医学统计学(方差分析)
合集下载
医学统计学 -第08章 方差分析

第一节 方差分析的基本思想
看一个例子
例8-1 为研究钙离子对体重的影响作用,某研究者将36 只肥胖模型大白鼠随机分为三组,每组12只,分别给 予高脂正常剂量钙(0.5%)、高脂高剂量钙(1.0%)和高 脂高剂量钙(1.5%)三种不同的饲料,喂养9周,测其 喂养前后体重的差值。问三组不同喂养方式下大白鼠 体重改变是否不同?
• 三种喂养方式体重改变的平均值各不相同,这种变异 称为组间变异
•
是组内均值
X
与总均值
i
X
之差的平方和
360
340
组间变异反映了:
320
三种喂养方式的差异(影响), 300
同时也包含了随机误差。
280
260
240
k ni
220
SS组间
(Xi X )2
200
i1 j
180
X甲
X
X乙
X丙
甲
乙
丙
3、组内变异(SS组内,variation within groups)
0.05
2、根据公式计算SS、MS及F值,列于方差分析表内(计 算过程省略)
变异来源 总变异 组间 组内(误差)
完全随机设计的方差分析表
平方和 SS 自由度
均方MS
47758.32
35
31291.67
2
15645.83
16466.65
33
498.99
F值
31.36
3、确定P值,作出判断
分子自由度=k-1=2,分母自由度=n-k=33,查F 界值表(方差分析用)
表 8-1 三种不同喂养方式下大白鼠体重喂养前后差值(g)
正常钙(0.5%) 高剂量钙(1.0%) 高剂量钙(1.5%)
医学统计学方差分析(ANOVA)

方差分析是为了比较多个总体样本均数是否存在差别。
该方法有RA.Fisher首先提出,后来由GW.Snedecor完善,为了纪念Fisher,故称方差分析为F检验。
组间均方:MS组间=SS组间/ v组间,SS代表离均差平方和,v代表自由度,组间变异包括处理效应和随机误差。
组内均方:MS组内=SS组内/ v组内,组内差异包括随机误差。
F=MS组间/MS组内,F接近1,说明组间差异不大。
方差分析的基本思想,首先将总变异分为组间和组内变异,然后计算两者的F 值。
F值越大,说明组间差异大,处理起作用,反之,则不起作用,是由随机误差导致的。
方差分析应用条件:1)样本独立;2)来自正态总体;3)方差齐性。
方差分析包括完全随机设计(completely random design)的方差分析,又叫单向(one-way)方差分析和随机区组设计(radomized block design)的方差分析又叫双向(two-way)方差分析。
完全随机设计的方差分析是将受试对象随机化的分配到各个处理组或对照组的方法,未考虑干扰因素的影响,各个组的样本数可以不一样多。
随机区组设计的方差分析将受试对象按照性质相同或相近组成b个区组,每个区组有g个受试对象,分别随机分配到g个处理组,这样各个处理组不仅样本个数相同,生物学特性也比较均衡。
方差分析拒绝H0,接受H1,只说明g个总体均数不全相等,如果想要进一步了解那两个组均数不等,需要进行两两比较或称多重比较,即post-hoc检验。
ANOVA与T test的关系:.。
医学统计学-8-方差分析

第二节 单因素方差分析
单因素方差分析
单因素方差分析:研究的是一个处理因素的 不同水平间效应的差别。
处 理 因 素
水平1 水平2 水平1 水平2 水平c
单因素方差分析
例1、某地用A、B和C三种方案治疗血红蛋 白含量不满10g的婴幼儿贫血患者,A方案 为每公斤体重每天口服2.5%硫酸亚铁1ml, B方案为每公斤体重每天口服2.5%硫酸亚 铁0.5ml,C方案为每公斤体重每天口服3g 鸡肝粉,治疗一月后,记录下每名受试者血 红蛋白的上升克数,资料见下表,问三种治 疗方案对婴幼儿贫血的疗效是否相同?
A、B、C三种方案治疗婴幼儿贫血的疗效观察表
治疗方案 A n=20
血红蛋白增加量(g) 1.8 1.4 0.5 1.2 2.3 2.3 3.7 0.7 2.4 0.5 2.0 1.4 1.5 1.7 2.7 3.0 1.1 3.2 0.9 2.5
B
n=19
0.2
0.0 2.1 -0.7
0.5
1.6 1.9 1.3
q XA XB
MSe 1 1 2 nA nB
ν=νe
一、q检验
例、在前面对某地用A、B和C三种方案治疗 血红蛋白含量不满10g的婴幼儿贫血患者的 例题(完全随机设计方差分析例1)进行了 方差分析,我们得出三组总体不等的结论。 究竟哪些总体均数之间存在着差别,我们需 要在前方差分析基础之上,再对该资料作两 两比较的q检验。
随机因素是无法避免的,而实质性差异是我们 需要得到的。 如何排除随机因素的干扰,利用样本信息对总 体均数间是否存在差异作出推断?
