2018中考数学动点问题专题复习(含答案)

合集下载

2018年中考数学压轴题专题32动态几何之双(多)动点形成的最值问题(解析版)

2018年中考数学压轴题专题32动态几何之双(多)动点形成的最值问题(解析版)

AG AC
5t 6
4 (5ቤተ መጻሕፍቲ ባይዱ
t) ,∴ S= SΔPMN = 1 MN ?PG= GN ?PG= (5
2t )
4 (5
8t 2 t) =
60t
100 ;
3
2
3
3
10
③当 2.5 t
时, M 在 N的右边,在 AC上逐渐远离 C,如图 3.
3
MN =NB+AM- AB= 3t t 10 = 4t 10 , GN=MG =2t 5 , AM=t, ∴ AG= AM- MG = t (2 t 5) = 5 t ,
10
5
2
2
1
1 26
10
FM = t , 5

SΔKAC
=
2
AC? EK =
2
6 t = t , ∵ 1.4 55
t
,∴当 t 3
1.4 时 , SΔKAC 的 最 小 值 =
6 1.4 1.68 ,当 t 5
10
时,
3
SΔKAC
的最大值
6
=
5
10 3
4 .∴当 P在 CA上运动时,△ KAC 面积的最小值为
8 t , ∴ QP=
QF 2
PF 2 =
BP 5
5
5
(8
8 t)2
( 4 t )2 = 4 1 t 2
8 t
4
5
5
55
3
40
①当 PQ=PB 时,∵ PF ⊥ QB,∴ BF=QF,∴ BQ=2BF,即: 8 t 2 t ,解得 t= ;
5
11
②当 PQ=BQ 时,即 4 1 t2 5

2018中考压轴之因动点产生的相似三角形问题(部分答案)(PDF版)

2018中考压轴之因动点产生的相似三角形问题(部分答案)(PDF版)

课前导学:相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分和两种情况列方程.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.九年级数学试题因动点产生的相似三角形问题1.如图,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.满分解答:(1)将点A(2,m)代入y=x+2,得m=4.所以点A的坐标为(2,4).将点A(2,4)代入kyx=,得k=8.(2)将点B (n ,2),代入8y x=,得n =4.所以点B 的坐标为(4,2).设直线BC 为y =x +b ,代入点B (4,2),得b =-2.所以点C 的坐标为(0,-2).由A (2,4)、B (4,2)、C (0,-2),可知A 、B 两点间的水平距离和竖直距离都是2,B 、C 两点间的水平距离和竖直距离都是4.所以AB=BC=,∠ABC =90°.所以S △ABC =12BA BC ⋅=12⨯=8.(3)由A (2,4)、D (0,2)、C (0,-2),得AD=AC=.由于∠DAC +∠ACD =45°,∠ACE +∠ACD =45°,所以∠DAC =∠ACE .所以△ACE 与△ACD 相似,分两种情况:①如图3,当CE AD CA AC=时,CE =AD=此时△ACD ≌△CAE ,相似比为1.②如图4,当CE AC CA AD ==CE=.此时C 、E 两点间的水平距离和竖直距离都是10,所以E (10,8).图3图4图22.如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,﹣),且与x轴交于A、B两点,与y轴交于C点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;(3)当P点的横坐标m<0时,过P点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.3.如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.4.如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+-(m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2,2),求实数m 的值;(2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.满分解答(1)将M (2,2)代入1(2)()y x x m m =-+-,得124(2)m m=-⨯-.解得m =4.(2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4,0),E (0,2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小.设对称轴与x 轴的交点为P ,那么HP EO CP CO=.因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2.(4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′.由于∠BCE =∠FBC ,所以当CE BC CB BF =,即2BC CE BF =⋅时,△BCE ∽△FBC .设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+.解得x =m +2.所以F ′(m +2,0).由'CO BF CE BF =4m BF +=.所以(m BF m +=.由2BC CE BF =⋅,得2(2)m +=.整理,得0=16.此方程无解.图2图3图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,所以BE BC BC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC .在Rt △BFF′中,由FF ′=BF ′,得1(2)()2x x m x m +-=+.解得x =2m .所以F ′(2,0)m .所以BF′=2m +2,2)BF m =+.由2BC BE BF =⋅,得2(2)2)m m +=+.解得2m =±综合①、②,符合题意的m为2+.5.如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.6.如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?7.如图,已知二次函数(其中0<m<1)的图像与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C,对称轴为直线l.设P为对称轴l上的点,连接PA、PC,PA=P C.(1)∠ABC的度数为°;(2)求P点坐标(用含m的代数式表示);(3)在坐标轴上是否存在点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△PAC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由.8.如图,抛物线与x轴交于点A(﹣,0)、点B(2,0),与y轴交于点C(0,1),连接B C.(1)求抛物线的函数关系式;(2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(﹣<t<2),求△ABN的面积S与t的函数关系式;(3)若﹣<t<2且t≠0时△OPN∽△COB,求点N的坐标.9.如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.10.如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1满分解答(1)B 的坐标为(b ,0),点C 的坐标为(0,4b ).(2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC .因此PD =PE .设点P 的坐标为(x,x).如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1,0),OA =1.①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA .当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA .所以2()14b b =-.解得843b =±Q 为(1,23+).②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。

2018年人教版中考数学经典复习题中考动点问题

2018年人教版中考数学经典复习题中考动点问题

中考动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1 )如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6).(3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意. ③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2 如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.2222233621419x x x MH PH MP +=-+=+=HM NGPOAB图1x y解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴AC BD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90.当=-2αβ︒90时,函数解析式xy 1=成立. 三、应用求图形面积的方法建立函数关系式例4 如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

2018年中考数学真题分类汇编(第三期)专题40动态问题试题(含解析)

2018年中考数学真题分类汇编(第三期)专题40动态问题试题(含解析)

