(完整版)四年级奥数奇数与偶数(教师用含答案)
完整四年级奥数奇数与偶数.docx

一、奇数与偶数一、新学:1.奇数和偶数整数可以分成奇数和偶数两大 .能被 2 整除的数叫做偶数,不能被 2 整除的数叫做奇数。
偶数通常可以用 2k(k 整数)表示,奇数可以用 2k+1(k 整数)表示。
特注意,因 0 能被 2 整除,所以 0 是偶数。
2.奇数与偶数的运算性性 1:偶数±偶数 =偶数,奇数±奇数 =偶数。
性 2:偶数±奇数 =奇数。
性 3:偶数个奇数相加得偶数。
性 4:奇数个奇数相加得奇数。
性 5:偶数×奇数 =偶数,奇数×奇数 =奇数。
利用奇数与偶数的些性,我可以精巧地解决多.二、例例 11+2+3+⋯+1993的和是奇数?是偶数?例 2 一个数分与另外两个相奇数相乘,所得的两个相差150,个数是多少?例 3 元旦前夕,同学相互送年卡 .每人只要接到方年卡就一定回年卡,那么送了奇数年卡的人数是奇数,是偶数?什么?例 4 已知 a、b、c 中有一个是 5,一个是 6,一个是 7.求 a-1,b-2,c-3的乘一定是偶数。
例 5 任意改某一个三位数的各位数字的序得到一个新数 .新数与原数之和不能等于 999。
例 7桌上有 9 只杯子,全部口朝上,每次将其中 6只同时“翻转”请.说明:无论经过多少次这样的“翻转”,都不能使 9 只杯子全部口朝下。
例 8假设 n 盏有拉线开关的灯亮着,规定每次拉动(n-1)个开关,能否把所有的灯都关上?请证明此结论,或给出一种关灯的办法。
例 9 在圆周上有 1987 个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝 .最后统计有 1987 次染红, 1987 次染蓝 .求证至少有一珠子被染上过红、蓝两种颜色。
例 10 某校六年级学生参加区数学竞赛,试题共 40 道,评分标准是:答对一题给 3 分,答错一题倒扣 1 分.某题不答给 1 分,请说明该校六年级参赛学生得分总和一定是偶数。
小学奥数5-6-1 奇数与偶数的性质与应用.专项练习及答案解析

本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。
无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。
一、奇数和偶数的定义 整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k (k 为整数)表示,奇数则可以用2k +1(k 为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a ,b ,有a +b 与a -b 同奇或同偶模块一、奇偶分析法之计算法【例 1】 1231993++++……的和是奇数还是偶数?【考点】奇偶分析法之计算法 【难度】2星 【题型】解答【解析】 在1至1993中,共有1993个连续自然数,其中997个奇数,996个偶数,即共有奇数个奇数,那么原式的计算结果为奇数.【答案】奇数【例 1】 从1开始的前2005个整数的和是______数(填:“奇”或“偶”)。
【考点】奇偶分析法之计算法 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,5题【解析】 1+2+3+…+2004+2005=(1+2005)×2005÷2=1003×2005是奇数例题精讲知识点拨教学目标5-1奇数与偶数的性质与应用【巩固】2930318788……得数是奇数还是偶数?+++++【考点】奇偶分析法之计算法【难度】2星【题型】解答【解析】偶数。
小学奥数5-6-1 奇数与偶数的性质与应用.专项练习及答案解析

本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。
无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。
一、奇数和偶数的定义 整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k (k 为整数)表示,奇数则可以用2k +1(k 为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a ,b ,有a +b 与a -b 同奇或同偶模块一、奇偶分析法之计算法【例 1】 1231993++++……的和是奇数还是偶数?【考点】奇偶分析法之计算法 【难度】2星 【题型】解答【解析】 在1至1993中,共有1993个连续自然数,其中997个奇数,996个偶数,即共有奇数个奇数,那么原式的计算结果为奇数.【答案】奇数【例 1】 从1开始的前2005个整数的和是______数(填:“奇”或“偶”)。