方差分析的基本思想
按照设计类型将总变异分解为处理因素引 起的变异和随机因素造成的变异; 以处理因素变异与随机因素变异之比来构 造检验统计量F。
医学统计学(方差分析)

03
各种变异的表示方法
04
列举存在的变异及意义
各种变异的表示方法
SS总 总 MS总
SS组内 组内 MS组内
SS组间 组间 MS组间
三者之间的关系: SS总= SS组内+ SS组间 总= 组内+ 组间
F=MS组间/MS组内
自由度: 组间=组数-1
组内=N-组数
通过这个公式计算出统计量F,查表求出对应的P值,与进行比较,以确定是否为小概率事件。
01
计算 C=(Σx) 2/N=(3309.5) 2/30=365093 SS总=Σx2-C=372974.87-365093=7881.87
α=0.05
02
SS组内=SS总-SS组间=7881.87-2384.026=5497.84
Ν总=N-1=29, Ν组间=k-1=2, Ν组内=N-k=30-3=27
159.0
111.0
115.0
合计Σxij
1160
921.5
1228
3309.5(Σx)
ni
11
9
10
30(N)
均数
105.45
102.39
122.80
110.32()
糖尿病
IGT
正常人
xij
106.5
Σ
Σxij2
123509.52
144.0
105.2
124.5
117.0
109.5
105.1
110.0
96.0
76.4
109.0
115.2
95.3
103.
95.3
各种变异的表示方法
04
列举存在的变异及意义
各种变异的表示方法
SS总 总 MS总
SS组内 组内 MS组内
SS组间 组间 MS组间
三者之间的关系: SS总= SS组内+ SS组间 总= 组内+ 组间
F=MS组间/MS组内
自由度: 组间=组数-1
组内=N-组数
通过这个公式计算出统计量F,查表求出对应的P值,与进行比较,以确定是否为小概率事件。
01
计算 C=(Σx) 2/N=(3309.5) 2/30=365093 SS总=Σx2-C=372974.87-365093=7881.87
α=0.05
02
SS组内=SS总-SS组间=7881.87-2384.026=5497.84
Ν总=N-1=29, Ν组间=k-1=2, Ν组内=N-k=30-3=27
159.0
111.0
115.0
合计Σxij
1160
921.5
1228
3309.5(Σx)
ni
11
9
10
30(N)
均数
105.45
102.39
122.80
110.32()
糖尿病
IGT
正常人
xij
106.5
Σ
Σxij2
123509.52
144.0
105.2
124.5
117.0
109.5
105.1
110.0
96.0
76.4
109.0
115.2
95.3
103.
95.3
1071医学统计学方差分析基本思想

计量资料多组均数的比较
知识点:方差分析基本思想
实际案例
• 实际案例:有研究者为探讨雌激素在预防骨质疏松症的作 用,用去卵巢雌性SD大鼠建立绝经后骨质疏松症动物模型, 观察卵巢切除后补充17-雌二醇对大鼠骨量的影响。 该研究者将30只10月龄SD雌性大鼠随机分为假手术组、 卵巢切除组和卵巢切除后补充17-雌二醇组,每组10只, 12周后处死大鼠,取其股骨测定重量,结果见表7.1。
和组内(即误差)变异。
组间变异
组内变异
总变异
(1)总变异:30只大鼠股骨重量的大小不同所引 起的总变异程度,这种变异称为总变异(total variation),其大小用全部观察值与总均数间的 离差的平方和,即离均差平方和(sum of squares of deviations from mean,SS)表示,记为SS总。
反之,若各组的总体均数不同,即处理因素有效 应),此时组间均方应明显大于误差均方,即MS 组间> MS误差,F > 1 。
F值要大到何种程度才有统计学意义,可以通过查 F界值表(方差分析用表)确定P值,作出统计推断。
用组内各鼠的股骨重量与该组均数的离差的平方和 表示(也称误差平方和),记为SS组内(误差),计算公式为
∑∑ k ni
SS误差 = SS组内 =
( xij - X i )2 ,
i=1 j=1
ν误 = ν组内 = N - k
• 以单因素方差分析为例:将总变异和自由度分别 进行分解
SS总 SS组间 SS组内
它反映了实验处理因素引起的变异,也包括了随机 误差引起的变异。
