直线方程的点斜式、斜截式、两点式和截距式

合集下载

两点式截距式斜截式点斜式

两点式截距式斜截式点斜式

两点式截距式斜截式点斜式《数学公式的趣味之旅:两点式、截距式、斜截式、点斜式》嘿,小伙伴们!今天我想和你们聊聊数学里超级有趣的几个公式,就是两点式、截距式、斜截式和点斜式。

你们可别一听是数学公式就觉得头疼,其实它们就像一群小伙伴,每个都有自己独特的个性呢。

先来说说两点式吧。

想象一下,我们在一张纸上有两个点,就像两颗小星星在夜空中闪烁。

这两个点就确定了一条直线,两点式就是找到这两个点就能确定这条直线的魔法公式。

我记得有一次啊,我和我的同桌小明在做数学作业,就碰到了关于两点式的题目。

题目给了我们两个坐标,一个是(3, 5),另一个是(6, 9)。

我当时就有点懵,这么两个数字怎么就能确定一条直线呢?小明就特别兴奋地跟我说:“你看啊,这就像我们在地图上找两个地方,只要知道这两个地方的位置,就能画出连接它们的路啦。

”然后他就按照两点式的公式,“唰唰”地算出了直线方程。

我就特别佩服他,从那时候起,我就觉得两点式就像一把神奇的钥匙,能打开连接两个点的直线的大门。

接着就是截距式啦。

截距式呢,就像是一个在坐标轴上安营扎寨的小士兵。

它告诉我们直线在x轴和y轴上的截距。

我就想啊,这就好比是一个小房子,它在x轴上的位置和在y轴上的位置就决定了这个小房子在坐标轴这个大地图上的位置。

有一次数学考试,有一道关于截距式的大题。

我前面的小红在草稿纸上画了好多小图,她一边画一边嘟囔:“这个截距式啊,就像是给坐标轴上的直线找两个根据地,一个是x轴上的,一个是y轴上的。

”她这么一说,我突然就开窍了。

我也赶紧画起图来,按照截距式的规则,很快就把题目解出来了。

我当时就想,数学有时候就需要我们像讲故事一样去理解这些公式,截距式不就是坐标轴上直线的一个故事吗?再说说斜截式吧。

斜截式里有斜率和截距两个重要的部分。

斜率就像是小山坡的坡度,截距就像是小山坡和地面相交的地方。

我和小伙伴们一起讨论斜截式的时候,小刚就特别形象地说:“你们看啊,斜率大的直线就像特别陡的山坡,斜率小的就像比较平缓的山坡,而截距就是这个山坡开始的地方。

3.2.2直线的两点式方程更新

3.2.2直线的两点式方程更新

探究:已知直线上两点P1(x1,y1), P2(x2,y2)
(其中x1≠x2, y1≠y2 ),如何求出通过这两 点的直线方程呢? y2 y1
y l
P1(x1,y1)
P2(x2,y2)
k
x2 x1
代入y y0 k ( x x0 )得
y2 y1 y y1 ( x x1 ) x2 x1
②截距可是正数,负数和零
四、课堂练习
1.根据下列条件求直线方程
(1)在x轴上的截距为2,在y轴上的截距是3;
x y 3 由截距式得: 1 , 整理得: x 2 y 6 0 2 3
(2)在x轴上的截距为-5,在y轴上的截距是6;
x y 由截距式得: 1 , 整理得: x 5 y 30 0 6 5 6
y 2x 3
y 5 x0 05 50
y0 x0 5 0 4 0
y x 5
5 y x 4
已知两点坐标,求直线方程的方法: • ①用两点式 • ②先求出斜率k,再用点斜式。
三、直线的截距式方程
例2:已知直线 l 与x轴的交点为A(a,0),与y轴的 交点为B(0,b),其中a≠0,b≠0,求直线l 的方程.
那还有一条呢?
y=2x (与x轴和y轴的截距都为0)
四、课堂练习
变式3.1过(1,2)并且在两个坐标轴上的截距 的绝对值相等的直线有几条?
解:三条


x y 1 a b a b
解得:a=b=3或a=-b=-1 直线方程为:y+x-3=0、y-x-1=0或y=2x
四、课堂练习
变3.2:过(1,2)并且在y轴上的截距是x轴上的 截距的2倍的直线是( ) A、 x+y-3=0 B、x+y-3=0或y=2x C、 2x+y-4=0 D、2x+y-4=0或y=2x