【考点】奇偶分析法之计算法 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,5题【解析】 1+2+3+…+2004+2005=(1+2005)×2005÷2=1003×2005是奇数例题精讲 知识点拨教学目标5-1奇数与偶数的性质与应用【答案】奇数【巩固】2930318788……得数是奇数还是偶数?+++++【考点】奇偶分析法之计算法【难度】2星【题型】解答【解析】偶数。
新课标小学数学奥林匹克辅导及练习奇数与偶数(一)(含答案)

新课标小学数学奥林匹克辅导及练习奇数与偶数(一)(含答案)阅读思考:其实,在日常生活中同学们就已经接触了很多的奇数、偶数.凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数.因为偶数是2的倍数,所以通常用这个式子来表示偶数(这里是整数).因为任何奇数除以2其余数都是1,所以通常用式子来表示奇数(这里是整数).奇数和偶数有许多性质,常用的有:性质1 两个偶数的和或者差仍然是偶数.例如:8+4=12,8-4=4等.两个奇数的和或差也是偶数.例如:9+3=12,9-3=6等.奇数与偶数的和或差是奇数.例如:9+4=13,9-4=5等.单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数.性质2 奇数与奇数的积是奇数.例如:等91199⨯=偶数与整数的积是偶数.例如:等.性质3 任何一个奇数一定不等于任何一个偶数.例1.有5张扑克牌,画面向上.小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?分析与解答:同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下.要想使5张牌的画面都向下,那么每张牌都要翻动奇数次.5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下.而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数.所以无论他翻动多少次,都不能使5张牌画面都向下.例2.甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒.那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?分析与解答:不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒.所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子.如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个.否则甲盒子中的黑子数不变.也就是说,李平每次从甲盒子拿出的黑子数都是偶数.由于181是奇数,奇数减偶数等于奇数.所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子.例3.如图(1-1)是一张的正方形纸片.将它的左上角一格和右下角一格去掉,剩下的部分能否剪成若干个的长方形纸片?图(1-1)图(1-2)分析与解答:如图1-2,我们在方格内顺序地填上奇、偶两字.这时就会发现,要从上面剪下一个的长方形纸片,不论怎样剪,都会包含一个奇,一个偶.我们再数一下奇字和偶字的个数,奇字有30个,偶字有32个.所以这张纸不能剪成若干个的长方形纸片.2. 一串数排成一行,它们的规律是:前两个数都是1,从第三个数开始,每个数都是前两个数的和,也就是:1,1,2,3,5,……那么这串数的第100个是奇数还是偶数?分析与解:这道题的规律是两奇一偶,第100个为奇数.【模拟试题】(答题时间:30分钟)1. 30个连续自然数的乘积是奇数还是偶数?2.有6张扑克牌,画面都向上,小明每次翻转其中的5张.那么,要使6张牌的画面都向下,他至少需要翻动多少次?3.博物馆有并列的5间展室的电灯开关.他从第一间展室开始,走到第二间,再走到第三间……,走到第五间后往回走,走到第四间,再走到第三间……,如果开始时五间展室都亮着灯,那么他走过100个房间后,还有几间亮着灯?4. 