高频功放仿真实验
高频小信号放大器与高频功率放大器的仿真分析

1课程名称: 高频电路原理实验名称:高频小信号放大器与高频功率放大器的仿真一、实验目的:1.进一步掌握高频小信号调谐放大器和高频功率放大器的工作原理和基本电路结构。
2.掌握高频小信号调谐放大器和高频功率放大器的调试方法。
3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。
4.熟练掌握multisim 软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用二、实验原理(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1(a )所示。
该电路由晶体管Q 1、选频回路T 1二部分组成。
它不仅对高频小信号进行放大,而且还有一定的选频作用。
本实验中输入信号的频率f S =12MHz 。
基极偏置电阻W 3、R 22、R 4和射极电阻R 5决定晶体管的静态工作点。
可变电阻W 3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。
表征高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A v0,放大器的通频带BW 及选择性(通常用矩形系数K r0.1来表示)等。
放大器各项性能指标及测量方法如下: 1.谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1(a )所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LC f π210式中,L 为调谐回路电感线圈的电感量;∑C 为调谐回路的总电容,∑C 的表达式为ie oe C P C P C C 2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。
谐振频率f 0的测量方法是:用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。
2.电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。
高频电路Multisim仿真实验二 高频功率放大仿真

实验二 高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors 中的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V ,利用瞬态分析对高频功率放大器进行分析设置。
要设置起始时间与终止时间,和输出变量。
(2)将输入信号的振幅修改为1V ,用同样的设置,观察i c 的波形。
(提示:单击simulate 菜单中中analyses 选项下的transient analysis...命令,在弹出的对话框中设置。
在设置起始时间与终止时间不能过大,影响仿真速度。
例如设起始时间为0.03s ,终止时间设置为0.030005s 。
在output variables 页中设置输出节点变量时选择vv3#branch 即可)(3)根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L 。
根据各个电压值,计算此时的导通角θc 。
(提示根据余弦值查表得出)。
srad LCw /299.61012610200116120=⨯⨯⨯==-- =Cθ87.80378.0299.61263000=⨯==Lw R Q L2、线性输出(1)要求将输入信号V1的振幅调至1.414V。
注意:此时要改基极的反向偏置电压V2=1V,使功率管工作在临界状态。
同时为了提高选频能力,修改R1=30KΩ。
(2)正确连接示波器后,单击“仿真”按钮,观察输入与输出的波形;输入端波形:输出端波形:(3)读出输出电压的值并根据电路所给的参数值,计算输出功率P0,PD,ηC;输出电压:12V ;∑==RI V I P m c cm m c 21102121 0C cc D I V P = Dc P P 0=η二、 外部特性1、调谐特性,将负载选频网络中的电容C1修改为可变电容(400pF ),在电路中的输出端加一直流电流表。
当回路谐振时,记下电流表的读数,修改可变电容百分比,使回路处于失谐状态,通过示波器观察输出波形,并记下此时电流表的读数;谐振时,C=200pF ,此时电流为:-256.371输出波形为:将电容调为90%时,此时的电流为-256.389mA 。
220ghz高频功率放大器仿真

220ghz高频功率放大器仿真高频功率放大器在无线通信、雷达、遥感等领域具有重要应用价值。
随着科技的不断发展,对高频、高功率、高效率的放大器需求不断增加。
220GHz 高频功率放大器因其独特的性能优势,成为研究人员关注的焦点。
然而,高频放大器的设计和优化具有一定的难度,仿真软件在此过程中起到了至关重要的作用。
市面上有很多仿真软件可以应用于220GHz高频功率放大器的设计,如CST、HFSS等。
这些软件可以模拟电路的电磁场分布,预测放大器的性能指标,为实际制作提供参考。
在此,以CST为例,详细介绍仿真过程。
首先,建立放大器的几何模型。
根据设计要求,确定放大器的结构参数,如长度、宽度、厚度等。
然后,在软件中绘制出这些参数,并设置相应的材料属性。
接下来,设置边界条件,如输入/输出端口的阻抗、反射系数等。
在完成模型建立后,进行电磁场仿真。
软件会根据设定的参数和边界条件,计算放大器内部的电磁场分布。
在仿真过程中,需要关注的关键参数有:输入/输出功率、增益、效率、谐波抑制等。
这些参数将直接影响放大器的性能。
在得到仿真结果后,需要对结果进行分析。
通过对比仿真数据与理论值,可以发现设计中的不足之处,如阻抗匹配不良、增益不足等。
针对这些问题,可以对放大器结构进行优化,如调整长度、宽度等。
重复进行仿真和分析,直至得到满足性能要求的放大器。
高频功率放大器仿真在设计过程中具有显著的优势,如缩短研发周期、降低成本、提高设计质量等。
然而,仿真结果受到模型精度、软件算法等因素的限制,可能与实际制作结果存在一定差距。
因此,在实际制作过程中,还需结合测试数据进行进一步优化。
总之,220GHz高频功率放大器仿真在设计过程中具有重要意义。
通过合理设置参数、优化结构,可以有效提高放大器的性能。
在实际制作中,需不断调整和优化,以实现最佳性能。
高频仿真实验报告