直线的方程

直线的方程

练习1 根据下列条件写出直线方程, 并化成一般式
1 ( 1 )斜 率 是 , 经 过 点 ( 8 ,2 ) A 2 ( 2 )经 过 点B( 4 ,2 ),平 行 于x轴 3 ( 3 )在x轴 和y轴 上 的 截距 分 别 是 , 3 2 ( 4 )经 过 两 点 1 ( 3 ,2 ), P2 ( 5 ,4 ) P
若求过两点Ax1,y1 ,Bx2,y2 x1 x2 的直线方程呢?
直线方程的两点式:
已知直线l经过点Px1,y1 ,P2 x2,y2 x1 x2 . 1
求直线l的方程.
y 2 - y1 . 推导:直线l的斜率k x 2 - x1
当 y2 y 1时 ,方 程 可 写 成 y - y1 x - x1 .x 1 x 2 y1 y 2 y 2 - y1 x 2 - x 1
4 4 k 0 9k 2 9k 12 k k 4 2 当 且 仅 当 9k时,即k 时 取 最 小 值 . k 3 S 12
此时直线 l的方程为 2 x 3 y 12 0. :
2 2 2.截 距 和 2 3k 3 5 3k 5 2 6 k k 2 6 当 且 仅 当 3k 时,即k 时, k 3 截距和取到最小值为 2 6 :5
这 就 是 直 线 AB的 方 程 .
直 线 A C 过 A 5, 0、 C0, 2 点 , 由 距式 得 两 截
整理得 x y 1, 5 2 2x 5y 10 0.

这就 是直线AC的方 程 .
注意恰当选取直线方程 的形式解题 .
练 习:
1.求 过 下 列 两 点 直 线 的 两 式 方 程 化 成 斜 截 式 方 程 点 ,再 . y 1 x2 1. p1 2,1, p2 0,3 ; 整理得y 2 x 3 31 0 2

3.2.2直线的两点式方程

3.2.2直线的两点式方程

4.过(1,2)并且在两个坐标轴上的截距相等的 直线有几条?
解:
⑴ 两条
y=2x (与x轴和y轴的截距都为0)
x y 1, 当截距都不为0时,设直线的方程为: a a 1 2 把(1,2)代入得:a a 1,
即:a=3. 所以直线方程为:x+y-3=0.
5.根据下列条件,求直线的方程:
y y1 x x1 ∴ y2 y1 x2 x1
三、直线的两点式方程的应用
是不是已知任一直线中的两点就能用两点式 y y1 y y1 2 写出直线方程呢? x x x x
不是!
1
2
1
当x1 =x2或y1= y2时,直线P1 P2没有两点式程.(因 为x1 =x2或y1= y2时,两点式的分母为零,没有意义)
4 k , 把P(-5,4)代入上式得 5 4 即直线方程为 y x. 5 x y ② 当截距均不为0时,设直线方程为 1, a a 把P(-5,4)代入上式得 a 1.
直线方程为 x y 1,
即 x y 1 0.
4 综上直线方程为 y x 或 x y 1 0. 5
4.作业:课本P100 习题A组 1⑷⑸⑹,9
为什么可以这样做,这样做的 根据是什么?
二、直线的两点式方程 设P(x,y)为直线上不同于P1 , P2的动点,
与P1(1,3)P2(2,4)在同一直线上,根据斜率
相等可得:
k pp1 k p1 p2
y3 43 即: x 1 21
得: y=x+2
推广
已知两点P1 ( x1 , y1 ),P2(x2 , y2),求通过这两 点的直线方程.
解:设点P(x,y)是直线上不同于P1 , P2的 点. ∵ k = k

