初中数学教师资格证复习资料(学科知识与教学技能)
2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案

2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案第1卷一.全考点押密题库(共100题)1.(单项选择题)(每题 5.00 分)我国古代关于求解一次同余式组的方法被西方称作“中国剩余定理”,这一方法的首创者是()。
A. 贾宪B. 刘徽C. 朱世杰D. 秦九韶2.3.(单项选择题)(每题 1.00 分)关于倍立方体问题中最重大的成就是柏拉图学派的()为解决倍立方体问题而发现了圆锥曲线。
A. 梅内赫莫斯B. 泰勒斯C. 欧几里得D. 阿基米德4.(单项选择题)(每题5.00 分)下列说法正确的是()。
A. 单调数列必收敛B. 收敛数列必单调C. 有界数列必收敛D. 收敛数列必有界5.(单项选择题)(每题 5.00 分) 一元三次方程x3 -3x-4 = 0的解的情况是()。
A. 方程有三个不相等的实根B. 方程有一个实根,一对共轭复根C. 方程有三个实根,其中一个两重根D. 无解6.(单项选择题)(每题 5.00 分) 我国现行法律认为,教师职业是一种()。
A. 私人职业B. 从属职业C. 专门职业D. 附加职业7.(单项选择题)(每题 1.00 分)下列关于椭圆的论述,正确的是()。
A. 平面内到两个定点的距离之和等于常数的动点轨迹是椭圆B. 平面内到定点和定直线距离之比小于1的动点轨迹是椭圆C. 从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆另一个焦点D. 平面与圆柱面的截线是椭圆8.(单项选择题)(每题 1.00 分)设4阶矩阵A与B仅有第3行不同,且|A|=1,|B|=3,则|A+B|=()。
A. 3B. 6C. 12D. 329.(单项选择题)(每题 5.00 分) 设向量a,b满足:|a| = 3,|b| = 4, a.b=0。
以a,b,a-b的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()。
A. 3B. 4C. 5D. 610.(单项选择题)(每题 1.00 分)《义务教育数学课程标准(2011 年版)》从四个方面阐述了课程目标,这四个目标是()。
初中教师资格证考试《数学学科知识与教学能力》专项复习

初中教师资格证考试《数学学科知识与教学能力》专项复习一、考试目标1.学科知识的掌握和运用。
掌握大学专科数学专业基础课程的知识、中学数学的知识。
具有在初中数学教学实践中综合而有效地运用这些知识的能力。
2.初中数学课程知识的掌握和运用。
理解初中数学课程的性质、基本理念和目标,熟悉《义务教育数学课程标准(2011年版)》(以下简称《课标》)规定的教学内容和要求。
3. 数学教学知识的掌握和应用。
理解有关的数学教学知识,具有教学设计、教学实施和教学评价的能力。
二、考试内容模块与要求1.学科知识数学学科知识包括大学专科数学专业基础课程、高中数学课程中的必修内容和部分选修内容以及初中数学课程中的内容知识。
大学专科数学专业基础课程知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学专科数学课程中与中学数学密切相关的内容。
其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。
高中数学课程中的必修内容和部分选修内容以及初中数学课程知识是指高中数学课程中的必修内容、选修课中的系列1、2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数方程)、选修4—5(不等式选讲)以及初中课程中的全部数学知识。
其内容要求是:理解中学数学中的重要概念,掌握中学数学中的重要公式、定理、法则等知识,掌握中学常见的数学思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力以及综合运用能力。
2.课程知识了解初中数学课程的性质、基本理念和目标。
熟悉《课标》所规定的教学内容的知识体系,掌握《课标》对教学内容的要求。
能运用《课标》指导自己的数学教学实践。
3.教学知识掌握讲授法、讨论法、自学辅导法、发现法等常见的数学教学方法。
掌握概念教学、命题教学等数学教学知识的基本内容。