动态问题一.选择题.(·辽宁省葫芦岛市) 如图,在▱中,,,⊥,点从点出发沿着→→的路径运动,同时点从点出发沿着→→的路径以相同的速度运动,当点到达点时,点随之停止运动,设点运动的路程为,,下列图象中大致反映与之间的函数关系的是()....【解答】解:在△中,∠°,,,∴.当≤≤时,﹣,,∴﹣;当≤≤时,﹣,,∴(﹣);当≤≤时,﹣,﹣,∴﹣.故选.. (•广安•分)已知点为某个封闭图形边界上的一定点,动点从点出发,沿其边界顺时针匀速运动一周,设点的运动时间为,线段的长度为,表示与的函数图象大致如图所示,则该封闭图形可能是()....【分析】先观察图象得到与的函数图象分三个部分,则可对有边的封闭图形进行淘汰,利用圆的定义,点在圆上运动时,总上等于半径,则可对进行判断,从而得到正确选项.【解答】解:与的函数图象分三个部分,而选项和选项中的封闭图形都有条线段,其图象要分四个部分,所以选项不正确;选项中的封闭图形为圆,为定中,所以选项不正确;选项为三角形,点在三边上运动对应三段图象,且点在点的对边上运动时,的长有最小值.故选:.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.. (•莱芜•分)如图,边长为的正△的边在直线上,两条距离为的平行直线和垂直于直线,和同时向右移动(的起始位置在点),速度均为每秒个单位,运动时间为(秒),直到到达点停止,在和向右移动的过程中,记△夹在和之间的部分的面积为,则关于的函数图象大致为()....【分析】依据和同时向右移动,分三种情况讨论,求得函数解析式,进而得到当≤<时,函数图象为开口向上的抛物线的一部分,当≤<时,函数图象为开口向下的抛物线的一部分,当≤≤时,函数图象为开口向上的抛物线的一部分.【解答】解:如图①,当≤<时,,,∴△××;如图②,当≤<时,﹣,﹣,∴(﹣),(﹣),∴五边形△﹣△﹣△××﹣×(﹣)×(﹣)﹣×(﹣)×(﹣)﹣﹣;如图③,当≤≤时,﹣,(﹣),∴△×(﹣)×(﹣)﹣,综上所述,当≤<时,函数图象为开口向上的抛物线的一部分;当≤<时,函数图象为开口向下的抛物线的一部分;当≤≤时,函数图象为开口向上的抛物线的一部分,故选:.【点评】本题主要考查了动点问题的函数图象,函数图象是典型的数形结合,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.二.填空题.(·辽宁省盘锦市)如图①,在矩形中,动点从出发,以相同的速度,沿→→→→方向运动到点处停止.设点运动的路程为,△面积为,如果与的函数图象如图②所示,则矩形的面积为.【解答】解:从图象②和已知可知:,﹣,所以矩形的面积是×.故答案为:.三.解答题. (·广西贺州·分)如图,在平面直角坐标系中,抛物线交轴于两点(在的左侧),且,,与轴交于(,),抛物线的顶点坐标为(﹣,).()求两点的坐标;()求抛物线的解析式;()过点作直线∥轴,交轴于点,点是抛物线上两点间的一个动点(点不与两点重合),与直线分别交于点、,当点运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.【解答】解:()由抛物线交轴于两点(在的左侧),且,,得点坐标(﹣,),点坐标(,);()设抛物线的解析式为()(﹣),把点坐标代入函数解析式,得()(﹣),解得﹣,抛物线的解析式为﹣()(﹣)﹣﹣;()(或是定值),理由如下:过点作∥轴交轴于,如图.设(,﹣﹣),则﹣﹣,,﹣,∵∥,∴△∽△,∴,∴×(﹣﹣)(﹣);又∵∥,∴△∽△,∴,∴(),∴(﹣)().. (·湖北江汉·分)抛物线﹣﹣与轴交于点,(点在点的左侧),与轴交于点,其顶点为.将抛物线位于直线:(<)上方的部分沿直线向下翻折,抛物线剩余部分与翻折后所得图形组成一个“”形的新图象.()点,,的坐标分别为(,),(,),(,);()如图①,抛物线翻折后,点落在点处.