直线方程的点斜式、斜截式 、两点式和截距式

直线方程的点斜式、斜截式    、两点式和截距式

直线方程的点斜式、斜截式、两点式和截距式一、教学目标(一)知识教学点在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线.(二)能力训练点通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力.(三)学科渗透点通过直线方程的几种形式培养学生的美学意识.二、教材分析1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上.的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程.三、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)点斜式已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)?设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l的方程.重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k的直线l的方程.这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式.当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y1.当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.(二)斜截式已知直线l在y轴上的截距为b,斜率为b,求直线的方程.这个问题,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得:y-b=k(x-0)也就是上面的方程叫做直线的斜截式方程.为什么叫斜截式方程?因为它是由直线的斜率和它在y轴上的截距确定的.当k≠0时,斜截式方程就是直线的表示形式,这样一次函数中k和b的几何意义就是分别表示直线的斜率和在y轴上的截距.(三)两点式已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线的位置是确定的,也就是直线的方程是可求的,请同学们求直线l的方程.当y1≠y2时,为了便于记忆,我们把方程改写成请同学们给这个方程命名:这个方程是由直线上两点确定的,叫做直线的两点式.对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,足码的规律完全一样.(四)截距式例1 已知直线l在x轴和y轴上的截距分别是a和b(a≠0,b≠0),求直线l的方程.此题由老师归纳成已知两点求直线的方程问题,由学生自己完成.解:因为直线l过A(a,0)和B(0,b)两点,将这两点的坐标代入两点式,得就是学生也可能用先求斜率,然后用点斜式方程求得截距式.引导学生给方程命名:这个方程是由直线在x轴和y轴上的截距确定的,叫做直线方程的截距式.对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,可以观察出直线在x轴和y轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示.(五)例题例2 三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线的方程.本例题要在引导学生灵活选用方程形式、简化运算上多下功夫.解:直线AB的方程可由两点式得:即 3x+8y+15=0这就是直线AB的方程.BC的方程本来也可以用两点式得到,为简化计算,我们选用下面途径:由斜截式得:即 5x+3y-6=0.这就是直线BC的方程.由截距式方程得AC的方程是即 2x+5y+10=0.这就是直线AC的方程.(六)课后小结(1)直线方程的点斜式、斜截式、两点式和截距式的命名都是可以顾名思义的,要会加以区别.(2)四种形式的方程要在熟记的基础上灵活运用.(3)要注意四种形式方程的不适用范围.五、布置作业1.(1.5练习第1题)写出下列直线的点斜式方程,并画出图形:(1)经过点A(2,5),斜率是4;(4)经过点D(0,3),倾斜角是0°;(5)经过点E(4,-2),倾斜角是120°.解:2.(1.5练习第2题)已知下列直线的点斜方程,试根据方程确定各直线经过的已知点、直线的斜率和倾斜角:解:(1)(1,2),k=1,α=45°;(3)(1,-3),k=-1,α=135°;3.(1.5练习第3题)写出下列直线的斜截式方程:(2)倾斜角是135°,y轴上的截距是3.4.(1.5练习第4题)求过下列两点的直线的两点式方程,再化成截距式方程,并根据截距式方程作图.(1)P1(2,1)、P2(0,-3);(2)A(0,5)、B(5,0);(3)C(-4,-3)、D(-2,-1).解:(图略)六、板书设计。