有九只杯口向上的杯子放在桌子上,每次将其中四只杯子同时“翻转”,使其杯口向下,问能不能经过这样有限多次的“翻转”后,使九只杯口全部向下?为什么?【试题答案】1. 30个连续自然数的乘积是奇数还是偶数?答:和是奇数2.有6张扑克牌,画面都向上,小明每次翻转其中的5张.那么,要使6张牌的画面都向下,他至少需要翻动多少次?答:5次3.博物馆有并列的5间展室的电灯开关.他从第一间展室开始,走到第二间,再走到第三间……,走到第五间后往回走,走到第四间,再走到第三间……,如果开始时五间展室都亮着灯,那么他走过100个房间后,还有几间亮着灯?答:第5展室灯亮着4. 有九只杯口向上的杯子放在桌子上,每次将其中四只杯子同时“翻转”,使其杯口向下,问能不能经过这样有限多次的“翻转”后,使九只杯口全部向下?为什么?答:不能.。
奥数试题四年级奇数、偶数及奇偶数的应用

奇数、偶数及奇偶数的应用1、什么叫奇数?什么叫偶数?2、⑴如果a是偶数,与它相邻的两个偶数分别是()和()。
⑵相邻的两个偶数,它们的最大公约数是(),相邻的两个奇数,它们的最大公约数是()。
1、奇数与偶数具有哪些运算性质呢?你能举例说明吗?⑴偶数+偶数=()数,偶数-偶数=()数。
奇数+奇数=()数,奇数-奇数=()数。
偶数+奇数=()数,偶数-奇数=()数。
⑵奇数×奇数=()数,奇数个奇数的和是()数。
偶数×偶数=()数,偶数个偶数的和是()数。
奇数×偶数=()数,奇数个偶数的和是()数⑶若干个自然数连乘,如果有一个数是偶数,则乘积是()数。
2、从1—20这二十个数的和是奇数还是偶数?从1—999呢?3、三个连续奇数的和是333,这三个数分别是多少?4、从2、3、4、5、6、7中选出3个不同的数来,使得这3个数的和是偶数,你能想出几种方法?5、六⑴班同学毕业前,互相交换照片留念,那么全班用来交换的照片的总张数是奇数还是偶数?第一部分必做题1、(☆)选择。
⑴一个奇数(),结果一定是偶数。
①乘以3 ②加上2 ③减去1⑵任意两个奇数的和一定是()。
①奇数②偶数③质数④合数⑶下面四个数都是自然数,其中N是任意自然数数字,数字S=0,一定能被3整除的偶数是()。
①NNNSNN ②NSSNS ③NSNSNS ④NSSNSS⑷从4开始算起,10个连续自然数的和是()。
①奇数②偶数③可能是奇数也可能是偶数2、(☆)(5+3+a+9)是偶数,那么a是奇数还是偶数?3、(☆☆)1+2+3+4+…+2001+2002+2003+2004+2005,这道加法算式不用计算,你能直接判断它们的和是奇数还是偶数吗?4、(☆☆)从13开始算起,连续201个自然数的和是奇数还是偶数?5、(☆)将36支香插进9个香炉中,要使每个香炉中香的支数都是奇数,能否做到?6、(☆)新年前夕,同学们相互赠送贺卡,每人只要接到别人赠的一张贺卡就一定回赠一张贺卡,那么贺卡的总张数是奇数还是偶数?为什么?7、(☆☆)77个奇数之和与77个偶数之和的差是奇数还是偶数?8、(☆)数学游戏:取码比赛动物学校里,兔子和松鼠在做取石子游戏:15颗石子,每次取出两颗,最后不能取到两颗的算输,现在由小白兔先取,小松鼠后取,如此轮流下去,你知道谁取胜?从中你悟出什么规律?第二部分选做题9、(☆☆)从3开始,后一个数依次比前一个数多3,写出2000个数,排成一行:3、6、9、12、15、18、21……,在这些数中第1995个数是奇数还是偶数?10、(☆☆☆)有一列数:1、3、4、7、11、18、29……这列数排列的规律是,从第三个数开始,每个数都是前两个数的和,问这串数中前100个有多少个奇数?11、(☆☆)两个相邻的奇数的和乘以它们的差得184,这两个奇数各是多少?12、(☆☆)四个连续奇数的和是192,这四个数分别是多少?13、(☆☆)连续10个自然数的和是奇数还是偶数?连续40个自然数的和是奇数还是偶数?。
小学奥数—奇数与偶数的性质与应用

第二组相对的面上都写着数字 2,第三组相对的面上都写着数字 3(如图).现在把这 8 个小正方
体拼成一个棱长是 2 的大正方体.。问:是否有一种拼合方式,使得大正方体每一个面上的 4 个
数字之和恰好组成 6 个连续的自然数?
D
C
21
3
3
1
2
A
B
H
G
E
F
模块四、奇偶分析法之生活运用
【例 26】 甲、乙、丙三人进行万米赛跑,甲是最后一个起跑的,在整个比赛过程中,甲与乙、丙的位置
【巩固】是否存在自然数 a、b、c,使得(a-b)(b-c)(a-c)=45327?