当点在△内(含边界)时,求的取值范围;()如图②,当时,若是“”形新图象上一动点,是否存在以为直径的圆与轴相切于点?若存在,求出点的坐标;若不存在,请说明理由.【分析】()利用二次函数图象上点的坐标特征可求出点的坐标,再利用配方法即可找出抛物线的顶点的坐标;()由点的坐标结合对称找出点的坐标,根据点的坐标利用待定系数法可求出直线的解析式,再利用一次函数图象上点的坐标特征即可得出关于的一元一次不等式组,解之即可得出的取值范围;()假设存在,设点的坐标为(,),则点的横坐标为,分<或>及≤≤两种情况,利用勾股定理找出关于的一元二次方程,解之即可得出的值,进而可找出点的坐标,此题得解.【解答】解:()当时,有﹣﹣,解得:,,∴点的坐标为(,),点的坐标为(,).∵﹣﹣﹣(﹣)﹣﹣(﹣),∴点的坐标为(,).故答案为:(,);(,);(,).()∵点.点关于直线对称,∴点的坐标为(,﹣).当时,﹣﹣﹣,∴点的坐标为(,﹣).设线段所在直线的解析式为,将(,)、(,﹣)代入,,解得:,∴线段所在直线的解析式为﹣.∵点在△内(含边界),∴,解得:≤≤.()当<或>时,﹣﹣;当≤≤时,﹣.假设存在,设点的坐标为(,),则点的横坐标为.①当<或>时,点的坐标为(,﹣﹣)(如图),∵以为直径的圆与轴相切于点,∴⊥,∴,即(﹣)(﹣﹣),整理,得:,,∴点的坐标为(,)或(,);②当≤≤时,点的坐标为(,﹣)(如图),∵以为直径的圆与轴相切于点,∴⊥,∴,即(﹣)(﹣),整理,得:﹣,解得:,,∴点的坐标为(,)或(,).综上所述:存在以为直径的圆与轴相切于点,点的坐标为(,)、(,)、(,)或(,)..(·四川省攀枝花)如图,在△中,,,△.动点从点出发,沿方向以每秒个单位长度的速度向点匀速运动,动点从点同时出发,以相同的速度沿方向向点匀速运动,当点运动到点时,、两点同时停止运动,以为边作正△(、、按逆时针排序),以为边在上方作正△,设点运动时间为秒.()求的值;()当△与△的面积满足△△时,求的值;()当为何值时,△的某个顶点(点除外)落在△的边上.解:()如图中,作⊥于.∵△••,∴.在△中,,∴.()如图中,作⊥于.∵,,,﹣﹣﹣,∴(﹣).∵△△,∴•ו,∴(﹣)×(),整理得:﹣,解得(舍弃)或,∴当时,满足△△.()①如图中,当点落在上时,作⊥于.易知:∥,∴∠∠°,∴,∴(﹣),∴.②如图中,当点在上时,作⊥于.同法可得,∴(﹣),∴.综上所述:当或时,△的某个顶点(点除外)落在△的边上..(·吉林长春·分)如图,在△中,∠°,∠°,,动点从点出发,沿以每秒个单位长度的速度向终点运动.过点作⊥于点(点不与点重合),作∠°,边交射线于点.设点的运动时间为秒.()用含的代数式表示线段的长;()当点与点重合时,求的值;()设△与△重叠部分图形的面积为,求与之间的函数关系式;()当线段的垂直平分线经过△一边中点时,直接写出的值.【分析】()先求出,用三角函数求出,即可得出结论;()利用,即可得出结论;()分两种情况,利用三角形的面积公式和面积差即可得出结论;()分三种情况,利用锐角三角函数,即可得出结论.【解答】解:()在△中,∠°,,∴,∵⊥,∴∠∠°,在△中,,∴,×,∴﹣﹣(<<);()在△中,∵∠°,∴∠°∠,∴,∵⊥,∴,∵点和点重合,∴,∴×,∴;()当<≤时,△×××;当<<时,如图,﹣﹣﹣(﹣),在△中,∠°,∴•∠(﹣)×(﹣),∴△﹣△××﹣×(﹣)×(﹣)﹣﹣,∴;()当的垂直平分线过的中点时,如图,∴∠°,,,∵∠∠°,∴∠°,∴∠°,∴,∴,∴;当的垂直平分线过的中点时,如图,∴∠°,,,在△中,,∵,∴,∴,当的垂直平分线过的中点时,如图,∴,,∠°,∵∠°,∴∠°∠,∴,在△中,,∴,∴,∴,即:当线段的垂直平分线经过△一边中点时,的值为秒或秒或秒.【点评】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.。