其大小用各组均数与总均数的离差的平方和表示, 记为SS组间,计算公式为:
∑k
SS组间 = ni( X i - X )2 ,
知识点:方差分析基本思想
实际案例
• 实际案例:有研究者为探讨雌激素在预防骨质疏松症的作 用,用去卵巢雌性SD大鼠建立绝经后骨质疏松症动物模型, 观察卵巢切除后补充17-雌二醇对大鼠骨量的影响。 该研究者将30只10月龄SD雌性大鼠随机分为假手术组、 卵巢切除组和卵巢切除后补充17-雌二醇组,每组10只, 12周后处死大鼠,取其股骨测定重量,结果见表7.1。
和组内(即误差)变异。
组间变异
组内变异
总变异
(1)总变异:30只大鼠股骨重量的大小不同所引 起的总变异程度,这种变异称为总变异(total variation),其大小用全部观察值与总均数间的 离差的平方和,即离均差平方和(sum of squares of deviations from mean,SS)表示,记为SS总。
反之,若各组的总体均数不同,即处理因素有效 应),此时组间均方应明显大于误差均方,即MS 组间> MS误差,F > 1 。
F值要大到何种程度才有统计学意义,可以通过查 F界值表(方差分析用表)确定P值,作出统计推断。
用组内各鼠的股骨重量与该组均数的离差的平方和 表示(也称误差平方和),记为SS组内(误差),计算公式为
∑∑ k ni
SS误差 = SS组内 =
( xij - X i )2 ,
i=1 j=1
ν误 = ν组内 = N - k
• 以单因素方差分析为例:将总变异和自由度分别 进行分解
SS总 SS组间 SS组内
它反映了实验处理因素引起的变异,也包括了随机 误差引起的变异。
其大小用各组均数与总均数的离差的平方和表示, 记为SS组间,计算公式为:
∑k
SS组间 = ni( X i - X )2 ,
医学统计学方差分析

SS误差 = SS总- SS处理- SS区组
处理=k-1,
区组= b-1
(1)F处理= MS处理/ MS误差 (2) F区组= MS区组/ MS误差
误差= 总 - 处理- 区组
(1) H0: 三种方法治疗后血红蛋白增加量总体均数相等 H1: ……不等或不全相等
(2) H0:各区组血红蛋白增加量总体均数相等 H1: ……不等或不全相等
问题
某医师用A、B和C三种方案治疗婴幼儿贫血患 者,治疗一个月后,血红蛋白的增加克数如下表,问三 种治疗方案对婴幼儿贫血的疗效是否相同?
表 5 .1 三 种 方 案 治 疗 后 血 红 蛋 白 增 加 量 ( g / L )
A
B
C
24
20
20
36
18
11
25
17
6
14
10
3
26
19
0
34
24
-1
23
4
5
合计
n
7
6
8
21
Σ jΧ
182
108
48
338
Σ jΧ 2
5054
2050
608
7712
X
26
18
6
22.8
第四章 方差分析
Analysis of variance ANOVA
第四章 方差分析
•方差分析的基本思想
•应用与资料要求 • 完全随机设计资料的方差分析 •随机区组设计资料的方差分析 •拉丁方设计资料的方差分析 •交叉设计资料的方差分析 •多个样本均数间的多重比较 •析因设计资料的方差分析 •正交设计资料的方差分析 •多元方差分析 •常用的数据转换方法 •课堂讨论
医学统计学 方差分析
100.66
110.31
4
367.60
5
80.57
97.90
115.76
103.56
4
397.79
6
102.77
81.20
90.30
138.54
4
412.81
ni
6
6
6
6
24( n )
Xi
550.01
537.30
618.19
726.28
2431.78( X )
Xi
91.67
89.55
103.03
2 =32 得: F0.05(2,32) 3.30, F0.01(2,32) 5.34 ,P<0.01。按 =0.05 水准,拒绝 H0 ,
差别有统计学意义,可以认为喂养三种不同饲料的大鼠红细胞数的总体均数不 全相同。
随机区组设计的两因素方差分析
例9.2 利用随机区组设计研究不同温
度对家兔血糖浓度的影响,某研究者进行 了如下实验:将 24只家兔按窝别配成6个 区组, 每组 4 只, 分别随机分配到温度 15℃、 20℃、 25℃、 30℃的4个处理组 中,测量家兔的血糖浓度值(mmol/L),结 果如下表9.4所示,分析4种温度下测量家 兔的血糖浓度值是否不同?