实验报告实验课程:通信电子线路实验(软件部分)学生姓名:周倩文学号:6301712010专业班级:通信121班指导教师:雷向东老师、卢金平老师目录实验一仪器的操作使用实验二高频小信号调谐放大器实验三非线性丙类功率放大器实验实验四三点式正弦波振荡器实验五晶体振荡器设计实验六模拟乘法混频实验七二极管的双平衡混频器设计实验八集电极调幅实验实验九基极调幅电路设计实验十模拟乘法器调幅南昌大学实验报告学生姓名:周倩文学号:6301712010 专业班级:通信121班实验类型:□验证□综合□设计□创新实验日期: 2014-10-24 实验成绩:、实验三非线性丙类功放仿真设计(软件)一、实验目的1.了解丙类功率放大器的基本工作原理.掌握丙类放大器的调谐特性以及负载改变时的动态特性。
2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。
3. 掌握丙类放大器的计算与设计方法。
二、实验内容1. 观察高频功率放大器丙类工作状态的现象.并分析其特点2. 测试丙类功放的调谐特性3. 测试丙类功放的负载特性4. 观察激励信号变化、负载变化对工作状态的影响三、实验基本原理放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。
功率放大器电流导通角越小.放大器的效率越高。
非线性丙类功率放大器的电流导通角小于90°.效率可达到80%.通常作为发射机末级功放以获得较大的输出功率和较高的效率。
特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小).基极偏置为负值.电流导通角小于90°.为了不失真地放大信号.它的负载必须是LC谐振回路。
在丙类谐振功放中.若将输入谐振回路调谐在输出信号频率n次谐波上.则可近似的认为.输出信号回路上仅有ic中的n次谐波分量产生的高频电压.而它的分量产生的电压均可忽略。
因而.在负载RL上得到了频率为输入信号频率n倍的输出信号功率。
高频电路(仿真)实验(2015年11月)

高频电路(仿真)实验报告实验一、共射级单级交流放大器性能分析一、实验目的1、学习单级共射电压放大器静态工作点的设置与调试方法。
2、学习放大器的放大倍数(A u)、输入电阻(R i)、输出电阻(R o)的测试方法。
3、观察基本放大电路参数对放大器的静态工作点、电压放大倍数及输出波形的影响。
4、熟悉函数信号发生器、示波器、数字万用表和直流稳压电源等常用仪器的使用方法。
二、实验原理如图所示的电路是一个分压式单级放大电路。
该电路设计时需保证U B>5~10U BE,I1≈I2>5~10I B,则该电路能够稳定静态工作点,即当温度变化时或三级管的参数变化时,电路的静态工作点不会发生变化。
U B=V CC I C I E由上式可知,静态工作时,U B是由R1和R2共同决定的,而U BE一般是恒定的,在0.6到0.7之间,所以I C、I E只和有关。
当温度变化时或管子的参数改变时(深究来看,三极管的特性并非是完全线性的,在很多的情况下,必须计入考虑),例如,管子的受到激发而I C欲要变大时,由于R E的反馈作用,使得U BE节压降减小,从而I B减小,I C减小,电路自动回到原来的静态工作点附近。
所以该电路不仅有较好的温度稳定性,还可以适应一定非线性的三极管,前提是只要电路设计的得当。
调整电阻R1、R2,可以调节静态工作点高低。
若工作点过高,使三极管进入饱和区,则会引起饱和失真;反之,三极管进入截止区,引起截止失真。
图1-1 分压式单级放大电路如图1-1,C1、C2为耦合电容,将使电路只将交流信号传输到负载端,而略去不必要的直流信号。
发射极旁路电容C E一般选用较大的电容,以保证对于交流信号完全是短路的,即相当于交流接地。
也是防止交流反馈对电路的放大性能造成影响。
电路的放大倍数A U=,输入电阻R i=R1∥R2∥r be,输出电阻R O=R L’,空载时R O=R C。
当发射极电容断开时,在发射极电容上产生交流负反馈,电压的放大倍数为A U=,输入电阻R i=R1∥R2∥[]。
高频仿真实验指导讲解