【例 18】a、b、c 三个数的和与它们的积的和为奇数,问这三个数中最多可以有几个奇数?
【例 19】已知 a,b,c 中有一个是 511,一个是 622,一个是 793。求证: (a 1)(b 2)(c 3) 是一个偶数。
【巩固】你能不能将整数 0 到 8 分别填入 3×3 的方格表中,使得每一行中的三个数之和都是奇数?
【例 22】 能否将1 ~ 16 这 16 个自然数填入 4 4 的方格表中(每个小方格只填一个数),使得各行之和及 各列之和恰好是 8 个连续的自然数?如果能填,请给出一种填法;如果不能填,请说明理由.
是偶数”。判断小红和小明两人的说法中正确的是
。
【例 16】 试找出两个整数,使大数与小数之和加上大数与小数之差,再加上1000 等于1999 .如果找得出 来,请写出这两个数,如果找不出来,请说明理由.
【例 17】是否存在自然数 a 和 b,使得 ab(a+b)=115?
【巩固】是否存在自然数 a 和 b ,使得 a(b a 5b) 15015 ?
四年级奥数之构造与论证之奇偶分析(上)

2
【今日讲题】 例1,例2,例4,例5 构造与论证之奇偶分析(上) 1. 基本的奇偶性质 加减法:奇奇为偶 偶偶为偶 奇偶为奇。 加减法:奇奇为偶,偶偶为偶,奇偶为奇。 乘 法 :口诀:有偶为偶,无偶为奇。 连 加 :奇数个奇数的和是奇数, 偶数个奇数的和是偶数。 2.论证问题 总数的两种不同的计算方式 总数的两种不同的计算方式。一般是由偶数≠奇数 般是由偶数 奇数 ,推出矛盾。由矛盾说明假设不成立。 【讲题心得】
【例1】 (★★★)
任意取出10个连续自然数,它们的总和是奇数还 意 出 连续自 数 奇数 是偶数?
【例2】 (★★★)
有一本500页的书,从中任意撕下20张纸,这20张 纸上的所有页码之和能否是1999? 有 能
1
【例3】 (★★★)
【例4】 (★★★★)
桌子上有6只开口向上的杯子,每次同时翻动其 桌 有 杯 每 其 中的4只杯子,问能否经过若干次翻动,使得全 部杯子的开 全都向下? 部杯子的开口全都向下?
【课前小练习】(★★)
判断奇偶性。(填入奇数、偶数) (1) 78+52=_____; (2) 63-23=_____; 63 23 (3) 89+56=_____; (4) 1+2+3+4+5=_____; 1+2+3+4+5 (5) 6×5×4×9×5=_____; (6) 9×7×13×7×3=____. 9×7×13×7×3=
构造与论证之奇偶分析(上)
本讲主线 1.复习基本奇偶性质。 1 复习基本奇偶性质 奇 2. 和差奇偶性的应用。
奇偶数的运算规律: 1. 加减法 奇数+奇数=____ 奇数+奇数 奇数-奇数= 奇数 奇数 ____ 偶数+偶数=____ 偶数-偶数=____ 奇数+偶数=____ 奇数-偶数=____ 奇数个奇数相加得____ ,偶数个奇数相加得____ . 口诀:奇奇为偶,偶偶为偶,奇偶为奇。 2 乘法 2. 口诀:有偶为偶,无偶为奇。
27.四年级奥数第27讲——奇数和偶数

学生课程讲义
我们把学过的整数按从小到大的顺序写出来,可以写成:
0,1,2,3,4……
在学习和生活中,我们经常把上述这些数分成两大类,其中一类叫做偶数, 它们是:
0,2,4,6,8,10,……
另一类叫做奇数, 他们是:
1,3,5,7,9,……
如果一个整数可以被2整除,那么我们说这个数是偶数.如果一个整数不是偶数,那么它一定是奇数。
一个整数是偶数还是奇数,是这个整数自身的一种性质.这种性质,叫做奇
偶性
在这一讲中,我们向大家介绍奇数和偶数的三个最常见的性质
性质1任何一个奇数一定不等于任何一个偶数.(例如3≠4)
性质2相邻的两个自然数总是一奇
性质3有趣的运算规律
奇数士奇数=偶数
偶数士偶数=偶数
奇数士偶数=奇数
偶数士奇数=奇数
奇数×奇数=奇数
奇数×偶数=偶数
偶数×偶数=偶数
奇数不可能被偶数整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲:奇数与偶数
教学目标
本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。
无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。
知识点拨
一、奇数和偶数的定义
整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质
性质1:偶数±偶数=偶数,奇数±奇数=偶数
性质2:偶数±奇数=奇数
性质3:偶数个奇数的和或差是偶数
性质4:奇数个奇数的和或差是奇数
性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数
三、两个实用的推论:
推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a,b ,有a+b 与a-b 同奇或同偶
模块一:奇数偶数基本概念及基本加减法运算性质
【例 1】 1231993++++……的和是奇数还是偶数?