了解包括备课、课堂教学、作业批改与考试、数学课外活动、数学教学评价等基本环节的教学过程。
教师资格考试初级中学学科知识与教学能力数学试题与参考答案

教师资格考试初级中学数学学科知识与教学能力复习试题(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、在下列数学概念中,属于集合论基础概念的是()A. 函数B. 数列C. 集合D. 比例2、在平面直角坐标系中,点P(3,4)关于直线y=x的对称点是()A. (4,3)B. (3,4)C. (-4,-3)D. (-3,-4)3、题干:在三角形ABC中,已知AB=AC,角B的度数为60°,那么角A的度数是()A. 60°B. 120°C. 30°D. 90°4、题干:下列关于函数y = x² - 4x + 3的描述,不正确的是()A. 函数图像是开口向上的抛物线B. 函数图像的对称轴是x = 2C. 函数图像与x轴的交点坐标为(1, 0)和(3, 0)D. 函数图像的顶点坐标是(2, -1)5、在平面直角坐标系中,点A的坐标为(3,2),点B的坐标为(-1,5)。
若点C 在直线y=2x上,且三角形ABC是等腰三角形,则点C的坐标可能是:A、(1,2)B、(-2,-4)C、(-1,4)D、(2,4)6、函数f(x) = 3x² - 4x + 5的图像是一个:A、开口向上的抛物线,顶点在x轴上B、开口向下的抛物线,顶点在x轴上C、开口向上的抛物线,顶点在y轴上D、开口向下的抛物线,顶点在y轴上7、在下列数学概念中,不属于平面几何范畴的是:A. 直线B. 圆C. 空间四边形D. 点8、以下关于函数概念的说法中,正确的是:A. 函数是一种关系,但不一定是数学关系B. 函数是一种对应关系,其中每个自变量值对应唯一的一个因变量值C. 函数是一种运算,但不一定是数学运算D. 函数是一种物理量,与自变量和因变量无关二、简答题(本大题有5小题,每小题7分,共35分)第一题请结合教学实践,阐述如何在初中数学教学中培养学生的逻辑思维能力。
教师资格证初中数学专业知识与能力复习笔记自己整理

教师资格证初中数学专业知识与能力复习笔记自己整理数学学科知识与教学模块二:课程知识第一章初中数学课程的性质与基本理念初中数学课程的主要影响因素包括教育政策、社会文化、教育资源等。
这些因素会影响教学内容、教学方法和教学评价等方面。
初中数学课程的性质包括普遍性、基础性、实用性和发展性。
这些性质决定了初中数学课程的重要性和必要性。
初中数学课程的基本理念包括以学生为中心、注重学科知识与能力的培养、注重数学思维和方法的培养等。
这些理念是指导初中数学教学的重要原则。
初中数学课程的核心概念包括数与式、函数、图形、变量、方程、不等式、比例、百分数、几何等。
这些概念是初中数学课程的基础和核心,学生需要掌握并理解其应用。
第二章初中数学课程目标初中数学课程的目标包括数学知识的掌握、数学思维和方法的培养、数学实践能力的提高等。
这些目标旨在使学生在数学学科中具备综合性的能力和素养。
第三章初中数学课程的内容标准初中数学课程的内容标准包括数与式、函数、图形、变量、方程、不等式、比例、百分数、几何等方面的知识和技能。
这些标准是教学内容的基础和指导。
第四章初中数学课程教学建议初中数学课程的教学建议包括注重学生的主体性和实践性、注重数学思维和方法的培养、注重教学资源的优化等方面。
这些建议旨在提高教学效果和促进学生的综合素质发展。
第一节:《课标》中的数学教学建议数学教学建议是指在课程标准中提出的数学教学的指导性意见。
这些建议包括教学目标、教学内容、教学方法等。
教师应该了解这些建议,并根据自己的实际情况进行合理的调整和应用。
在教学过程中,教师应该注重学生的研究兴趣和能力,采用多种教学方法,使学生能够积极主动地参与到研究中来。
第二节:教学中应当注意的几个关系在数学教学中,教师应该注重以下几个关系:教师与学生的关系、学生与学生之间的关系、教师与教材的关系、教师与教学方法的关系。
教师应该与学生建立良好的关系,尊重学生的个性,关注学生的情感需求。
教师资格之中学数学学科知识与教学能力知识点总结归纳完整版

教师资格之中学数学学科知识与教学能力知识点总结归纳完整版1、抛掷两粒正方体骰子(每个面上的点数分别为1, 2, .... 6),假定每个面朝上的可能性相同,观察向上的点数,则点数之和等于5的概率为()A.5/36B.1/9C.1/12D.1/18正确答案:B2、单核巨噬细胞的典型的表面标志是A.CD2B.CD3C.CD14D.CD16E.CD28正确答案:C3、《义务教育课程次标准(2011年版)》“四基”中“数学的基本思想”,主要是:①数学抽象的思想;②数学推理的思想;③数学建模的思想。