直线方程的点斜式、斜截式、两点式和截距式资料讲解

直线方程的点斜式、斜截式、两点式和截距式资料讲解

直线方程的点斜式、斜截式、两点式和截距式直线方程的点斜式、斜截式、两点式和截距式一、教学目标(一)知识教学点在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线.(二)能力训练点通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力.(三)学科渗透点通过直线方程的几种形式培养学生的美学意识.二、教材分析1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上.的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程.三、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)点斜式已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)?设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得仅供学习与交流,如有侵权请联系网站删除谢谢2仅供学习与交流,如有侵权请联系网站删除 谢谢3注意方程(1)与方程(2)的差异:点P 1的坐标不满足方程(1)而满足方程(2),因此,点P 1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l 的方程.重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l 上,所以这个方程就是过点P 1、斜率为k 的直线l 的方程.这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式.当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y 1.当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x=x 1.(二)斜截式已知直线l 在y 轴上的截距为b ,斜率为b ,求直线的方程.这个问题,相当于给出了直线上一点(0,b)及直线的斜率k ,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得:y -b=k(x-0)仅供学习与交流,如有侵权请联系网站删除 谢谢4也就是上面的方程叫做直线的斜截式方程.为什么叫斜截式方程?因为它是由直线的斜率和它在y 轴上的截距确定的.当k ≠0时,斜截式方程就是直线的表示形式,这样一次函数中k 和b 的几何意义就是分别表示直线的斜率和在y 轴上的截距.(三)两点式已知直线l 上的两点P 1(x 1,y 1)、P 2(x 2,y 2),(x 1≠x 2),直线的位置是确定的,也就是直线的方程是可求的,请同学们求直线l 的方程.当y 1≠y 2时,为了便于记忆,我们把方程改写成请同学们给这个方程命名:这个方程是由直线上两点确定的,叫做直线的两点式.对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x 1=x 2或y 1=y 2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y 就用x 代换得到,足码的规律完全一样.(四)截距式例1 已知直线l 在x 轴和y 轴上的截距分别是a 和b(a ≠0,b ≠0),求直线l 的方程.此题由老师归纳成已知两点求直线的方程问题,由学生自己完成.解:因为直线l 过A(a ,0)和B(0,b)两点,将这两点的坐标代入两点式,得就是学生也可能用先求斜率,然后用点斜式方程求得截距式.仅供学习与交流,如有侵权请联系网站删除 谢谢5引导学生给方程命名:这个方程是由直线在x 轴和y 轴上的截距确定的,叫做直线方程的截距式.对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,可以观察出直线在x轴和y 轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示.(五)例题例2 三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线的方程.本例题要在引导学生灵活选用方程形式、简化运算上多下功夫.解:直线AB 的方程可由两点式得:即 3x+8y+15=0这就是直线AB 的方程.BC 的方程本来也可以用两点式得到,为简化计算,我们选用下面途径:由斜截式得:即 5x+3y-6=0.这就是直线BC 的方程.由截距式方程得AC 的方程是仅供学习与交流,如有侵权请联系网站删除 谢谢6即 2x+5y+10=0.这就是直线AC 的方程.(六)课后小结(1)直线方程的点斜式、斜截式、两点式和截距式的命名都是可以顾名思义的,要会加以区别.(2)四种形式的方程要在熟记的基础上灵活运用.(3)要注意四种形式方程的不适用范围.五、布置作业1.(1.5练习第1题)写出下列直线的点斜式方程,并画出图形:(1)经过点A(2,5),斜率是4;(4)经过点D(0,3),倾斜角是0°;(5)经过点E(4,-2),倾斜角是120°. 解:2.(1.5练习第2题)已知下列直线的点斜方程,试根据方程确定各直线经过的已知点、直线的斜率和倾斜角:解:(1)(1,2),k=1,α=45°;(3)(1,-3),k=-1,α=135°;仅供学习与交流,如有侵权请联系网站删除 谢谢73.(1.5练习第3题)写出下列直线的斜截式方程:(2)倾斜角是135°,y 轴上的截距是3.4.(1.5练习第4题)求过下列两点的直线的两点式方程,再化成截距式方程,并根据截距式方程作图.(1)P1(2,1)、P2(0,-3);(2)A(0,5)、B(5,0);(3)C(-4,-3)、D(-2,-1). 解:(图略)六、板书设计。