2018年中考与圆有关的动点问题(答案)

2018年中考与圆有关的动点问题(答案)

1.【答案】D 【解析】如解图,点D 运动的路径是以AO 中点M 为圆心,AO 一半的长为半径的圆,∵AB 为⊙O 的直径,AB =8,∴AO =12AB =4,∴点D 运动的路径长为:π×4=4π.2.【答案】B 【解析】如解图,过A 作⊙O 的直径AE ,连接ED ,AD ,∴∠ADE =90°,∵∠E =∠B =30°,∴∠EAD =60°.在Rt △ADE 中,AD =12AE =6,∵AC 是⊙O 的切线,∴OA ⊥AC ,∴∠OAC =90°,∴∠CAD =90°-60°=30°,过点D 作AC 的垂线,垂足为C ',在Rt △DA C '中,∵∠DA C '=30°,∴DC '=12AD =3,∴当点C 在C '点时,CD 有最小值,最小值为3.3.【答案】D 【解析】如解图,连接OA ,OB ,∵∠ACB =30°,∴∠AOB =60°.∵OA =OB ,∴△AOB 是等边三角形,∴AB =6.当GH 为⊙O 的直径时,GE +FH 有最大值.∵当GH 为直径时,E 点与O 点重合,∴AC 也是直径,AC =12.∵∠ABC 是直径所对的圆周角,∴∠ABC =90°,∠C =30°,∴AB =12AC =6.∵点E 、F 分别为AC 、BC 的中点,∴EF =12AB =3.∴GE +FH =GH -EF =12-3=9. 4.【答案】D 【解析】∵AB =15,AC =9,BC =9,∴2AB =2AC +2BC ,∴△ABC 为直角三角形,∠ACB =90°,点C 在圆上,所以EF 为圆的直径,若求线段EF 的最值,即要使圆最小,圆与AB 的切点为D ,如解图,连接CD ,当CD 垂直于AB 时,即CD 是圆的直径时,EF 长度最小,即最小值是斜边AB 上的高CD ,利用三角形面积可得:12AB ·CD =12AC ·BC =12×15×CD =12×12×9,解得CD =365. 5.【答案】C 【解析】当点C 为劣弧AB 的中点时,△ABC 内切圆半径r 最大,如解图,连接OC 交AB 于D 点,⊙M 为△ABC 内切圆,作ME ⊥AC 于E 点,∵点C 为劣弧AB 的中点,∴OC ⊥AB ,AD =BD =12AB =3,AC =BC ,∴点M 在CD 上,∴ME 和MD 都为⊙M 的半径,设ME =MD =r ,∵∠ACB =120°,∴∠A =30°,∠ACD =60°,在Rt △ACD 中,CD在Rt △CEM 中,∠ECM =60°,∠CME =30°,CEEMr ,第1题解图B第2题解图第3题图D第4题解图AF E CB∴CM =2CE,CM +DM =CD+rr =6-6.【答案】C 【解析】由题可知=ABCACDABCD S SS+四边形,过点D 作DE ⊥AC 于点E ,过点B 作BF ⊥AC 于点F ,如解图,则1=2ABCD S AC BF ∙四边形+12AC DE ∙=12+12DE,当点D 为劣弧AC 的中点时,DE 取得最大值,此时∠DAC =∠ACD =∠ABD =12∠ABC =30°,在Rt △ADE 中,AE =12AC,DE =12AD ,由勾股定理可得DE =12,∴此时12ABCD S 四边形7.【答案】B 【解析】如解图,作直径BD ,连接CD ,OC ,BM ,CM ,OM ,则∠BCD =90°,则∠BAC =∠D ,∵BC =BD =2OB =4,∴CD2,∴CD =12BD ,∴∠DBC =30°,∴∠BAC =∠D =60°,∴∠BOC =2∠BAC =120°,∠ABC +∠ACB =120°,∵P 点是△ABC 的内心,∴∠PBC +∠PCB =12(∠ABC +∠ACB )=60°,∴∠BPC =120°=∠BOC ,∴点O 在⊙M 上,∴OM =CM ,∵BM =CM ,∴BM =CM ,∴∠BOM =∠COM =60°,∴△OCM 是等边三角形,∴CM =OC =2,即⊙M 的半径不变等于2.故选B .8.【答案】B 【解析】如解图,连接OA 、OB ,∵∠ACB =45°,∴∠AOB =90°,又∵OA =OB ,∴△AOB 是等腰直角三角形,∵AB =6,∴OA =OB =6M 、N 分别是AB 、BC 的中点,∴MN 是△ABC 的中位线,∴MN =12AC ,要使MN 最大,即AC 最大,而AC 是⊙O 的弦,故AC 是⊙O 的直径时,值最大,此时AC =2OA MN 长的最大值是12AC =12⨯第5题解图A第6题解图第7题解图第8题解图9.【答案】B 【解析】如解图,将⊙O 补全,延长BO 交⊙O 于点C ,连接AC 交MO 于点P ,连接BP ,∵CB ⊥MN ,OB =OC ,∴BP =CP ,∴PA +PB =PA +PC ,根据两点之间线段最短可知所作点P 即为所求,此时PA +PC =AC .∵CB 为⊙O 的直径,∴∠BAC =90°,在Rt △ABC 中,AB =4,BC =2OB =10,∴AC10.【答案】C 【解析】如解图,∵AC 为其直径,∠ACB =30°,∴∠A =60°,∵点A '在AC 上运动,∴∠A '=∠A =60°,∵C 'B ⊥A 'B ,∴∠C '=90°-60°=30°,∵∠C '是定值,∴点C '的运动路径是一个圆,当点C '运动到C ''时,C C ''=2BC ,∵⊙O 的半径为7,∴AC =14,AB =7 ,∴BC =C C ''=C '以在C C ''中点M 为圆心,BC '的最大值为11.【答案】A 【解析】连接AE ,如解图①,∵∠BAC =90°,AB =AC ,BC =AB =AC =4,∵AD 为直径,∴∠AED =90°,∴∠AEB =90°,∴点E 在以AB 为直径的⊙O 的上,∵⊙O 的半径为2,∴当点E 为线段OC 与⊙O 的交点时,CE 最小.如解图②,在Rt △AOC 中,∵OA =2,AC =4,∴OCCE =OC -OE=-2.即线段CE长度最小值为2.当点E 为射线CO 与⊙O 的交点时,CE 最大,最大值为+2,∴-2≤CE ≤+2.12.【答案】A 【解析】如解图,连接OQ ,∵MN =OP (矩形对角线相等),⊙O 的半径为2,OQ =12MN =12OP =1,可得点Q 的运动轨迹是以O 为圆心,1为半径的圆.当点P 沿着圆周转过45°时,点Q 也是转过45°.∴Q 运动过的长度为45360︒︒×2π=4π.故选A . 13.【答案】C 【解析】如解图,连接CE ,∵点E 是AD 的中点,A 'E =AE =12AD ,点F 为动点,则随着F 的运动,A '的运动轨迹是以点E 为圆心,AE 为半径在矩形ABCD 内的第9题解 图第10题解图②图B①图圆弧,则C A '、A 'E 和CE 围成三角形,根据三角形的三边关系,即A 'E + C A '>CE ,当E 、A '、C 在同一直线上时,则A 'E + C A '=CE ,此时C A '最小.