其中正确的是()。
A.①B.①②C.①②③D.②③正确答案:C4、国际标准品属于A.一级标准品B.二级标准品C.三级标准品D.四级标准品E.五级标准品正确答案:A5、血小板膜糖蛋白Ⅱb/Ⅲa(GPⅡb/Ⅲa)复合物与下列哪种血小板功能有关()A.黏附功能B.聚集功能C.分泌功能D.凝血功能E.血块收缩功能正确答案:B6、下列关于反证法的认识,错误的是().A.反证法是一种间接证明命题的方法B.反证法是逻辑依据之一是排中律C.反证法的逻辑依据之一是矛盾律D.反证法就是证明一个命题的逆否命题正确答案:D7、下列选项中,( )属于影响初中数学课程的社会发展因素。
A.数学的知识、方法和意义B.从教育的角度对数学所形成的价值认识C.学生的知识、经验和环境背景D.当代社会的科学技术、人文精神中蕴含的数学知识与素养等正确答案:D8、下列数学概念中,用“属概念加和差”方式定义的是()。
A.正方形B.平行四边形C.有理数D.集合正确答案:B9、《普通高中数学课程标准 (2017年版2020年修订)》中明确提出的数学核心素养不包括()A.数据分析B.直观想象C.数学抽象D.合情推理正确答案:D10、关于PT测定下列说法错误的是A.PT测定是反映外源凝血系统最常用的筛选试验B.口服避孕药可使PT延长C.PT测定时0.109mol/L枸橼酸钠与血液的比例是1:9D.PT的参考值为11~14秒,超过正常3秒为异常E.肝脏疾病及维生素K缺乏症时PT延长正确答案:B11、下列数学成就是中国著名成就的是()。
2024年教师资格考试初中学科知识与教学能力数学试卷与参考答案

2024年教师资格考试初中数学学科知识与教学能力复习试卷(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、在下列函数中,属于一次函数的是:A.(f(x)=x2+3x−2)B.(g(x)=2x+4)C.(ℎ(x)=√x+5)+3)D.(j(x)=1x2、下列关于三角形内角和定理的说法正确的是:A. 任何三角形的内角和小于180°B. 等边三角形的内角和等于360°C. 所有三角形的内角和等于180°D. 任何三角形的内角和大于180°3、题干:在平面直角坐标系中,点A的坐标为(3,4),点B的坐标为(-2,1)。
下列关于点B的坐标的描述正确的是()A. 点B在第二象限B. 点B在第三象限C. 点B在第四象限D. 点B在x轴上4、题干:若等差数列{an}的首项为2,公差为3,则第10项an的值为()A. 25B. 28C. 31D. 345、下列关于函数图像的说法正确的是()A. 函数y=x^2的图像是一个开口向上的抛物线B. 函数y=√x的图像是一个开口向下的抛物线C. 函数y=2x+1的图像是一条直线,斜率为2,y轴截距为1D. 函数y=|x|的图像是一个开口向左的绝对值函数6、下列关于一元二次方程的解法,错误的是()A. 因式分解法可以求解一元二次方程B. 配方法可以求解一元二次方程C. 求根公式法可以求解一元二次方程D. 降次法不能求解一元二次方程7、在下列函数中,属于二次函数的是())A.(y=1xB.(y=x2+2x+1)C.(y=√x)D.(y=x3−2x2+x+1)8、已知函数(f(x)=2x2−3x+1),则函数的对称轴是())A.(x=−34)B.(x=34)C.(y=−34)D.(y=34二、简答题(本大题有5小题,每小题7分,共35分)第一题请结合初中数学学科特点,谈谈如何有效运用信息技术进行数学教学?第二题题目:简述在教授初中数学时如何运用直观演示法,并举例说明其在几何教学中的应用。
教师资格证笔试考试大纲:《数学学科知识与教学能力》(初级中学(最新3篇)

教师资格证笔试考试大纲:《数学学科知识与教学能力》(初级中学(最新3篇)教师资格证考试《综合素质》考点15个篇一初中阶段的十个概念:数感;符号意识,空间观念,几何观念,数据分析观念;运算能力,推理能力;模型思想;创新思想(提出问题,独立思考,归纳验证);应用意识。
义务教育阶段数学课程总目标1) 获得适应生活要的知识技能思想和经验2) 体会数学与生活,其他学科的联系。
分析解决问题能力培养。
3) 了解数学价值,增加兴趣,信心,爱好。
养成良好习惯,初步形成科学态度。
义务教育具有基础性发展性和普及性。