23
3742.5521
3
1247.5174 8.2717
1491.2744
5
298.2549 1.9776
2262.2511
15
150.8167
P
<0.01 >0.05
3. 确定 P 值,作出统计推断
根据处理组 F 值的分子的自由度处理 ,分母的自由度 误差 ;区组 F 值的分子的 自由度区组 ,分母的自由度 误差 查 F 界值表(附表 4),得到处理组和区组的 P 值。 根据表 9.6,按 =0.05 水准,对于不同区组间,不拒绝 H0 ,尚不能认为不同窝 别家兔血糖浓度值不同;对于不同处理组间,拒绝 H0 ,接受 H1 ,差异具有统 计学意义,可以认为 4 种温度下家兔血糖浓度值不全相同,即处理组 4 个总体 均数中至少有 2 个不同。
医学统计学--方差分析
笃学
精业
修德
6
厚生
2)组间变异
各处理组间的均数大小也不同,这种变异称 为组间变异。其大小可用组间均数与总均数的 离均差平方和表示:
k
SS组间 ni(xi x)2 i1
自由度 组间k1
笃学
精业
修德
7
厚生
3)组内变异 各处理组内部观察值也大小不等,这种变异称
为组内变异。其大小可用个体观察值与组均数的
பைடு நூலகம்i1 j1
i1 j1
k
k ni
ni(xi x)2
(xij xi)2
i1
i1 j1
ss组间ss组内
总 = N-1= (k-1)+(N-k) = 组间+组内
笃学
精业
修德
9
厚生
通过上述分解可以看出,方差分析的基本思想 就是根据资料的设计类型,将全部观测值的总 变异按影响结果的诸因素分解为相应的若干部 分变异,构造出反映各部分变异作用的统计量, 在此基础上,构建假设检验统计量,以实现对 总体参数的推断。
=0.05
(2) 计算检验统计量F值; (3) 查F界值表、确定P值并作出推断结果。
笃学
精业
修德
16
厚生
第二节 完全随机设计的方差分析
完全随机设计(completely random design) 不考虑个体差异的影响,仅涉及一个处理因素, 所以亦称单因素实验设计或单因素方差分析 (one-way ANOVA)。在实验研究中按随机化原 则将受试对象随机分配到一个处理因素的多个 水平中去,然后观察各组的试验效应;
笃学
精业
修德
11
厚生
F MS 组间 MS 组内
医学统计学(课件)方差分析
要点二
原理
通过将因变量和协变量之间的关系线 性化,进行线性回归分析,并控制其 他因素的影响。
要点三
应用
医学研究中用于研究疾病与基因型、 环境因素之间的关系,社会科学中用 于研究收入和教育水平的关系等。
多重比较方法
01
定义
多重比较方法是方差分析的一种补充 方法,用于比较多个组之间的差异。
02
原理
通过比较每个组与对照组或其他组之 间的差异,推断各组之间的差异是否 具有统计学显著性。
重复测量方差分析
定义
重复测量方差分析是方差分析的另一种拓展,用于比较多次测量或重复观测的差异。
原理
通过将多次测量视为不同的观察对象,对测量误差进行控制和调整。
应用
医学研究中常用于比较不同治疗方案的效果,以及社会科学中研究时间序列数据的变化等。
协方差分析
要点一
定义
协方差分析是方差分析与其他统计方 法的结合,通过控制一个或多个协变 量对因变量的影响。
偏度检验
检查数据分布的偏斜程度。
峰度检验
检查数据分布的峰态。
正态性检验
通过图形和统计量判断数据是否符合正态分布。
方差齐性检验
• 方差齐性检验:通过Levene's Test或Bartlett's Test检验各组方差是否相等。
主效应检验
将数据按照分组变量进行分组,并 对每个分组变量的平均值进行计算 。
方差分析还可以与其他统计方法结合 使用,例如与回归分析结合可进行协 方差分析和混合线性模型分析等。
02
方差分析基本原理
数学模型
数学模型的假设
假定每个总体均数之间有差异,且每个总体均数与模型中其他变量的关系已知。
医学统计学方差分析
方差分析基于以下假设:观察值之间相互独立;每个组内的观察值服从正态分布;每个组内的观察值具有相同的方差。
定义与原理
方差分析适用于多个组间的均值比较。当数据不符合正态分布或方差不齐时,可以经过适当的转换或采用非参数方法进行比较。
方差分析可以用于实验设计中的多因素分析,例如研究不同药物、剂量、时间等因素对生物指标的影响。
方差分析的数学模型与假设
02
线性模型
方差分析常用于处理一个或多个分组间的均值差异,因此需要构建线性模型来描述数据。线性模型中,每个组的观察值与该组的均值呈线性关系。
随机误差项
在方差分析中,每个观察值被认为是由固定效应(组均值)和随机效应(随机误差项)组成的。随机误差项是随机变量,且独立同分布,服从正态分布。
《医学统计学方差分析》
xx年xx月xx日
CATALOGUE
目录
方差分析概述方差分析的数学模型与假设方差分析的步骤与实例方差分析的优缺点与注意事项方差分析在医学中的应用与案例方差分析的发展趋势与未来展望
方差分析概述
01
方差分析(ANOVA)是一种统计方法,用于比较三个或更多组数据的均值差异。其原理是通过将数据的总变异分解为组间变异和组内变异,然后比较这两部分的变异是否具有显著性。