在Rt △CDE 中,CD =3,DE =1,则CEC A '1.14.【答案】A 【解析】过点A 、B 作圆P ,且使OA 、OB 交⊙P 于A 、B 两点,如解图,连接AP ,BP ,∵OA =OB =AB =4,∴△OAB 是等边三角形,∴∠AOB =60°,∴∠ACB =12∠AOB =30°,∵BD ⊥BC ,∴∠D =60°,∵AB =4,是一个定值,∴点D 在圆P 上,要使△ABD 面积的最大,∴点D 到AB 的距离要最大时,此时D 为圆P 优弧AB 的中点,此时△ABD 为等边三角形,D 到AB 的距离为ABD S ∆=12△ABD 面积的最大值为15.【答案】B 【解析】当点C 运动到A 点处时,点D 在如解图D '的位置处,当点C 运动到B 点处时,点D 与点B 重合,∵△BCD 是等边三角形,∴∠CDB =60°,又∵CO =BO ,∴△CDO ≌△BDO ,∴∠ODB =30°,∴点C 在半圆AB 上运动时,点D 在以BD '为直径的圆上运动,当点O ,D 与BD '的中点M 共线时,线段OD 最长,为⊙M 的直径,∴OD 的长随点C 的运动而变化,最大值为16.【答案】B 【解析】如解图,连接OA 、OB ,∵∠AMB =45°,∴∠AOB =90°,∴△AOB 是等腰直角三角形,∵⊙O 的半径是2,∴AB==,∵A M BA NM A N B S S S ∆∆=+四边形,∴要使四边形MANB 面积最大,则需两个三角形的高的和最大,当MN 为直径时,NM 最大,∴由垂径定理可知MN ⊥AB 时,四边形MANB 面积有最大值,∴MANB S 四边形=12·AB ·MN =1217.【答案】C 【解析】如解图,取劣弧CB 的中点D ,连接AD ,BD ,∵∠BCA =90°,AB =第12题解图CF第13题解图第14题解图第15题解图2AC =4,∴CA =2,则∠ABC =30°,∴∠BAC =60°,∵D 为劣弧CB 的中点,∴BD =CD ,∴∠BAD =30°,∴BD =12AB =2,∠BPC =60°,∴∠BDC =120°,∵I 为△PBC 的内心,∴∠PBI =∠IBC ,∵BD =CD ,∴∠BPD =∠DBC ,∴∠PBI +∠BPD =∠IBC +∠DBC ,即∠BID =∠IBD ,∴ID =BD ,∵BD =CA =2,∴ID =2,∴动点I 到定点D 的距离为2,即点I 的轨迹是以点D 为圆心,2为半径的弧CIB (不含C 、B ),弧CIB 的长为1202180π⨯=43π,则l 的取值范围是:0<l <43π18.【答案】A 【解析】如解图,分别作∠A 与∠B 的角平分线,交点为P ,∵△ACD 和△BCE 都是等边三角形,∴AP 与BP 为CD 、CE 的垂直平分线.又∵圆心O 在CD 、CE 垂直平分线上,则交点P 与圆心O 重合,即圆心O 是一个定点,连接OC ,若半径OC 最短,则OC ⊥AB .又∵∠OAC =∠OBC =30°,AB =4,∴OA =OB =2OC ,∴AC =BC =2,∴在Rt △AOC 中,2OC =2AO -2AC ,即2OC =42OC -4,解得OC19.【答案】C 【解析】如解图,连接OP ,∵PM ⊥CD ,PN ⊥AB ,∴∠PMO =∠PNO =90°,∴点M 、N 在以OP 为直径的圆上,∴∠MPN =90°,MN 有最大值2.20.【答案】 B 【解析】如解图,连接DO 并延长,交⊙O 于点P ′,由圆的性质知,当点P 运动到点P ′时,DP 的值最大.∵△ABC 为等腰直角三角形,且AB=∴BC=根据勾股定理得8AC ==,∵点D 、O 分别为AB 、AC 的中点,∴DO为△ABC的中位线,∴12DO BC ==DP ′=DO +OP ′=4,故DP 的最大值为4.第16题解图第17题解图第18题解图B第19题解图第20题解图 第22题解图 第23题解图 21.C 【解析】如解图,点P 运动的路径是以G 为圆心的劣弧,在⊙G 上取一点H ,连接EH 、FH ,∵四边形AOCB 是正方形,∴∠AOC =90°,∵∠CEA =12∠COA =45°,∴∠AFP =45°,∵EF 是⊙O 的直径,∴∠AFP =45°,∵EF 是⊙O 的直径,∴∠EAF =90°,∴∠APF =∠AFP =45°,∴∠H =∠APF =45°,∴∠EGF =2∠H =90°,∵EF =4,GE =GF ,∴GE =GF=EF 的长为90222180π=22.A 【解析】作DH ⊥BC 于H ,如解图,∵四边形ABCD 中,AD ∥BC ,∠ABC =90°,∴AB ⊥AD ,AB ⊥BC ,∴四边形ABHD 为矩形,∴AB 为直径,∴AD 和BC 为⊙O 的切线,∵CD 和MN 为⊙O 切线,∴DE =DA ,CE =CB ,NE =NF ,MB =MF ,∵四边形ABHD 为矩形,∴BH =AD =2,DH =AB =6,设BC =x ,则CH =x -2,CD =x +2,在Rt △DCH 中,∵222CH DH DC += ,∴222(2)6(2)x x -+=+,解得x =92,∴CB =CE =92,∴△MCN 的周长=CN +CM +MN =CN +CM +NF +MF =CE +CB =923.A 【解析】如解图,当点D 在⊙O 上运动时,点E 在以AO 为直径的圆上,当点D 运动到点C 处时,AE ′=12AC ;当点D 运动到点B 处时,AE ′′=12AB ,∴E ′E ′′为△ABC 的中位线,∴E ′E ′′=12BC =2,∵∠A =45°,∴E E ''' 所对的圆心角为90°,点E所在圆的半径r ∵点D 在优弧BAC上运动,∴点E运动的路径长为(3601802-=.24.A 【解析】如解图,当点D 在⊙O 上运动时,点E 在⊙M 上,点D 运动到D ′处时,D ′、O 、B 、M 共线,此时D ′B 为⊙O 的直径,∵BE =12BD ,∴BM =12BO ,在Rt △ABC 中,∵BC =AB =4,∴AC =BO=AO =BM D 与点A 重合时,点EC运动到E ′′处,∵△ABC 是等腰直角三角形,∴∠C =45°,∴∠BOA =90,∴∠E ′′MB =90°,∴当点D 从点A 运动至点B 时,点E的运动路径长为901802=.第24题解图 第25题解图25.C 【解析】如解图,过点P 作PF ⊥OM ,交直线l 同侧的⊙O 于点F ,连接OF ,记OF 的中点为G ,∵CM ⊥直线l ,∴∠MCO =∠OPF =90°,在Rt △CMO 和Rt △POF ,∴∠POF =∠CMO ,OF ⊥直线l ,∵点G 是OF 的中点,∴OG =GP =GF ,∴点P 在以点G 或G ′为圆心,OG 或OG ′长为半径的圆上,当点M 运动一周时,点P 的运动路程是⊙G 周长的2倍,∵OF =OM =10,∴点P 运动路程为2×10π=20π.。

