铝合金铸造方式

合集下载

铝合金的铸造方法

铝合金的铸造方法

铝合金的铸造方法铝合金铸造方法主要分为压力铸造和重力铸造两种。

1. 压力铸造方法(Pressure Casting)压力铸造是指将熔化的铝合金通过高压注入到金属模具中进行快速凝固的方法。

压力铸造包括冷室压力铸造和热室压力铸造两种方法。

具体步骤如下:- 铝合金材料熔化:将铝合金原料加热至熔点,通常在680C-750C之间。

- 模具准备:选择适当的金属模具,并进行涂料处理,以便提高铝合金熔体与模具表面的润湿性。

- 模具预热:根据具体合金类型和厚度,模具需要预热到一定温度,通常在200C-300C之间。

- 注射:将预热好的模具封闭在注射机中,通过高压将铝合金熔体注入模具中。

- 冷却:模具内的铝合金熔体在注射后迅速凝固,并冷却至室温。

- 模具开启和取出:冷却后,打开模具,取出铸件。

- 去毛刺和后处理:对铸件进行去毛刺和修整等后处理工艺。

2. 重力铸造方法(Gravity Casting)重力铸造是指利用重力将铝合金熔体注入模具中的方法。

相对于压力铸造,重力铸造的压力较低,适用于较大的铸件。

具体步骤如下:- 铸造准备:选择适当的金属模具,并进行涂料处理。

- 铝合金材料熔化:将铝合金原料加热至熔点,通常在680C-750C之间。

- 注射:借助于重力,将铝合金熔体通过溢流口倒入模具中。

在此过程中,可以通过控制溢流口的大小和位置来控制铸件的形状和尺寸。

- 冷却:待铝合金熔体在模具中凝固,冷却至室温。

- 模具开启和取出:冷却后,打开模具,取出铸件。

- 去毛刺和后处理:对铸件进行去毛刺和修整等后处理工艺。

值得注意的是,上述方法仅列举了最常用和基本的铝合金铸造方法,实际生产中还有其他特殊的铸造方法,如砂芯铸造、低压铸造等。

具体方法的选择会根据铸件形状、尺寸和要求等因素进行灵活确定。

铝合金铸造技术研究与发展趋势

铝合金铸造技术研究与发展趋势

铝合金铸造技术研究与发展趋势铝合金铸造技术研究与发展趋势1. 引言铝合金是一种重要的结构材料,在航空航天、汽车制造、电子通讯、工业设备等领域有广泛应用。

铝合金的轻量化、高强度、良好的导热导电性能使其成为替代钢铁材料的理想选择。

而铝合金铸造技术作为铝合金加工的重要方法,一直在不断研究与发展,以适应不同领域对铝合金产品的需求。

2. 铝合金铸造技术的研究方向铝合金铸造技术主要包括压力铸造、重力铸造和搅拌铸造等多种方法。

其中,压力铸造是目前应用最广泛的铸造方法,可以实现高精度、高效率的生产。

然而,随着对铝合金产品性能要求的不断提高,研究者也在探索和发展其他铸造技术。

2.1 先进压力铸造技术为了进一步提高压力铸造的效率和质量,研究人员提出了一系列先进的压力铸造技术,如真空压力铸造、低压压力铸造和高速压力铸造等。

真空压力铸造利用真空环境下的压力差,能够有效减少气孔的产生,提高产品的致密性和机械性能。

低压压力铸造通过降低铸造过程中铝液的压力,可以减小砂芯的变形和气孔的产生,提高产品的表面质量。

高速压力铸造利用高速射流来充填铸型,能够实现更加均匀的充填和凝固,从而提高产品的强度和韧性。

2.2 其他铸造方法除了压力铸造,重力铸造和搅拌铸造也是研究热点。

重力铸造是利用重力作用将铝液充填铸型,适用于大型和复杂件的生产。

搅拌铸造则是将铝液在充填过程中进行搅拌,利用机械搅拌和磁场搅拌等方式来改善铝合金的组织和性能。

这些新兴的铸造方法能够满足特殊形状或特殊性能要求的铝合金产品的生产需求。

3. 发展趋势3.1 材料设计与优化未来的铝合金铸造技术将更加注重材料设计和优化。

通过调整合金成分和微观组织的控制,可以进一步提高铝合金的强度、耐腐蚀性和耐热性能。

例如,添加稀土元素、纳米颗粒和纤维增强相等可以改善铝合金的力学性能和热稳定性。

3.2 数值模拟与仿真数值模拟和仿真技术是铝合金铸造技术发展的关键。

通过建立铸造过程的数学模型,可以预测和优化铸件的凝固过程、缩孔和应力分布等。

铸铝件工艺流程

铸铝件工艺流程

铸铝件工艺流程铸铝件是一种常见的金属制品,广泛应用于汽车、航空航天、机械设备等领域。

铸铝件工艺流程包括模具设计、熔炼铝合金、铸造、去毛刺、热处理和表面处理等多个环节。

下面将详细介绍铸铝件的工艺流程。

1. 模具设计铸铝件的质量和形状受到模具设计的影响。

在进行模具设计时,需要考虑铸件的结构特点、壁厚、收缩率等因素,以确保最终铸件的质量和形状符合要求。

同时,还需要考虑模具的冷却系统,以保证铸造过程中的温度控制。

2. 熔炼铝合金铸铝件通常采用铝合金进行铸造,因此首先需要对铝合金进行熔炼。

在熔炼过程中,需要严格控制熔炼温度和合金成分,以确保铝合金的质量符合要求。

3. 铸造铸造是铸铝件工艺流程中的关键环节。