直线的两点式和一般式方程

直线的两点式和一般式方程
任何直线
一般式

Ax+By+C=0 (A2 +B2 ≠0)
求直线方程的几种形式
例 1:已知直线 l 经过点 A(-5,6)和点 B(-4,8),求直线的
一般式方程、斜截式方程及截距式方程,并画图. 解:直线过 A(-5,6),B(-4,8)两点,
y-6 x+5 由两点式,得 = , 8-6 -4+5
注意:
①不能表示过原点或与坐标轴平行或重合的直线 ②截距可是正数,负数和零
举例
例3: ⑴ 过(1,2)并且在两个坐标轴上的截距相等
的直线有几条?
解: ⑴ 两条
x y 设:直线的方程为: 1 a a
1 2 1、截距不为0时 把(1,2)代入得: a 1 a
a=3 所以直线方程为:x+y-3=0
8 m 4
(2)若m=0,则两条直线中一条直线的斜率为0, 另一条斜率不存在,这时两条直线垂直,方程分别 n 1 为 y ,x . 8 2
综上知:m=0,n为全体实数时,两条直线垂直.
点评:分类讨论思想的运用,如不分类将找不到正确答案.
小结
1)直线的两点式方程
y y1 x x1 y2 y1 x2 x1
当x1 =x2 时方程为: x =x1
当 y1= y2时方程为: y = y1
直线的截距式方程
例2:已知直线 l 与x轴的交点为A(a,0),与y轴的交点为 B(0,b),其中a≠0,b≠0,求直线l 的方程.
解:将两点A(a,0), B(0,b)的坐标代入两点式, 得:
y0 xa , b0 0a
在方程Ax+By+C=0中,A,B,C为何值 时,方程表示的直线 (1)平行于x轴:(2)平行于y轴: (3)与x轴重合:(4)与y轴重合: 分析: (1)直线平行于x轴时,直线的斜率不存在, 在x轴上的截距不为0.即 A=0 , B 0,C 0. (2) B=0 , A 0 , C 0.