要点一
要点二
精度高
方差分析通过将每个观察值与各组均值进行比较,能够更准确地确定组间差异。
适用于多因素分析
方差分析可以同时考虑多个因素对实验结果的影响,适用于多因素的研究设计。
要点三
缺点
对数据正态性和独立性要求较高
方差分析要求数据符合正态分布,且各组观察值独立,否则可能导致分析结果的偏差。
对样本含量要求较高
方差分析对样本含量要求较高,样本含量过小可能导致统计效能较低。
定义与原理
方差分析适用于多个组间的均值比较。当数据不符合正态分布或方差不齐时,可以经过适当的转换或采用非参数方法进行比较。
方差分析可以用于实验设计中的多因素分析,例如研究不同药物、剂量、时间等因素对生物指标的影响。
方差分析的数学模型与假设
02
线性模型
方差分析常用于处理一个或多个分组间的均值差异,因此需要构建线性模型来描述数据。线性模型中,每个组的观察值与该组的均值呈线性关系。
随机误差项
在方差分析中,每个观察值被认为是由固定效应(组均值)和随机效应(随机误差项)组成的。随机误差项是随机变量,且独立同分布,服从正态分布。
《医学统计学方差分析》
xx年xx月xx日
CATALOGUE
目录
方差分析概述方差分析的数学模型与假设方差分析的步骤与实例方差分析的优缺点与注意事项方差分析在医学中的应用与案例方差分析的发展趋势与未来展望
方差分析概述
01
方差分析(ANOVA)是一种统计方法,用于比较三个或更多组数据的均值差异。其原理是通过将数据的总变异分解为组间变异和组内变异,然后比较这两部分的变异是否具有显著性。
要点一
要点二
精度高
方差分析通过将每个观察值与各组均值进行比较,能够更准确地确定组间差异。
适用于多因素分析
方差分析可以同时考虑多个因素对实验结果的影响,适用于多因素的研究设计。
要点三
缺点
对数据正态性和独立性要求较高
方差分析要求数据符合正态分布,且各组观察值独立,否则可能导致分析结果的偏差。
对样本含量要求较高
方差分析对样本含量要求较高,样本含量过小可能导致统计效能较低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19名要求持续镇痛的病人被随机分到四组,接受同剂量的吗 啡,6小时后测量血中游离吗啡水平,问四组之间有无差别?
静脉点滴 肌肉注射 皮下注射
口服
12
12
9
12
已知多组样本的信息 10
16
7
8
推断多个总体的信息 7
15
6
8
(均数)
8
9
11
10
9
7
14
均数
10
13
8
9.5
总体-样本? 用什么检验方法?
问题:1、分析问题,选择合适的统计方法 2、如何整理资料、输入计算机
.
.
列举存在的变异及意义
全部的30个实验数据之间大小不等,存在变异, 总变异。
各个组间存在变异:反映处理因素之间的作用, 以及随机误差。
各个组内个体间数据不同:反映了观察值的随 机误差。
各种变异的表示方法
.
各种变异的表示方法
单因素方差分析
.
结合上题理解:方差分析的基本思想
将全部观察值总的离均差平方和( SS总)及自
由度( 总)分解为两个或多个部分
除随机误差外,其余每个部分的变异可由某个 因素的作用加以解释
通过比较不同来源变异的均方(MS),借助F 分布做出统计推断,从而了解该因素对观察指 标有无影响。
.
存在问题
.
SS组内=SS总-SS组间=7881.87-2384.026=5497.84 Ν总=N-1=29, Ν组间=k-1=2, Ν组内=N-k=30-3=27 MS组间=SS组间/ν组间 =1192.01 MS组内=SSE/ν组内 =203.62 F=MS组间/MS组内=5.8540
.
(3)查方差分析F界值表8确定P值: F 0.05(2,30) =3.32 ; F 0.01(2,30) =5.39
.
三、优点
① 不受比较的组数限制。 ② 可同时分析多个因素的作用。 ③ 可分析因素间的交互作用。
四、方差分析的应用条件
① 各样本是相互独立的随机样本 ② 各样本来自正态总体 ③ 各组总体方差相等,即方差齐
.
【例题1】
某社区随机抽取糖尿病患者、IGT异常和正 常人共30人进行载脂蛋白测定,结果如下, 问3种人的载脂蛋白有无差别?
(1-0.05)3=0.857
.
四均数比较作6次 (1-0.05)6=0.735 五均数比较作10次 (1-0.05)10=0.599 六均数比较作15次 (1-0.05)15=0.463 鉴于以上的原因,对多组均数的比较问题
我们采用方差分析
.
二、单因素方差分析的基本思想
例1 某克山病区测得11例克山病患者与13名健康 人的血磷值(mmol/L)如下,问该地急性克 山病患者与健康人的血磷值是否不同?
(1) 建立假设,确定检验水准
H0: 任2个人群的载脂蛋白的总体均数相等,即μA=μB H1: μA≠μB , =0.05。 (2) 样本均数排序
将3组样本均数从小到大(或从大到小)顺序排列,编上 组次,并注上组别.
组次
1
2
3
均数 102.39
105.45
122.80
组别 IGT异常 糖尿病患者 正常人
4个样本均数间的比较
.