【解析】 在1至1993中,共有1993个连续自然数,其中997个奇数,996个偶数,即共有
奇数个奇数,那么原式的计算结果为奇数
【巩固】 123456799100999897967654321
+++++++++++++++++++++L L 的和是奇数还是偶数?为什么?
【解析】 在算式中,1~99都出现了2次,所以
123499999897964321++++++++++++++L L 是偶数,而100也是偶数,所以1234567991009998979676++++++++++++++++L L
54321+++++的和是偶数.
【巩固】 2930318788+++++……得数是奇数还是偶数?
【解析】 偶数。
原式中共有60个连续自然数,奇数开头偶数结尾说明有30个奇数,为偶数
个。
【例 2】 (200201202288151152153233++++-++++……)(……)
得数是奇数还是偶数?
【解析】 200至288共89个数,其中偶数比奇数多1,44个奇数的和是偶数;151至233
共83个数,奇数比偶数多1,42个奇数,为偶数;偶数减去偶数仍为偶数。
【例 3】 12345679899+⨯+⨯+⨯++⨯L 的计算结果是奇数还是偶数,为什么?
【解析】 特殊数字:“1”.在这个算式中,所有做乘法运算的都是奇数⨯偶数,所以它们的
乘积都是偶数,这些偶数相加的结果还是偶数,只有1是奇数,又因为奇数+偶数=奇数,所以这个题的计算结果是奇数.
【例 4】 能否在下式的“□”内填入加号或减号,使等式成立,若能请填入符号,不能请
说明理由
(1)1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=10
(2)1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=27
不能。
很多学生拿到这个题就开始试数,试了半天也试不出来因为,这时给他讲解,原式有
例题精讲
5个奇数,无论经加、减运算后结果一定是奇数。
本小题是一个典型的奇偶性质“先定性分析后定量计算的题目”(2)可以。
12345678927+++++++-=或12345678927---+++++=
模块二:奇偶运算性质综合及代数分析法
【例 5】 是否存在自然数a 和b ,使得ab(a +b)=115?
【解析】 不存在。
此类问题引导学生接触分类讨论的基本思想,即2个自然数在奇偶性的
组合上只有3种情况,“2奇0偶,1奇1偶,0奇2偶”,可以分别讨论发现均不成立。
【巩固】 是否存在自然数a 、b 、c ,使得(a-b)(b-c)(a-c)=45327?
【解析】 不存在。
可以分情况来讨论:3奇0偶,2奇1偶,1奇2偶,0奇3偶。
但是比
较繁琐,可以根据45327是一个奇数,只有奇数乘以奇数才能得到,所以a-b 、b-c 、a-c 都为奇数,再根据奇偶性进行判断。
【巩固】 已知a,b,c 中有一个是511,一个是622,一个是793。
求证:(1)(2)(3)
a b c ---是一个偶数
【解析】 因为在a,b,c 中有2个是奇数,1个是偶数,那么说明a,c 两个数中至少有一个是
奇数,那么(1)a -和(3)c -中至少有一个是偶数,所以(1)(2)(3)a b c ---中至少有一个因数是偶数,结果为偶数
模块三、奇偶模型与应用题
【例 6】 沿着河岸长着8丛植物,相邻两丛植物上所结的浆果数目相差1个.问:8丛植
物上能否一共结有225个浆果?说明理由.