直线方程的点斜式、斜截式、两点式和截距式

直线方程的点斜式、斜截式、两点式和截距式

直线方程得点斜式、斜截式、两点式与截距式一、教学目标(一)知识教学点在直角坐标平面内,已知直线上一点与直线得斜率或已知直线上两点,会求直线得方程;给出直线得点斜式方程,能观察直线得斜率与直线经过得定点;能化直线方程成截距式,并利用直线得截距式作直线.(二)能力训练点通过直线得点斜式方程向斜截式方程得过渡、两点式方程向截距式方程得过渡,训练学生由一般到特殊得处理问题方法;通过直线得方程特征观察直线得位置特征,培养学生得数形结合能力.(三)学科渗透点通过直线方程得几种形式培养学生得美学意识.二、教材分析1.重点:由于斜截式方程就是点斜式方程得特殊情况,截距式方程就是两点式方程得特殊情况,教学重点应放在推导直线得斜截式方程与两点式方程上.2.难点:在推导出直线得点斜式方程后,说明得到得就就是直线得方程,即直线上每个点得坐标都就是方程得解;反过来,以这个方程得解为坐标得点在直线上.得坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1得坐标满足方程.三、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)点斜式已知直线l得斜率就是k,并且经过点P1(x1,y1),直线就是确定得,也就就是可求得,怎样求直线l得方程(图1-24)?设点P(x,y)就是直线l上不同于P1得任意一点,根据经过两点得斜率公式得注意方程(1)与方程(2)得差异:点P1得坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示得图形上而在方程(2)表示得图形上,方程(1)不能称作直线l 得方程.重复上面得过程,可以证明直线上每个点得坐标都就是这个方程得解;对上面得过程逆推,可以证明以这个方程得解为坐标得点都在直线l上,所以这个方程就就是过点P1、斜率为k 得直线l得方程.这个方程就是由直线上一点与直线得斜率确定得,叫做直线方程得点斜式.当直线得斜率为0°时(图1-25),k=0,直线得方程就是y=y1.当直线得斜率为90°时(图1-26),直线得斜率不存在,它得方程不能用点斜式表示.但因l上每一点得横坐标都等于x1,所以它得方程就是x=x1.(二)斜截式已知直线l在y轴上得截距为b,斜率为b,求直线得方程.这个问题,相当于给出了直线上一点(0,b)及直线得斜率k,求直线得方程,就是点斜式方程得特殊情况,代入点斜式方程可得:y-b=k(x-0)也就就是上面得方程叫做直线得斜截式方程.为什么叫斜截式方程?因为它就是由直线得斜率与它在y轴上得截距确定得.当k≠0时,斜截式方程就就是直线得表示形式,这样一次函数中k与b得几何意义就就是分别表示直线得斜率与在y轴上得截距.(三)两点式已知直线l上得两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线得位置就是确定得,也就就是直线得方程就是可求得,请同学们求直线l得方程.当y1≠y2时,为了便于记忆,我们把方程改写成请同学们给这个方程命名:这个方程就是由直线上两点确定得,叫做直线得两点式.对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行得直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,足码得规律完全一样.(四)截距式例1 已知直线l在x轴与y轴上得截距分别就是a与b(a≠0,b≠0),求直线l 得方程.此题由老师归纳成已知两点求直线得方程问题,由学生自己完成.解:因为直线l过A(a,0)与B(0,b)两点,将这两点得坐标代入两点式,得就就是学生也可能用先求斜率,然后用点斜式方程求得截距式.引导学生给方程命名:这个方程就是由直线在x轴与y轴上得截距确定得,叫做直线方程得截距式.对截距式方程要注意下面三点:(1)如果已知直线在两轴上得截距,可以直接代入截距式求直线得方程;(2)将直线得方程化为截距式后,可以观察出直线在x轴与y轴上得截距,这一点常被用来作图;(3)与坐标轴平行与过原点得直线不能用截距式表示.(五)例题例2 三角形得顶点就是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线得方程.本例题要在引导学生灵活选用方程形式、简化运算上多下功夫.解:直线AB得方程可由两点式得:即 3x+8y+15=0这就就是直线AB得方程.BC得方程本来也可以用两点式得到,为简化计算,我们选用下面途径:由斜截式得:即 5x+3y-6=0.这就就是直线BC得方程.由截距式方程得AC得方程就是即 2x+5y+10=0.这就就是直线AC得方程.(六)课后小结(1)直线方程得点斜式、斜截式、两点式与截距式得命名都就是可以顾名思义得,要会加以区别.(2)四种形式得方程要在熟记得基础上灵活运用.(3)要注意四种形式方程得不适用范围.五、布置作业1.(1、5练习第1题)写出下列直线得点斜式方程,并画出图形:(1)经过点A(2,5),斜率就是4;(4)经过点D(0,3),倾斜角就是0°;(5)经过点E(4,-2),倾斜角就是120°.解:2.(1、5练习第2题)已知下列直线得点斜方程,试根据方程确定各直线经过得已知点、直线得斜率与倾斜角:解:(1)(1,2),k=1,α=45°;(3)(1,-3),k=-1,α=135°;3.(1、5练习第3题)写出下列直线得斜截式方程:(2)倾斜角就是135°,y轴上得截距就是3.4.(1、5练习第4题)求过下列两点得直线得两点式方程,再化成截距式方程,并根据截距式方程作图.(1)P1(2,1)、P2(0,-3);(2)A(0,5)、B(5,0);(3)C(-4,-3)、D(-2,-1).解:(图略)六、板书设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课 题:】直线的点斜式方程
【教学目的:】
知识目标:在直角坐标平面,已知直线上一点和直线的斜率或已知
直线上两点,会求直线的方程;给出直线的点斜式方程,
能观察直线的斜率和直线经过的定点
能力目标:通过直线的点斜式方程向斜截式方程的过渡,训练学生由
一般到特殊的处理问题方法;通过直线的方程特征观察直
线的位置特征,培养学生的数形结合能力.
德育目标:通过直线方程的几种形式培养学生的美学意识.
【教学重点:】由于斜截式方程是点斜式方程的特殊情况,教学重点应放在
推导直线的斜截式方程上.实质上它也是整个直线方程理论
的基础。