多重比较方法(两两比较)
对满足正态性和方差齐性的资料: ①多个实验组分别 与一个对照组比较常用Dunnet-t法。 ②每两个均数比较 常用最小显著差值法(LSD-t)、SNK(StudentNewman-Keuls,即q检验)法、Tukey(可靠显著差异) 法、Bonferroni-t(校正最小显著差异)调整法等。
方差分析结果提供了各组均数间差别的总的信 息,但尚未提供各组间差别的具体信息,即尚 未指出哪几个组均数间的差别具有或不具有统 计学意义。
为了得到这方面的信息,可进行多个样本间的 两两比较。
.
第二节 多个样本均数间的两两比较 (又称多重比较)
多重比较即多个样本均数间的两两比较,由 于涉及的对比组数大于2,若仍用t 检验作每两个 对比组比较的结论,会使犯第一类错误的概率α 增大,即可能把本来无差别的两个总体均数判为 有差别。
.
FM M组 S组 S 间 内 =11
H0成立时 H1成立时
如果两组样本来自同一总体,即克山病患者与 健康人血磷值相同,则理论上F应等于1,因为 两种变异都只反映随机误差。由于抽样误差的 影响,F值未必是1,但应在1附近。若F较小, 我们断定2组均数相同,或者说来自同一总体, F较大,推断差分析的几个概念和符号
什么是方差? 离均差 离均差之和 离均差平方和(SS) 方差(2 S2 )也叫均方(MS) 标准差:S 自由度: 关系: MS= SS/
.
7
方差分析的几个符号
xij表示第i组第j个观察值
x i.表示第i组的均数(=
1
) xij ni j
9
9
14
均数
10
13
9
12
7
8
6
8
11
10
7
8
9.5
单因素方差分析
.
完整书写方差分析的过程
建立假设:
H0 :4组病人血浆游离吗啡水平1 = 2 = 3= 4
H1 : 4组病人血浆游离吗啡水平的总体均数全不相等或不全 相等
确定显著性水平,用 表示。区分大小概率事件的标准,常取 0.05。
计算统计量F: F=MS组间/MS组内
t
Xi Xj
,(df=dfe) (6-9)
Se2(1/ ni 1/nj )
可查统计附表7确定概率P的大小。
常用于多个样本均数间每两个均数的比较。
.
三、 Dunnett-t检验
实验组 对照组
可查统计附表9确定概率P的大小。 常用于多个实验组与一个对照组均数
间的两两比较。
.
四、Bonferroni-t检验 调整检验水准法
.
(3)列出两两均数比较的q检验计算表
从p值一栏中可以推断出结论,即IGT异常(1)与正常人 (3)的载脂蛋白有差别, 糖尿病患者(2)与正常人(3)的载 脂蛋白有差别。
.
二、LSD- t 检验
由Fisher提出,称为最小显著性差异法。 在H0:μi=μj假设下,t统计量检验μi与μj是否相同。
对不满足正态性和方差齐性的资料:①可通过数据变换, 使满足方差分析的应用条件。②可用非参数检验法,如 秩和检验。③可采用近似检验,如Tamhane's T2, Dunnett's T3,Games-Howell,Dunnett's C等方法。
.
一、q检验(又称Student-Newman-Keuls法,简称
了解:
1、两因素方差分析
.
教学内容提要
重点讲解:
方差分析的基本思想 完全随机设计的单因素方差分析 多个样本均数间的多重比较
介绍:方差分析的原理与条件
.
与前面讲过的假设检验相同的是:
不同的是:方差分析用于多个均数的比较。
t检验是用 t值进行假设检验,方差分析则用 F值进行假设检验
方差分析的任务:统计量F的计算 F=MS1/MS2
患者x1:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11
健康人x2:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
.
24名患者与健康人的血磷值大小不等,称这种 变异为总变异。可以用总离均差平方和
.
一、方差分析的意义
前一章介绍了两个样本均数比较的假设检 验方法,但对于3个、4个、5个均数或更多个的 比较,t检验或u检验就无能为力了,或许有人会 想起将几个均数两两比较分别得到结论,再将结 论综合,其实这种做法是错误的。试想假设检验 时通常检验水平α取0.05,亦即弃真概率控制在 0.05以内,但将3个均数作两两比较,要作三次 比较,可信度成为
组间 组内
(4) 作出推断结论 按α=0.05水平拒绝H0,接受H1,认为三种人载脂 蛋白的总体均数不同。
.
完整书写方差分析的过程
建立假设,确定显著性水平: H0 :3种载脂蛋白的总体均数相等 1 = 2 = 3 H1 :3种载脂蛋白的总体均数不相等或不全相等 H1与H0相反,如果H0被否决,则H1成立。
SS总=
及N来反映,总自由度 νT=N-1。
.
2个组各组内部血磷值也不等,这种变异称为 组内变异,其大小可用2组组内离均差平方和
k nj
SS组内=
(xij xi )2 =
(ni 1)si2
i1 j1
及各组例数ni来反映,自由度ν组内=N-k(k是 组数),它反映了随机误差。
.