数学课程能使学生掌握以后生活工作备的基本知识,基本技能,思想方法;抽象能力和推理能力;促进情感态度价值观健康发展。
为今后的生活,学习打下基础。
二次根式:就是开根号目标:了解意义,掌握字母取值问题,掌握性质灵活运用通过计算,培养逻辑思维能力领悟数学的对称性和规律美。
重点:根式意义;难点;字母取值范围勾股定理探索证明的基础上,联系实际,归纳抽象,应用解决实际问题。
通过探索分析归纳过程,提高逻辑能力和分析解决问题能力。
数学好奇心,热爱数学。
重点:应用难点:实际问题转化为数学问题平行四边形及性质经历探索平行四边形性质和概念,掌握性质,能够判别体会操作转化的思想过程,积累问题解决的思想。
与他人交流,积极动手的习惯四边形内角和:量角器;内部做三角形;按照边做三角形;按照定点做三角形。
一次函数和二元一次方程的关系。
数形结合数学思想为主体;问题为贯穿;数形结合为工具;提高问题解决能力。
数学课程理念内涵:人人获得良好数学教育,在数学上得到不同发展内容:符合数学特点,认知规律,社会实际。
层次性和多样性。
间接与直接。
过程:师生交往评价:多元发展信息技术与课程:现在信息技术改进教学方法,资源。
1) 信息技术开发资源,注重整合。
2) 教学方式的改善。
3) 理解原理的基础上,利用计算器,计算机。
4) 不能完全替代原有的有段。
合情推理:根据已有的结论,实践结果,直观等推测某些结论。
初中数学教师资格证数学学科知识

初中数学教师资格证数学学科知识
初中数学教师资格证数学学科知识包括但不限于以下内容:
1. 数的概念与运算:十进制、整数、有理数、无理数、实数等基本概念及其运算法则。
2. 代数与函数:代数式的化简、分式、方程、不等式、函数及其图像与性质等。
3. 几何与图形:平面图形的性质、面积、体积的计算、相似与全等、三角形、圆的性质等。
4. 数据与统计:数据的处理、图表的读取与分析、统计与概率等。
5. 数学思想方法:数学推理思维、证明方法、数学建模等。
6. 运算与解题:运算技巧、解题方法、解决实际问题的能力。
7. 数学史与数学文化:了解数学发展过程、数学家及其贡献、数学文化相关的知识。
这些都是初中数学教师需要熟练掌握的知识,并能够将其教授给学生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块二:课程知识第一章初中数学课程的性质与基本理念第一节:影响初中数学课程的主要因素1初中数学课程是一门国家课程,内容主要包括课程目标、教学内容、教学过程和评价手段。
它体现了国家从数学教育与教学的角度,对初中阶段学生实现最终培养目标的整体规划。
2、影响初中数学课程的主要因素包括:一、数学学科内涵:(1)数学科学本身的内涵(数学的知识、方法和意义等)(2)作为教育任务的数学学科的内涵(理解数学的整体性特征,领悟相关的数学思想,应用数学解决问题的能力等)二、社会发展现状:(1)当代社会的科学技术、人文精神中蕴含的数学知识与素养等(2)生活变化对数学的影响等(3)社会发展对公民基本数学素养的需求。
三、学生心理特征。
初中数学课程是针对初中学生年龄特征和知识经验而设置的,因此学生的心理特征必然会影响着具体的课程内容、(1)适合学生的数学思维特征2)学生的知识、经验和环境背景第二节、初中数学课程性质—、基础性(1)初中阶段的数学课程中应当有大量的内容是未来公民在日常生活中必须要用到的。
(2)初中阶段的教育是每一个学生必须经历的基础教育阶段,它将为其后续生存、发展打下必要的基础。
(3)由于数学学科是其他科学的基础,因此数学课程内容也是学生在初中阶段学习其他课程的必要基础因此,义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础二、普及性(1)初中阶段的数学课程应当在适龄少年中得到普及,即每一个适龄的学生都有充分的机会学习它(2)初中数学课程内容应当能够为所有适龄学牛在具备相应学习条件的前提下,通过自己的努力而掌握三、发展性第三节:初中数学课程的基本理念初中数学课程的基本理念主要表现五个方面一:课程内涵:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
(1)要实现学生的全面发展(2)要关注全体学生的发展(3)应促使学生自主地发展二:课程内容:(1)要反映社会的需要、数学的特点。
(2)构成不仅包括数学的结果,也包括数学结果的形成过程和蕴含的数学思想方法(3)选择要符合学生的认知规律,贴近学生现实,有利于学生体验与理解(4)组织要处理好过程与结果、直观与抽象、直接经验与间接经验关系。