【教学难点:】在推导出直线的点斜式方程后,说明得到的就是直线的方程,
即直线上每个点的坐标都是方程的解;反过来,以这个方程
的解为坐标的点在直线上.
【授课类型:】新授课
【课时安排:】1课时
【教 具:】
【教学过程:】
1、复习引入:
2、讲解新课:
(1)点斜式
已知直线l 的斜率是k ,并且经过点P 1(x 1,y 1),直线是确定的,也就是可求的,怎样求直线l 的方程(图1-24)?
设点P(x ,y)是直线l 上不同于P 1(x 1,y 1)的任意一点,根据经过两点的斜率公式得
1
1x x y y k --= (1) 即y-y 1=k(x-x 1) (2)
注意方程(1)与方程(2)的差异:点P 1的坐标不满足方程(1)而满足方程(2),因此,点P 1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l 的方程.
重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l 上,所以这个方程就是过点P 1、斜率为k 的直线l 的方程.(实质上是证明了直线的方程与方程的直线的关系)
这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式.
注:当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y 1.
当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点
(2)斜截式
已知直线l在y轴上的截距为b,斜率为b,求直线的方程.
这个问题,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得:
y-b=k(x-0)
也就是y=kx+b
上面的方程叫做直线的斜截式方程.为什么叫斜截式方程?因为它是由直线的斜率和它在y轴上的截距确定的.
当k≠0时,斜截式方程就是直线的表示形式,这样一次函数中k和b的几何意义就是分别表示直线的斜率和在y轴上的截距.
注:斜截式方程因为形式是直线方程中最简的,故在后续的课程中有十分重要的运用,但上述两种直线方程的形式都要求有斜率,故运用它们时往往要先对斜率的存在与否进行讨论,而这正是最容易错的地方。

典型例
错例剖析
3、小结:
4、课后作业:
5、能力提高:
(1)已知直线y=kx+b(k≠0)经过点(2,1),求证直线不可能经过两个
有理点(所谓的有理点即横纵坐标均为有理数的点)
6、高考链结:
【板书设计:】
【课后反思:】
【课题:】直线的两点式方程
(1)两点式
已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线的位置是确定的,也就是直线的方程是可求的,请同学们求直线l的方程.
当y1≠y2时,为了便于记忆,我们把方程改写成
这个方程是由直线上两点确定的,故叫做直线的两点式方程.
对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,足码的规律完全一样.
(2)截距式
试用两点式求方程:
已知直线l在x轴和y轴上的截距分别是a和b(a≠0,b≠0),求直线l的方程.
此题由老师归纳成已知两点求直线的方程问题,由学生自己完成.
解:因为直线l过A(a,0)和B(0,b)两点,将这两点的坐标代入两点式,得
也就是
学生也可能用先求斜率,然后用点斜式方程求得截距式.
这个方程是由直线在x轴和y轴上的截距确定的,叫做直线方程的截距式.
对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;
(2)将直线的方程化为截距式后,可以观察出直线在x轴和y轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示即如果有一个的截距为零则不能用截距式.
典型例
错例剖析
3、小结:
4、课后作业:
5、能力提高:
(1)已知直线过点P(3,4)且与x,y轴的正半轴相交于A、B,求
使 AOB面积最小时的直线方程。

6、高考链结:
【板书设计:】
【课后反思:】
【课 题:】直线的一般式方程
【教学目的:】
知识目标:掌握直线方程的一般形式及其运用
能力目标:通过研究直线的一般方程与直线之间的对应关系,进一步强化学生的对应概念;通过对几个典型例题的研究,培养学生灵活运用知识、简化运算的能力.
德育目标:通过对直线方程的几种形式的特点的分析,培养学生看问题一分为二的辩证唯物主义观点.
【教学重点:】直线的点斜式、斜截式、两点式和截距式表示直线有一定的局限性,只有直线的一般式能表示所有的直线,教学中要讲清直线与二元一次方程的对应关系.
【教学难点:】
【授课类型:】新授课
【课时安排:】1课时
【教 具:】
【教学过程:】
1、 复习引入:
点斜式、斜截式不能表示与x 轴垂直的直线;两点式不能表示与坐标轴平行的直线;截距式既不能表示与坐标轴平行的直线,又不能表示过原点的直线.与x 轴垂直的直线可表示成x=x 0,与x 轴平行的直线可表示成y=y 0。