2组样本均数也不等,这种变异称为组间变异, 反映了克山病对血磷值的影响和随机误差
常取0.05,区分大小概率事件的标准。 计算统计量F:根据资料的性质选择不同的统计方
法。注意都是在H0成立的条件下进行计算。 计算概率值P:P的含义。 做出推论:统计学结论和专业结论。
.
四组不同摄入方式人的血浆游离吗啡水平
静脉点滴 肌肉注射 皮下注射 口服
12
12
10
16
7
15
8
问3种不同营养素喂养后所增体重有无差别?
.
.
第三节 随机区组(配伍组)设计的多个样 本均数的比较(双因素方差分析)
方法:应用分层的思想,事先将全部受试对象按某种 或某些特性分为若干个区组,使每个区组内的观察对 象与研究对象的水平尽可能相近
SS总 总 MS总
SS组内 组内 MS组内
三者之间的关系:
静脉点滴 肌肉注射 皮下注射
口服
12
12
9
12
已知多组样本的信息 10
16
7
8
推断多个总体的信息 7
15
6
8
(均数)
8
9
11
10
9
7
14
均数
10
13
8
9.5
总体-样本? 用什么检验方法?
问题:1、分析问题,选择合适的统计方法 2、如何整理资料、输入计算机
.
.
列举存在的变异及意义
全部的30个实验数据之间大小不等,存在变异, 总变异。
各个组间存在变异:反映处理因素之间的作用, 以及随机误差。
各个组内个体间数据不同:反映了观察值的随 机误差。
各种变异的表示方法
.
各种变异的表示方法
单因素方差分析
.
结合上题理解:方差分析的基本思想
将全部观察值总的离均差平方和( SS总)及自
由度( 总)分解为两个或多个部分
除随机误差外,其余每个部分的变异可由某个 因素的作用加以解释
通过比较不同来源变异的均方(MS),借助F 分布做出统计推断,从而了解该因素对观察指 标有无影响。
.
存在问题
.
SS组内=SS总-SS组间=7881.87-2384.026=5497.84 Ν总=N-1=29, Ν组间=k-1=2, Ν组内=N-k=30-3=27 MS组间=SS组间/ν组间 =1192.01 MS组内=SSE/ν组内 =203.62 F=MS组间/MS组内=5.8540
.
(3)查方差分析F界值表8确定P值: F 0.05(2,30) =3.32 ; F 0.01(2,30) =5.39
.
三、优点
① 不受比较的组数限制。 ② 可同时分析多个因素的作用。 ③ 可分析因素间的交互作用。
四、方差分析的应用条件
① 各样本是相互独立的随机样本 ② 各样本来自正态总体 ③ 各组总体方差相等,即方差齐
.
【例题1】
某社区随机抽取糖尿病患者、IGT异常和正 常人共30人进行载脂蛋白测定,结果如下, 问3种人的载脂蛋白有无差别?
(1-0.05)3=0.857
.
四均数比较作6次 (1-0.05)6=0.735 五均数比较作10次 (1-0.05)10=0.599 六均数比较作15次 (1-0.05)15=0.463 鉴于以上的原因,对多组均数的比较问题
我们采用方差分析
.
二、单因素方差分析的基本思想
例1 某克山病区测得11例克山病患者与13名健康 人的血磷值(mmol/L)如下,问该地急性克 山病患者与健康人的血磷值是否不同?
(1) 建立假设,确定检验水准
H0: 任2个人群的载脂蛋白的总体均数相等,即μA=μB H1: μA≠μB , =0.05。 (2) 样本均数排序
将3组样本均数从小到大(或从大到小)顺序排列,编上 组次,并注上组别.
组次
1
2
3
均数 102.39
105.45
122.80
组别 IGT异常 糖尿病患者 正常人
4个样本均数间的比较
.
多重比较方法(两两比较)
对满足正态性和方差齐性的资料: ①多个实验组分别 与一个对照组比较常用Dunnet-t法。 ②每两个均数比较 常用最小显著差值法(LSD-t)、SNK(StudentNewman-Keuls,即q检验)法、Tukey(可靠显著差异) 法、Bonferroni-t(校正最小显著差异)调整法等。
方差分析结果提供了各组均数间差别的总的信 息,但尚未提供各组间差别的具体信息,即尚 未指出哪几个组均数间的差别具有或不具有统 计学意义。
为了得到这方面的信息,可进行多个样本间的 两两比较。
.
第二节 多个样本均数间的两两比较 (又称多重比较)
多重比较即多个样本均数间的两两比较,由 于涉及的对比组数大于2,若仍用t 检验作每两个 对比组比较的结论,会使犯第一类错误的概率α 增大,即可能把本来无差别的两个总体均数判为 有差别。
.