2018年中考数学《几何图形的动点问题》同步提分训练含答案解析

2018年中考数学《几何图形的动点问题》同步提分训练含答案解析

2018年中考数学提分训练: 几何图形的动点问题一、选择题1.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x 的大致图象是()A. B. C. D.2.如图1,在矩形ABCD中,动点E从A出发,沿方向运动,当点E到达点C时停止运动,过点E做,交CD于F点,设点E运动路程为x, ,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )A. B. C. 6 D. 53.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④4.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B. C. D.5.如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别为AM,MR的中点,则EF的长随M点的运动( )A. 变短B. 变长C. 不变D. 无法确定二、填空题6.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为________.(结果不取近似值)7.如图,在平面直角坐标系中,A(4,0)、B(0,-3),以点B为圆心、2 为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为________.8.如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC 在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=________;(2)当△ABC的边与坐标轴平行时,t=________。

2018年中考压轴题汇编《因动点产生的等腰三角形问题》含答案

2018年中考压轴题汇编《因动点产生的等腰三角形问题》含答案

因动点产生的等腰三角形问题例年重庆市中考第题如图,在△中,=°,∠=°,点是∠的平分线上一点,过点作的垂线,过点作的垂线,两垂线交于点,连接,点是的中点,⊥,垂足为,连接,.()如图,若点是的中点,=,求、的长;()如图,求证:=.()如图,连接、,猜想:△是否是等边三角形?若是,请证明;若不是,请说明理由.图图例年长沙市中考第题如图,抛物线=++(、、是常数,≠)的对称轴为轴,且经过()和两点,点在该抛物线上运动,以点为圆心的⊙总经过定点(, ).()求、、的值;()求证:在点运动的过程中,⊙始终与轴相交;()设⊙与轴相交于(, )、(, )两点,当△为等腰三角形时,求圆心的纵坐标.图例年上海市虹口区中考模拟第题如图,在△中,∠=°,=,=,点为边的中点,⊥交边于点,点为射线上的一动点,点为边上的一动点,且∠=°.()求、的长;()若=,求的长;()记线段与线段的交点为,若△为等腰三角形,求的长.图备用图例年扬州市中考第题如图,抛物线=++经过(-)、(, )、( )三点,直线是抛物线的对称轴.()求抛物线的函数关系式;()设点是直线上的一个动点,当△的周长最小时,求点的坐标;()在直线上是否存在点,使△为等腰三角形,若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由.图例年临沂市中考第题如图,点在轴上,=,将线段绕点顺时针旋转°至的位置.()求点的坐标;()求经过、、的抛物线的解析式;()在此抛物线的对称轴上,是否存在点,使得以点、、为顶点的三角形是等腰三角形?若存在,求点的坐标;若不存在,请说明理由.图例年盐城市中考第题如图,已知一次函数=-+与正比例函数的图象交于点,且与轴交于点.()求点和点的坐标;()过点作⊥轴于点,过点作直线轴.动点从点出发,以每秒个单位长的速度,沿——的路线向点运动;同时直线从点出发,以相同速度向左平移,在平移过程中,直线交轴于点,交线段或线段于点.当点到达点时,点和直线都停止运动.在运动过程中,设动点运动的时间为秒.①当为何值时,以、、为顶点的三角形的面积为?②是否存在以、、为顶点的三角形是等腰三角形?若存在,求的值;若不存在,请说明理由.图因动点产生的等腰三角形问题答案例年重庆市中考第题如图,在△中,=°,∠=°,点是∠的平分线上一点,过点作的垂线,过点作的垂线,两垂线交于点,连接,点是的中点,⊥,垂足为,连接,.()如图,若点是的中点,=,求、的长;()如图,求证:=.()如图,连接、,猜想:△是否是等边三角形?若是,请证明;若不是,请说明理由.图图动感体验请打开几何画板文件名“重庆”,拖动点运动,可以体验到,△与△保持全等,△与△保持全等,△保持等边三角形的形状.思路点拨.把图形中所有°的角都标注出来,便于寻找等角和等边..中点有哪些用处呢?联想到斜边上的中线和中位线就有思路构造辅助线了.满分解答()如图,在△中,∠=°,=,所以=.在△中,∠=°,=,所以=,=.在△中,=,=,由勾股定理,得=.()如图,由∠=°,∠=°,平分∠,得∠=°,∠=°.在△中,=.在△中,=.所以=.因为点是△的斜边上的中线,所以=,∠=∠.所以∠=∠.所以△≌△.所以=.图图图()如图,作⊥于,联结.由,是的中点,得是的中点.因此=,△是等边三角形.又因为=,所以=.又因为=,∠=∠=°,所以△≌△.所以∠=∠,=.所以∠=∠=°.所以△是等边三角形.考点伸展我们再看几个特殊位置时的效果图,看看有没有熟悉的感觉.如图,如图,当点落在边上时,点与点重合.图图如图,图,点落在边上.如图,图,等腰梯形.图图图图例年长沙市中考第题如图,抛物线=++(、、是常数,≠)的对称轴为轴,且经过()和两点,点在该抛物线上运动,以点为圆心的⊙总经过定点(, ).()求、、的值;()求证:在点运动的过程中,⊙始终与轴相交;()设⊙与轴相交于(, )、(, )两点,当△为等腰三角形时,求圆心的纵坐标.图动感体验请打开几何画板文件名“长沙”,拖动圆心在抛物线上运动,可以体验到,圆与轴总是相交的,等腰三角形存在三种情况.思路点拨.不算不知道,一算真奇妙,原来⊙在轴上截得的弦长=是定值..等腰三角形存在三种情况,其中=和=两种情况时,点的纵坐标是相等的.满分解答()已知抛物线的顶点为(),所以=.所以=,=.将代入=,得.解得(舍去了负值).()抛物线的解析式为,设点的坐标为.已知(, ),所以>.而圆心到轴的距离为,所以半径>圆心到轴的距离.所以在点运动的过程中,⊙始终与轴相交.()如图,设的中点为,那么垂直平分.在△中,,,所以=.所以=.因此=,为定值.等腰△存在三种情况:①如图,当=时,点为原点重合,此时点的纵坐标为.图图②如图,当=时,在△中,=,=,所以=.此时==.所以点的纵坐标为.③如图,当=时,点的纵坐标为也为.