电子设计与仿真软件Multism(EWB) 10.0 安装1点击setup.exe;2输入验证码:F44G44444;-----进行安装3CRACK文件夹-----点击keyGen.exe-----生成3个LIC文件;4开始----程序----National.instrumants----NI license manger----选项----安装许可证----打开3个LIC文件(在CRACK文件夹)---重启电脑。
实验一、Multism(EWB)电子设计与仿真软件的使用一、实验目的1.熟悉Multism(EWB)电子设计与仿真软件界面。
2.熟悉编辑电子线路原理图的方法与技巧。
3.熟悉选择仪器仪表的方法以及它们的使用方法与技巧。
4.熟悉仿真时如何根据分析结果改变电路参数,从而掌握一边仿真一边优化电路的技巧。
二、仪器设备1.硬件:微机2.软件: Multisim(EWB)三、仿真软件使用方法1.取元件元件由基本零件列中取出。
如电阻R 均可按取之,电容可按取之电感可按取之;电池及接地符号取自电源/信号源零件列,可按取之;电压表,电流表取自指示零件列,可按取之;示波器取自指示零件列,可按取之信号源取自指示零件列,可按取之在元件列中,有些按钮可以自定义值,如电阻2 .电路仿真选好元件和仪表,接好电路,即可开始仿真。
双击电源符号,在Voltage 中改变电源值,双击示波器,得到相关结果。
四、具体仿真步骤1.仿真电路待仿真电路为丙类高频谐振功率放大器,电路如图一所示。
电路采用选频网络作为负载回路,调节C可使回路谐振在输入信号频率上。
为了实现丙类工作,基极偏置电压VBB应设置在功率管的截止区内。
2.建立电路仿真系统打开仿真软件MULTISIM(EWB),在工作区中建立丙类高频谐振功率放大器电路仿真系统(RC为一个小电阻,为的是观察集电极电流波形),如图二所示。
3.调谐VCC=12V,RL=10Kohm,VBB=-1V(甲类工作状态),输入信号Vi的幅值Vb=10mv,频率f=10.7MHz时,调节电容C,使输出信号幅值最大,这时回路谐振在输入信号频率上。
实验3丙类高频功率放大器

实验3 丙类高频功率放大器仿真高频功率放大电路通常在发射机末级功率放大器和末前级功率放大器中,主要对高频信号的功率进行放大,使其达到发射功率的要求。
在硬件实验中,我们已经对高频功率放大器的幅频特性、负载特性及电路效率进行了测试。
在仿真实验中,我们将对放大器的其它特性进行进一步的仿真研究。
一、实验电路:电路特点:晶体管基极加0.1V的负偏压,电路工作在丙类,负载为并联谐振回路,调谐在输入信号频率上,起滤波和阻抗变换作用。
二、测试内容(一)高频功率放大电路原理仿真1、集电极电流Ic与输入信号之间的非线性关系晶体管工作在丙类的目的是提高功率放大电路的效率,此时晶体管的导通时间小于输入信号的半个周期。
因此,集电极电流Ic将是周期的余弦脉冲序列。
(1)、当输入信号的振幅有效值为0.75V时,对晶体管集电极电流Ic进行瞬态分析。
设置:起始时间为0.03S,终止时间为0.03005S,输出变量为I(V3)仿真分析。
记录并分析实验结果。
(2)、当输入信号振幅为1V时,对晶体管集电极电流Ic进行瞬态分析,设置同上。
记录并分析实验结果,指出输出信号波形顶部凹陷失真的原因是什么?2、输入信号与输出信号之间的线性关系将电路中R1改取30K,重复上述过程,使用示波器测试电路输出电压波形。
记录并分析实验结果,指出输出信号波形与步骤1的实验结果有何区别?为什么?(二)高频功率放大电路外部特性仿真测试1、调谐特性调谐特性指在R1、V1、V BB、Vcc不变的条件下,高频功率放大电路的Ico、Ieo、Uc等变量随C变化的关系。
将C1改用可变电容器,调C1使电路处于谐振状态(C1=50%),回路阻抗最大,呈纯阻,电流最小,此时示波器显示输出信号幅度最大,电流表显示电流最小值;当改变C1值,回路失谐,回路阻抗变小,回路电流变大,输出波形出现失真。
通过示波器和电流表观察记录实验结果,并对实验结果进行分析。
使用波特图仪和小信号交流分析方法测试测试并记录电路的调谐特性。
实验二 高频功放