FM M组 S组 S 间 内 =11
H0成立时 H1成立时
如果两组样本来自同一总体,即克山病患者与 健康人血磷值相同,则理论上F应等于1,因为 两种变异都只反映随机误差。由于抽样误差的 影响,F值未必是1,但应在1附近。若F较小, 我们断定2组均数相同,或者说来自同一总体, F较大,推断差分析的几个概念和符号
什么是方差? 离均差 离均差之和 离均差平方和(SS) 方差(2 S2 )也叫均方(MS) 标准差:S 自由度: 关系: MS= SS/
.
7
方差分析的几个符号
xij表示第i组第j个观察值
x i.表示第i组的均数(=
1
) xij ni j
9
9
14
均数
10
13
9
12
7
8
6
8
11
10
7
8
9.5
单因素方差分析
.
完整书写方差分析的过程
建立假设:
H0 :4组病人血浆游离吗啡水平1 = 2 = 3= 4
H1 : 4组病人血浆游离吗啡水平的总体均数全不相等或不全 相等
确定显著性水平,用 表示。区分大小概率事件的标准,常取 0.05。
计算统计量F: F=MS组间/MS组内
t
Xi Xj
,(df=dfe) (6-9)
Se2(1/ ni 1/nj )
可查统计附表7确定概率P的大小。
常用于多个样本均数间每两个均数的比较。
.
三、 Dunnett-t检验
实验组 对照组
可查统计附表9确定概率P的大小。 常用于多个实验组与一个对照组均数
间的两两比较。
.
四、Bonferroni-t检验 调整检验水准法
.
(3)列出两两均数比较的q检验计算表
从p值一栏中可以推断出结论,即IGT异常(1)与正常人 (3)的载脂蛋白有差别, 糖尿病患者(2)与正常人(3)的载 脂蛋白有差别。
.
二、LSD- t 检验
由Fisher提出,称为最小显著性差异法。 在H0:μi=μj假设下,t统计量检验μi与μj是否相同。
对不满足正态性和方差齐性的资料:①可通过数据变换, 使满足方差分析的应用条件。②可用非参数检验法,如 秩和检验。③可采用近似检验,如Tamhane's T2, Dunnett's T3,Games-Howell,Dunnett's C等方法。
.
一、q检验(又称Student-Newman-Keuls法,简称
了解:
1、两因素方差分析
.
教学内容提要
重点讲解:
方差分析的基本思想 完全随机设计的单因素方差分析 多个样本均数间的多重比较
介绍:方差分析的原理与条件
.
与前面讲过的假设检验相同的是:
不同的是:方差分析用于多个均数的比较。
t检验是用 t值进行假设检验,方差分析则用 F值进行假设检验
方差分析的任务:统计量F的计算 F=MS1/MS2
患者x1:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11
健康人x2:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
.
24名患者与健康人的血磷值大小不等,称这种 变异为总变异。可以用总离均差平方和
.
一、方差分析的意义
前一章介绍了两个样本均数比较的假设检 验方法,但对于3个、4个、5个均数或更多个的 比较,t检验或u检验就无能为力了,或许有人会 想起将几个均数两两比较分别得到结论,再将结 论综合,其实这种做法是错误的。试想假设检验 时通常检验水平α取0.05,亦即弃真概率控制在 0.05以内,但将3个均数作两两比较,要作三次 比较,可信度成为
组间 组内
(4) 作出推断结论 按α=0.05水平拒绝H0,接受H1,认为三种人载脂 蛋白的总体均数不同。
.
完整书写方差分析的过程
建立假设,确定显著性水平: H0 :3种载脂蛋白的总体均数相等 1 = 2 = 3 H1 :3种载脂蛋白的总体均数不相等或不全相等 H1与H0相反,如果H0被否决,则H1成立。
SS总=
及N来反映,总自由度 νT=N-1。
.
2个组各组内部血磷值也不等,这种变异称为 组内变异,其大小可用2组组内离均差平方和
k nj
SS组内=
(xij xi )2 =
(ni 1)si2
i1 j1
及各组例数ni来反映,自由度ν组内=N-k(k是 组数),它反映了随机误差。
.
2组样本均数也不等,这种变异称为组间变异, 反映了克山病对血磷值的影响和随机误差
常取0.05,区分大小概率事件的标准。 计算统计量F:根据资料的性质选择不同的统计方
法。注意都是在H0成立的条件下进行计算。 计算概率值P:P的含义。 做出推论:统计学结论和专业结论。
.
四组不同摄入方式人的血浆游离吗啡水平
静脉点滴 肌肉注射 皮下注射 口服
12
12
10
16
7
15
8
问3种不同营养素喂养后所增体重有无差别?
.
.
第三节 随机区组(配伍组)设计的多个样 本均数的比较(双因素方差分析)
方法:应用分层的思想,事先将全部受试对象按某种 或某些特性分为若干个区组,使每个区组内的观察对 象与研究对象的水平尽可能相近
SS总 总 MS总
SS组内 组内 MS组内
三者之间的关系: