5
1.0
0.8
1 5, 2 5
0.6 0.4
1 10, 2 10
0.2
0.0
0
1
2F
3
4
P 值的判断
以完全随机设计的方差分析为例,设 0.05, 1 组间 , 2= 组内 ,以 1 、 2 查 F 界值表:
F F0.05(1, 2 ) , P 0.05 F F0.05(1, 2 ) , P 0.05
25.46 38.79 13.55 19.45 34.56 10.96 48.23
329.92 372.59
229.17 191.00
6 54.99
6 62.10
7 32.74
7 27.29
18720.97 23758.12 8088.59 6355.43
1122.68( x )
26( n )
43.18( x ) 56923.11( x 2 )
方差分析
统计资料分析思路
资料分析
分类变量资料
统计描述
数值变量资料
统计推断 统计描述
指标描述 图表描述
统计推断
参数估计
u 、t检验
假设检验 方差分析
2
方差分析的提出
t 检验和 u 检验适用于两均数的比较。若多个样
本均数的比较仍用 t 检验或 u 检验时,需比较
次
(
k 2
)
k!/[2!(k
2)!]
,如4个样本均数需比较
(42 ) 4!/[2!(4 2)!] 6 次。
假设每次比较的检验水准 0.05 ,则每次检
验拒绝 H0 时不犯Ⅰ型错误的概率为 1- 0.05 = 0.95;那么6次检验均不犯Ⅰ型错误的
概率为 (1 0.05)6 0.7351,而犯Ⅰ型错误的概
率为0.2649。
基本思想 应用条件 用途
5
方差分析基本思想
例 某军区总医院欲研究A、B、C 3种降血脂药物 对家兔血清肾素-血管紧张素转化酶(ACE)的影 响,将26只家兔随机分为4组,均喂以高脂饮食, 其中3个实验组,分别给予不同的降血脂药物, 对照组不给药。一定时间后测定家兔血清ACE浓 度(u/ml),问4组家兔血清ACE浓度是否相同?
6
表 5-1 对照组及各实验组家兔血清 ACE 浓度(U/ml)
ni
j 1
xij
ni
xi
ni
j 1
xi2j
对照组
61.24 58.65 46.79 37.43 66.54 5脂药 C 降脂药
82.35 56.47 61.57 48.79 62.54 60.87
26.23 46.87 24.36 38.54 42.16 30.33 20.68
x k1
x 22
x 32
…
xk2
…
………
x 2n2
x 3n3
…
x knk
n2
j 1
x
2
j
n3
nk
j 1
x3
j
…
j 1
x
kj
ni
n1
n2
n3
…
nk
9
(1)总变异及自由度
方差分析基本思想
总变异:26只家兔的血清ACE浓度不尽相同 原因:处理因素、个体差异和随机测量误差 总变异的离均差平方和(sum of squares, SS )为各变 量值与总均数差值的平方和。
16
★方差分析的基本思想
按研究目的和设计类型,将总变异的离均差平方
和SS和自由度分别分解成若干部分,并求得各
相应部分的变异;其中的组内变异或误差主要反 映个体差异或测量误差,其它部分的变异与之比 较得出统计量F值,由F值的大小确定P值,并做
出统计推断。SS总 SS组间 SS组内 总 组间 组内