(5 )呈现应注意层次性和多样性。
三:教学过程数学教学活动是师生积极参与、交往互动、共同发展的过程,有效的教学活动是学生学与教师教的同一,学生是学习的主体,教师是学习的组织者、引导者与合作者。
四:学习评价学习评价的主要目的是为了全面了解学生数学学习的的过程和结果,激励学生学习和改进教师教学。
五、技术与数学课程(1)将信息技术作为学生从事数学活动的辅助性工具,包括在探究学习对象的性质、应用知识解决问题等活动中。
(2)将信息技术作为教师从事教学实践与研究的辅助工具。
(3)将计算机等技术作为评价学生数学学习的辅助性工具。
第四节:数学课程核心概念(9个)(背)(课标提出的含义)一:数感数感主要是关于数与数量、数量关系、运算结果估算等方面的感悟。
建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
:符号意识(代数符号、几何符号)符号意识主要是能够理解并运用符号一表示数、数量关系和变化规律; 知道使用符号可以进行运算和推理,得到的结果具有一般性。
有助于理解符号的使用是数学表达和进行数学思想的重要形式。
三:空间观念空间观念主要是根据物体特征抽象出几何图形;根据几何图形想象出所描述的实际物体; 想象出物体的方位和相互之间的位置关系;描述图像的运动和变化;依据语言的描述画出图形等。
四:几何直观几何直观主要是指利用图形描述和分析问题。
借助几何直观可以把复杂的数学问题变得简洁、形象,有助于探索解决问题的思路,并预测结果。
几何直观可以帮助学生直观地理解数学,在整个数学学习过程中发挥着重要作用。
五:数据分析观念包括:了解在现实生活中有许多问题应该先做调查研究,收集数据,再通过对数据做必要分析才能够给出合理判断;了解对于同样的数据可以有多种分析方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。
六:运算能力运算能力主要是指能够根据法则和运算律正确地进行运算的能力。
培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。
七:推理能力推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式,所以培养学生的推理能力是应贯穿整个数学学习过程中。
推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。
在解决问题过程中,合情推理用于探索思路,发现结论;演绎推理用于证明结论_____________八:模型思想模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。
建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果,并讨论结果的意义。
有助于学生初步形成模型思想,提高学生应用数学的意识和能力。
九:应用意识和创新意识应用意识有两方面含义,(1)有意识利用数学的概念、原理、方法解释现实世界中的现象和问题;(2)认识到现实生活中蕴含着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。
创新意识的培养是现代数学教育的基本任务,应体现在数学的学与教过程中。
学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。
第二章初中数学课程目标一、总体目标:"四基”基础知识、基本技能、基本思想、基本活动经验。
基础知识:一般是指所涉及到的基本概念、基本性质、基本法则、基本公式等。
如说明1/4,0.25,25%的含义。
分数、小数、百分数是重要数的概念。
真分数通常表示整理与部分的关系,因此理解1/4,要先知道那个是整体的,如全班同学人数的1/4。
小数通常表示具体的量,如书桌的宽度是0.45米。
百分数是同分母(同一标准)的比值,便于比较,如去年比前年增长21%,今年比去年增长25%。
基本技能:包括基本的运算、测量、绘图等技能。
如20以内加减乘除法,每分钟完成8~10 题作为参照,大部分同学经过一定训练可以达到这个目标,以作为测试和参考。
基本思想:数学的三个基本思想:抽象、推理、建模。
如数概念的形成和发展是数与代数中的重要内容,从整数、小数、分数到有理数的学习,是一个从具体事物抽象为数的过程。
教学中应结合具体教学内容的学习,把抽象体现在该过程中,培养抽象思维能力。