图图考点伸展如果点在抛物线上运动,以点为圆心的⊙总经过定点(, ),那么在点运动的过程中,⊙始终与直线=-相切.这是因为:设点的坐标为.已知(, ),所以.而圆心到直线=-的距离也为,所以半径=圆心到直线=-的距离.所以在点运动的过程中,⊙始终与直线=-相切.例年上海市虹口区中考模拟第题如图,在△中,∠=°,=,=,点为边的中点,⊥交边于点,点为射线上的一动点,点为边上的一动点,且∠=°.()求、的长;()若=,求的长;()记线段与线段的交点为,若△为等腰三角形,求的长.图备用图动感体验请打开几何画板文件名“虹口”,拖动点在射线上运动,可以体验到,△与△保持相似.观察△,可以看到,、可以落在对边的垂直平分线上,不存在=的情况.请打开超级画板文件名“虹口”,拖动点在射线上运动,可以体验到,△与△保持相似.观察△,可以看到,、可以落在对边的垂直平分线上,不存在=的情况.思路点拨.第()题=分两种情况..解第()题时,画准确的示意图有利于理解题意,观察线段之间的和差关系..第()题探求等腰三角形时,根据相似三角形的传递性,转化为探求等腰三角形.满分解答()在△中,=,=,所以=.在△中,=,所以,.()如图,过点作⊥,⊥,垂足分别为、,那么、是△的两条中位线,=,=.由∠=°,∠=°,可得∠=∠.因此△∽△.所以.所以,.图图图①如图,当=,在上时,=.此时.所以.②如图,当=,在的延长线上时,=.此时.所以.()如图,如图,在△中,.在△中,.所以∠=∠.由∠=°,∠=°,可得∠=∠.因此△∽△.当△是等腰三角形时,△也是等腰三角形.①如图,当==时,=-=-=(如图所示).此时.所以.②如图,当=时,由,可得.所以=-=(如图所示).此时.所以.③不存在=的情况.这是因为∠≥∠>∠(如图,图所示).图图考点伸展如图,当△是等腰三角形时,根据等角的余角相等,可以得到△也是等腰三角形,=.在△中可以直接求解.例年扬州市中考第题如图,抛物线=++经过(-)、(, )、( )三点,直线是抛物线的对称轴.()求抛物线的函数关系式;()设点是直线上的一个动点,当△的周长最小时,求点的坐标;()在直线上是否存在点,使△为等腰三角形,若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由.图动感体验请打开几何画板文件名“扬州”,拖动点在抛物线的对称轴上运动,可以体验到,当点落在线段上时,+最小,△的周长最小.拖动点在抛物线的对称轴上运动,观察△的三个顶点与对边的垂直平分线的位置关系,可以看到,点有次机会落在的垂直平分线上;点有次机会落在的垂直平分线上;点有次机会落在的垂直平分线上,但是有次、、三点共线.思路点拨.第()题是典型的“牛喝水”问题,点在线段上时△的周长最小..第()题分三种情况列方程讨论等腰三角形的存在性.满分解答()因为抛物线与轴交于(-)、(, )两点,设=(+)(-),代入点( ),得-=.解得=-.所以抛物线的函数关系式是=-(+)(-)=-++.()如图,抛物线的对称轴是直线=.当点落在线段上时,+最小,△的周长最小.设抛物线的对称轴与轴的交点为.由,=,得==.所以点的坐标为(, ).图()点的坐标为(, )、(,)、(,)或().考点伸展第()题的解题过程是这样的:设点的坐标为().在△中,=,=+(-),=+.①如图,当=时,=.解方程+=+(-),得=.此时点的坐标为(, ).②如图,当=时,=.解方程+=,得.此时点的坐标为(,)或(,).③如图,当=时,=.解方程+(-)=,得=或.当(, )时,、、三点共线,所以此时符合条件的点的坐标为().图图图例年临沂市中考第题如图,点在轴上,=,将线段绕点顺时针旋转°至的位置.()求点的坐标;()求经过、、的抛物线的解析式;()在此抛物线的对称轴上,是否存在点,使得以点、、为顶点的三角形是等腰三角形?若存在,求点的坐标;若不存在,请说明理由.图动感体验请打开几何画板文件名“临沂”,拖动点在抛物线的对称轴上运动,可以体验到,⊙和⊙以及的垂直平分线与抛物线的对称轴有一个共同的交点,当点运动到⊙与对称轴的另一个交点时,、、三点共线.请打开超级画板文件名“临沂”,拖动点,发现存在点,使得以点、、为顶点的三角形是等腰三角形思路点拨.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验..本题中等腰三角形的角度特殊,三种情况的点重合在一起.满分解答()如图,过点作⊥轴,垂足为.在△中,∠=°,=,所以=,.所以点的坐标为.()因为抛物线与轴交于、(, ),设抛物线的解析式为=(-),代入点,.解得.所以抛物线的解析式为.()抛物线的对称轴是直线=,设点的坐标为(, ).①当==时,=.所以=.解得.当在时,、、三点共线(如图).②当==时,=.所以.解得.③当=时,=.所以.解得.综合①、②、③,点的坐标为,如图所示.图图考点伸展如图,在本题中,设抛物线的顶点为,那么△与△是两个相似的等腰三角形.由,得抛物线的顶点为.因此.所以∠=°,∠=°.例年盐城市中考第题如图,已知一次函数=-+与正比例函数的图象交于点,且与轴交于点.()求点和点的坐标;()过点作⊥轴于点,过点作直线轴.动点从点出发,以每秒个单位长的速度,沿——的路线向点运动;同时直线从点出发,以相同速度向左平移,在平移过程中,直线交轴于点,交线段或线段于点.当点到达点时,点和直线都停止运动.在运动过程中,设动点运动的时间为秒.①当为何值时,以、、为顶点的三角形的面积为?②是否存在以、、为顶点的三角形是等腰三角形?若存在,求的值;若不存在,请说明理由.图动感体验请打开几何画板文件名“盐城”,拖动点由向运动,从图象中可以看到,△的面积有一个时刻等于.观察△,可以体验到,在上时,只存在=的情况;在上时,有三个时刻,△是等腰三角形.思路点拨.把图复制若干个,在每一个图形中解决一个问题..求△的面积等于,按照点的位置分两种情况讨论.事实上,在上运动时,高是定值,最大面积为,因此不存在面积为的可能..讨论等腰三角形,按照点的位置分两种情况讨论,点的每一种位置又要讨论三种情况.满分解答()解方程组得所以点的坐标是(,).令,得.所以点的坐标是(,).()①如图,当在上运动时,≤<.由,得.整理,得.解得=或=(舍去).如图,当在上运动时,△的最大面积为.因此,当=时,以、、为顶点的三角形的面积为.图图图②我们先讨论在上运动时的情形,≤<.如图,在△中,∠=°,∠>°,=,,所以>.因此∠>∠>∠.如图,点由向运动的过程中,==,所以轴.因此∠=°保持不变,∠越来越大,所以只存在∠=∠的情况.此时点在的垂直平分线上,==.所以=,=.我们再来讨论在上运动时的情形,≤<.在△中,为定值,,.如图,当=时,解方程,得.如图,当=时,点在的垂直平分线上,=(-).解方程,得.如,当=时,那么.因此.解方程,得.综上所述,=或或或时,△是等腰三角形.图图图考点伸展当在上,=时,也可以用来求解.。