它们都是二元一次方程.
我们问:直线的方程都可以写成二元一次方程吗?反过来,二元一次方程都表示直线吗?
2、 讲解新课:
我们知道,在直角坐标系中,每一条直线都有倾斜角α.当α≠90°时,直线有斜率,方程可写成下面的形式:y=kx+b
当α=90°时,它的方程可以写成x=x 0的形式.
由于是在坐标平面上讨论问题,上面两种情形得到的方程均可以看成是二元一次方程.这样,对于每一条直线都可以求得它的一个二元一次方程,就是说,直线的方程都可以写成关于x 、y 的一次方程.
反过来,对于x 、y 的一次方程的一般形式Ax+By+C=0其中A 、B 不同时为零.
(1)当B ≠0时,方程(1)可化为B C x B A y --=即为直线的斜截式方程 (2)当B=0时,由于A 、B 不同时为零,必有A ≠0,方程(1)可化为A C x -
=它表示一条与y 轴平行的直线.
这样,我们又有:关于x 和y 的一次方程都表示一条直线.我们把方程写为:Ax+By+C=0
这个方程(其中A 、B 不全为零)叫做直线方程的一般式.
引导学生思考:直线与二元一次方程的对应是什么样的对应?
直线与二元一次方程是一对多的,同一条直线对应的多个二元一次方程是同解方程.
注:如果求解直线的方程没有特别说明要写成一般式。

典型例
解:直线的点斜式是
化成一般式得
4x+3y-12=0.
把常数次移到等号右边,再把方程两边都除以12,就得到截距式
讲解这个例题时,要顺便解决好下面几个问题:(1)直线的点斜式、两点式方程由于给出的点可以是直线上的任意点,因此是不唯一的,一般不作为最后结果保留,须进一步化简;(2)直线方程的一般式也是不唯一的,因为方程的两边同乘以一个非零常数后得到的方程与原方程同解,一般方程可作为最终结果保留,但须化为各系数既无公约数也不是分数;(3)直线方程的斜截式与截距式如果存在的话是唯一的,如无特别要求,可作为最终结果保留.
例2把直线l的方程x-2y+6=0化成斜截式,求出直线l的斜率和在x轴与y轴上的截距,并画图.解:将原方程移项,得2y=x+6,两边除以2得斜截式:
x=-6
根据直线过点A(-6,0)、B(0,3),在平面作出这两点连直线就是所要作的图形(图1-28).
本例题由学生完成,老师讲清下面的问题:二元一次方程的图形是直线,一条直线可由其方向和它上面的一点确定,也可由直线上的两点确定,利用前一点作图比较麻烦,通常我们是找出直线在两轴上的截距,然后在两轴上找出相应的点连线.
例3证明:三点A(1,3)、B(5,7)、C(10,12)在同一条直线上.
证法一直线AB的方程是:
化简得y=x+2.
将点C的坐标代入上面的方程,等式成立.
∴A、B、C三点共线.
所以A、B、C三点共线.
∵|AB|+|BC|=|AC|,
∴A、C、C三点共线.
讲解本例题可开拓学生思路,培养学生灵活运用知识解决问题的能力.
例4直线x+2y-10=0与过A(1,3)、B(5,2)的直线相交于C,
此题按常规解题思路可先用两点式求出AB的方程,然后解方程组得到点C的坐标,再求点C分AB
代入x+2y-10=0有:
解之得λ=-3.
错例剖析
3、小结:
(1)归纳直线方程的五种形式及其特点.
(2)例4一般化:求过两点的直线与已知直线(或由线)的交点分以这两点为端点的有向线段所成定比时,可用定比分点公式设出交点的坐标,代入已知直线(或曲线)求得.
4、课后作业:
5、能力提高:
6、高考链结:
【板书设计:】
【课后反思:】。

相关文档
最新文档