基本活动经验:数学基本活动经验的积累要和过程性目标建立联系。
如《标准(2011)版》规定,“经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能;经历图形的抽象、分类、性质讨论、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能;经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能。
”这些过程性目标和内容实现的主要标志是学生形成活动性经验,在经历数学活动中,了解数学知识发生发展的过程,体会数学知识和方法的探究。
二、学段目标:(知识技能、数学思考、问题解决、情感态度)①经历数与代数抽象、运算与建模等过程,掌握属于代数的基础知识和基本技能。
②经历图形的抽象、分类、性质探讨、运动、位置确定等,掌握图形与几何的基础知识和基本技能。
③经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能。
0参与综合实践活动,积累综合运用数学知识、技能和方法等解决简单问题的数学活动经验。
(新课标界定:1•体验从具体情境中抽象出数学符号的过程,理解有理数、实数、代数式、发成、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中数量关系和变化规律,掌握用代数式、方程、不等式、函数进行表述的方法。
2•探索并掌握相交线、平行线、三角形、四边形和圆的基本性质与判定,掌握基本的证明方法和基本作图技能;探索并理解平面图形的平移、旋转、轴对称;认识投影与视图;探索并理解平面直角坐标系,能确定位置。
3•体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总体的过程;进一步认识随机现象,能计算简单事件的概率。
)2、数学思考:(1 )建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维和抽象思维。
(2)体会统计方法的意义,发展数据分析观念,感受随机现象。
(3)在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己的想法。
(4)学会独立思考,体会数学的基本思想和思维方式。
(1•通过用代数式、方程、不等式、函数等表述数量关系的过程,体会模型的思想,建立符号意识;在研究图形性质和运动、确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的过程,初步建立几何直观。
2.了解利用数据可以进行统计推断,发展建立数据分析观念;感受随机现象的特点。
3•体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,发展演绎推理和合情推理的能力。
4•独立思考,体会数学基本思想和思维方式。
)3、问题解决(1)初步学会从数学的角度发现和提出问题,综合运用数学知识解决实际问题;(2)获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识和应用力;(3)学会与他人合作交流;(1)积极参与数学活动,对数学有好奇心和求知欲;(2)在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。
(3)体会数学的特点,了解数学的价值。
(4)养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯。
三:总体目标和学段目标的关系1•总体目标和学段目标总体目标是经过整个义务阶段数学学习之后,应当达到的最终目标。
是实现义务教育阶段数学课程教师的最主要途径。
总体目标的达成要分阶段落实,而每个阶段性的目标就是学段目标。
即总体目标是义务教育阶段数学课程的终极目标,而学段目标则是总体目标的细化和分段化。
2•总体目标的四个方面总体目标由知识技能、数学思考、问题解决、情感态度四个方面体现。
密切联系,相互交融的有机整体。
一方面,知识技能不能作为终极目的;另一方面,数学思考、问题解决、情感态度的达成应以数学知识技能和方法作为载体。
因此,只有这四个方面目标的整体实现,才是学生受到良好数学教育的标志。
3•过程性目标和结果性目标既关注过程,也关注结果。
许多结果目标的实现,应经历过程性目标环节,概念的形成是有过程的。