2018年中考压轴题(动点问题) 精品

2018年中考压轴题(动点问题) 精品

2018压轴题-动点问题1、(2018包头)如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B 同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?2、(2018齐齐哈尔)直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.3(2018深圳)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?4(2018哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.5(2018河北)在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C 出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B 匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t = 2时,AP = ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C 时,请直接..写出t的值.6(2018河南))如图,在Rt ABC°,°,2BC=.点ACB B∠=∠=△中,9060O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;α=°时,判断四边形EDBC是否为菱形,并说明理由.(2)当90(备用图)7(2018济南)如图,在梯形ABCD 中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形.8(2018江西)如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.CMA D E BF C图4(备用)ADE BF C图5(备用)A D E BF C图1 图2A D EBF C PNM 图3A D EBFCPN M(第25题)9(2018兰州)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C →D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.10(2018临沂)数学课上,张老师出示了问题:如图1,四边形ABCD∠的是正方形,点E是边BC的中点.90∠=,且EF交正方形外角DCGAEF平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.11(2018天津)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.ADFC GE 图1ADF C GE 图2 ADFC GE B图312(2018太原)问题解决 如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN 的值等于 ;若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示) 联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN的值等于 .(用含m n ,的式子表示)方法指导: 为了求得AMBN 的值,可先求BN 、AM 的长,不妨设:AB =2图(2)N A BCDEFM 图(1) A B CDEFMN。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学动点问题专题复习1.如图1,在Rt △ABC 中,∠A =90°,AB =6,AC =8,点D 为边BC 的中点,DE ⊥BC 交边AC 于点E ,点P 为射线AB 上的一动点,点Q 为边AC 上的一动点,且∠PDQ =90°. (1)求ED 、EC 的长;(2)若BP =2,求CQ 的长;(3)记线段PQ 与线段DE 的交点为F ,若△PDF 为等腰三角形,求BP 的长.图1 备用图解:(1)在Rt △ABC 中, AB =6,AC =8,所以BC =10.在Rt △CDE 中,CD =5,所以315tan 544ED CD C =⋅∠=⨯=,254EC =.(2)如图2,过点D 作DM ⊥AB ,DN ⊥AC ,垂足分别为M 、N ,那么DM 、DN 是△ABC 的两条中位线,DM =4,DN =3.由∠PDQ =90°,∠MDN =90°,可得∠PDM =∠QDN . 因此△PDM ∽△QDN .所以43PM DM QN DN ==.所以34QN PM =,43PM QN=.图2 图3 图4①如图3,当BP =2,P 在BM 上时,PM =1.此时3344QN PM ==.所以319444CQ CN QN =+=+=.②如图4,当BP =2,P 在MB 的延长线上时,PM =5.此时31544QN PM ==.所以1531444CQ CN QN =+=+=.(3)如图5,如图2,在Rt △PDQ 中,3tan 4QD DN QPD PD DM ∠===.在Rt △ABC 中,3tan 4BA C CA ∠==.所以∠QPD =∠C .由∠PDQ =90°,∠CDE =90°,可得∠PDF =∠CDQ . 因此△PDF ∽△CDQ .当△PDF 是等腰三角形时,△CDQ 也是等腰三角形.①如图5,当CQ =CD =5时,QN =CQ -CN =5-4=1(如图3所示).此时4433PM QN ==.所以45333BP BM PM =-=-=. ②如图6,当QC =QD 时,由cos CH C CQ =,可得5425258CQ =÷=.所以QN =CN -CQ =257488-=(如图2所示).此时4736PM QN ==.所以725366BP BM PM =+=+=. ③不存在DP =DF 的情况.这是因为∠DFP ≥∠DQP >∠DPQ (如图5,图6所示).图5 图62.如图1,抛物线y =ax2+bx +c 经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.图1解:(1)因为抛物线与x轴交于A(-1,0)、B(3, 0)两点,设y=a(x+1)(x-3),代入点C(0 ,3),得-3a=3.解得a=-1.所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3.(2)如图2,抛物线的对称轴是直线x=1.当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.设抛物线的对称轴与x轴的交点为H.由BH PHBO CO=,BO=CO,得PH=BH=2.所以点P的坐标为(1, 2).图2(3)点M的坐标为(1, 1)、、(1,)或(1,0).3.如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.图1解:(1)如图2,过点B作BC⊥y轴,垂足为C.在Rt△OBC中,∠BOC=30°,OB=4,所以BC=2,OC=所以点B的坐标为(2,--.(2)因为抛物线与x轴交于O、A(4, 0),设抛物线的解析式为y=ax(x-4),代入点B(2,--,2(6)a-=-⨯-.解得a=.所以抛物线的解析式为2(4)y x x=-=+.(3)抛物线的对称轴是直线x=2,设点P的坐标为(2, y).①当OP=OB=4时,OP2=16.所以4+y2=16.解得y=±.当P在(2,时,B、O、P三点共线(如图2).②当BP=BO=4时,BP2=16.所以224(16y++=.解得12y y==-③当PB=PO时,PB2=PO2.所以22224(2y y++=+.解得y=-综合①、②、③,点P的坐标为(2,-,如图2所示.图2 图34.如图1,已知一次函数y=-x+7与正比例函数43y x=的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.图1解:(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩ 得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4).令70y x =-+=,得7x =.所以点B 的坐标是(7,0). (2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C PP O RC O R A S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,AB =OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ//x 轴.因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中,3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =. 如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ 时,那么12cos AQA AP ∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图75.如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y . (1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m =,要使△DEF 为等腰三角形,m 的值应为多少?图1解:(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CEBF =,即8m x x y -=.整理,得y 关于x 的函数关系为218y x xm m =-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x xmm m =-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF为等腰三角形,只存在ED=EF的情况.因为△DCE∽△EBF,所以CE=BF,即x=y.将x=y =2代入12ym=,得m=6(如图3);将x=y =6代入12ym=,得m=2(如图4).图2 图3 图46.如图1,在等腰梯形ABCD中,AD//BC,E是AB的中点,过点E作EF//BC交CD于点F,AB=4,BC =6,∠B=60°.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过点P作PM⊥EF交BC于M,过M作MN//AB交折线ADC于N,连结PN,设EP=x.①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.图1 图2 图3解:(1)如图4,过点E作EG⊥BC于G.在Rt△BEG中,221==ABBE,∠B=60°,所以160cos=︒⋅=BEBG,360sin=︒⋅=BEEG.所以点E到BC的距离为3.(2)因为AD//EF//BC,E是AB的中点,所以F是DC的中点.因此EF是梯形ABCD的中位线,EF=4.①如图4,当点N在线段AD上时,△PMN的形状不是否发生改变.过点N作NH⊥EF于H,设PH与NM交于点Q.在矩形EGMP中,EP=G M=x,PM=EG=3.在平行四边形BMQE中,BM=EQ=1+x.所以BG=PQ=1.因为PM与NH平行且相等,所以PH与NM互相平分,PH=2PQ=2.在Rt△PNH中,NH=3,PH=2,所以PN=7.在平行四边形ABMN中,MN=AB=4.因此△PMN的周长为3+7+4.图4 图5②当点N在线段DC上时,△CMN恒为等边三角形.如图5,当PM=PN时,△PMC与△PNC关于直线PC对称,点P在∠DCB的平分线上.在Rt△PCM中,PM=3,∠PCM=30°,所以MC=3.此时M、P分别为BC、EF的中点,x=2.如图6,当MP=MN时,MP=MN=MC=3,x=GM=GC-MC=5-3.如图7,当NP=NM时,∠NMP=∠NPM=30°,所以∠PNM=120°.又因为∠FNM=120°,所以P与F重合.此时x=4.综上所述,当x=2或4或5-3时,△PMN为等腰三角形.图6 图7 图8。

相关文档
最新文档