载波信号 (10.7MHz)
示波器
四、实验内容和步骤
5、 Rp变化对工作状态的影响:(RL变化使Rp变化)调节输入信号幅度,使 Ubmp-p略小于临界状态对应的值,改变负载RL(即:改变JE3、JE4、JE5的组 合连接)使负载电阻依次为51Ω→75Ω→168Ω→240Ω→560Ω,用示波器在TTE2 处观察不同负载时的电流波形。
示波器
载波信号 (10.7MHz)
1 U LM PL 2 RL
2
(2)用万用表直流电压档测RE7上的直流电压,换算为IE0,因
为此时IE0 ≈ IC0,所以可以代入P=的计算公式中计算P= 。
PL P
载波信号 (10.7MHz)
万用表
KC
PL PL P VCC I C 0
推动级
输出级
四、实验内容和步骤
1、按下开关KE1,接通12V电源。12V电源指示灯LEDA1亮。 断开JE1、JE6,连接JE2、JE3、JE4、JE5。
四、实验内容和步骤
2、调节推动级的上偏置电阻(电位器WE1),使QE1的 发射 极电压UE Q = 2.2V左右 。
四、实验内容和步骤
3、INE1处输入10.7MHz的载波信号,信号峰峰值为UbmP-P = 350mV左右,然 后将示波器接在TTE1处观察输出波形。调节推动级回路的TE1或CCE1、输出级 回路的TE2或CCE2,使之均对10.7MHz调谐, 再微调一下WE1,此时输出波形 不失真且幅度最大,如波形失真,可适当减小UbmP-P。
KC
PL PL P VCC I C 0
高功放的总效率:
(1)调节输入信号幅度Ubmp-p为临界状态对应的值,负载设为51Ω。示波器 (探头置×1档)接在TTE1,观察输出。微调回路参数,使其输出最大,记下此 时的输出电压的峰值UL1M(UL1Mp-p的一半),根据PL的计算公式,计算放 大器的输出功率PL 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频电子线路实验
随堂实验报告
学院计算机与电子信息学院
专业班级
姓名学号
指导教师谢胜
实验报告评分:_______
高频功放仿真实验
一、实验目的
(1)了解丙类功放的基本工作原理,初步掌握丙类功放的计算与设计方法(2)了解电源电压与集电极负载对功放功率和效率的影响
二、实验仪器设备
双踪示波器、高频信号发生器、万用表、功放实验板
二、仿真图与仿真结果
1、观察输入与输出信号的线性关系
电路图:
图1-1
仿真结果:
图1-2
2、观察集电极电流与输入信号的非线性关系
电路图如图1-1。
仿真结果如下:
图2-1 振幅为0.75V
图2-2 振幅为1V 3、观察输出波形,验证调谐特性
(1)电容为50%时:
图3-1-1
图3-1-2 (2)电容为85%时:
图3-2-1
图3-2-2 4、验证负载特性
(1)电阻为50%时:
图4-1-1
图4-1-2 电阻为90%时:
图4-2-1
图4-2-2 5、放大特性
图5-1
图5-2
6、调制特性
电路图:
图6-1 仿真结果:
图6-2
三、实验心得
这次实验我了解了丙类功放的基本工作原理,基本掌握丙类功放的计算与设计方法。
同时也了解电源电压与集电极负载对功放功率和效率的影响,这使我对于高频的学习将会有更加深刻的认识。