【解析】 不能。
本题为俄罗斯小学生奥数竞赛题,可以给学生介绍。
相邻的两个植物果实数
目差1个意味着相邻2个植物的奇偶性不同,所以一定有4棵植物的果实为奇数个,总和一定为偶数,不能为225.
【例 7】 试找出两个整数,使大数与小数之和加上大数与小数之差,再加上1000等于
1999.如果找得出来,请写出这两个数,如果找不出来,请说明理由.
【解析】 因为两个数的和a b +与两个数的差a b -的奇偶性相同,所以a b a b ++-()()
的和是偶数.由结论三可知,这两数之和与这两数之差的和为偶数,再加1000还是偶数,所以它们的和不能等于奇数1999.
模块四:整数的奇偶性分析法
【例 8】 一个图书馆分东西两个阅览室.东阅览室里每张桌子上有2盏灯.西阅览室里每
张桌子上有3盏灯.现在知道两个阅览室里的总的桌子数和灯数都是奇数.问:哪个阅览室的桌子数是奇数?
【解析】 根据两个阅览室里总的桌子数和灯数都是奇数,想一想可以确定哪个阅览室桌子数、
灯数的奇偶性呢?由于东阅览室里每张桌子上有2盏灯,因此东阅览室的灯的总数
一定是偶数.由于两个阅览室里灯的总数是奇数,因此西阅览室的灯的总数一定是
奇数.又因为西阅览室里每张桌子上有3盏灯,可知西阅览室的桌子数是奇数.由
于两个阅览室里的总的桌子数是奇数,因此东阅览室的桌子数是偶数.所以,只有
西阅览室的桌子数是奇数.
【例 9】师傅与徒弟加工同一种零件,各人把产品放在自己的箩筐里,师傅的产量是徒弟的2倍,师傅的产品放在4只箩筐中,徒弟的产品放在2只箩筐中,每只箩筐都
标明了产品的只数:78只,94只,86只,87只,82只,80只.根据上面的条
件,你能找出哪两只筐的产品是徒弟制造的吗?
【解析】注意到所给出的6个数只有一个为奇数,它肯定是徒弟制造的.原因是:师傅的产量是徒弟的2倍,一定是偶数,它是4只箩筐中产品数的和,在题目条件下只能为
四个偶数的和.徒弟的另一筐产品可以利用求解“和倍问题”的方法来得出,求出
徒弟加工零件总数为:
()(),那另一筐放有产品1698782
-= +++++÷+=
78948687828021169
(只).所以,标明“82只”和“87只”这两筐中的产品是徒弟制造的.
课后练习
练习1.东东在做算术题时,写出了如下一个等式:1038137564
=⨯+,他做得对吗?【解析】等式左边是偶数,1375
⨯是奇数,64是偶数,根据奇数+偶数=奇数,等式右边是奇数,偶数不等于奇数,因此东东写出的等式是不对的.
练习2.a、b、c三个数的和与它们的积的和为奇数,问这三个数中最多可以有几个奇数?
(★★★)
+++。
则接下来可以分类讨【解析】根据题目内容,可以列出所要讨论的式子为a b c abc
论3奇0偶,2奇1偶,1奇2偶,0奇3偶四种情况。
经验证如果要满足上式结
果为奇数,那么可以发现最多只能有1个奇数。
练习3.黑板上写着两个数1和2,按下列规则增写新数,若黑板有两个数a和b,则增写a×b+a+b这个数,比如可增写5(因为1×2+1+2=5)增写11(因为1×5+1
+5=11),一直写下去,问能否得到2008,若不能,说明理由,若能则说出最少
需要写几次得到?
【解析】黑板上的数起初为一奇一偶,按照规则增写出的第三个数一定是一个奇数,第四个数如果选择仍由一奇一偶写出来的,那么仍然是奇数;另一种可以选择两个奇数开
始,那么“奇×奇+奇+奇=奇”,所以不论如何增写,新增的数一定是奇数,所以
不可能出现2008。