在铸造过程中,需要将熔化的铝合金倒入预先设计好的模具中,然后等待铸件冷却凝固。

在此过程中,需要注意控制浇注速度、温度和压力,以避免产生气孔、夹杂等缺陷。

4. 去毛刺铸造完成后,铸件表面通常会留有一些毛刺和氧化皮。

因此,需要对铸件进行去毛刺处理,以提高表面质量和加工性能。

5. 热处理铸铝件通常需要进行热处理,以消除残余应力、改善组织结构和提高硬度。

常见的热处理工艺包括时效处理、固溶处理和淬火处理等。

6. 表面处理最后,铸铝件还需要进行表面处理,以提高其耐腐蚀性和装饰性。

常见的表面处理工艺包括阳极氧化、喷涂、电镀等。

总结铸铝件工艺流程包括模具设计、熔炼铝合金、铸造、去毛刺、热处理和表面处理等多个环节。

每个环节都对最终铸铝件的质量和性能有着重要影响。

因此,在生产过程中需要严格控制每个环节,以确保铸铝件的质量符合要求。

铝合金铸造工艺简介

铝合金铸造工艺简介

铝合金铸造工艺简介一、铸造概论在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下:由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。

故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。

1、铝合金铸造工艺性能铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。

流动性、收缩性、气密性、铸造应力、吸气性。

铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。

(1) 流动性流动性是指合金液体充填铸型的能力。

流动性的大小决定合金能否铸造复杂的铸件。

在铝合金中共晶合金的流动性最好。

影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。

实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。

(2) 收缩性收缩性是铸造铝合金的主要特征之一。

一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。

合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。

通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。

铝合金收缩大小,通常以百分数来表示,称为收缩率。

①体收缩体收缩包括液体收缩与凝固收缩。

铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。

集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。

分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。

铝合金低压铸造

铝合金低压铸造
5:只能生产型腔简单ቤተ መጻሕፍቲ ባይዱ铸件(目前) 6:只能生产中小型铸件
7:生产效率高 8:铸件内部有气孔 9:铸件不能热处理强化
低压铸造的原理图
工艺流程
1:熔化工艺流程 2:低压铸造工艺流程 3:模具准备工艺流程(浇注模具) 4:热芯工艺流程 5:壳芯工艺流程 6:冷芯工艺流程 7:震动去芯工艺流程
铝合金熔化工艺流程
2:喷砂机(含喷砂房、除尘器、模具放置小车、压送罐、 喷砂枪)
3:主要作用:用来清理模具表面的过期涂料层及新模具表 面的油污等杂物。
铸造模具(1)
常用铸造模具的分类 1:砂型铸造用模具 2:特种铸造模具 3:精密铸造模具 金属型低压铸造模具 1):金属型低压铸造模具的结构
金属型低压铸造模具一般可分为:上模、下模、侧模、 及抽芯(模具结构中可以没有侧模、抽芯);
件(可以生产200kg以上铸铝件) 7:生产效率比高压铸造低 8:铸件内部没有气孔 9:铸件可以热处理强化
高压铸造 1:压力高,可达到上百兆帕
2:金属液在行腔中的速度快,可达到 60m/s,最高可到120m/s.金属液 对型腔的冲刷大
3:金属液在型腔的流动不平稳 4:型腔只能是金属型(对型腔材料要
求比较高)
铝合金低压铸造
主要内容:
一 :低压铸造介绍: 1:铝合金低压铸造在我国的发展状况; 2:低压铸造的特点; 3:铝合金低压铸造与铝合金压铸的区别;
二:低压铸造 : 1:低压铸造的原理; 2:低压铸造的工艺流程;
三:低压铸造机及主要附属设备的: 1:低压机铸造机; 2:制芯设备; 2.1:冷芯机; 2.2:壳芯机; 2.3:热芯机; 3:振动去芯机; 4:模具预热炉、喷砂机
3:制芯系统(冷芯盒射芯机、三乙胺发生器); 冷芯盒射芯机(含射砂机构、吹气机构与上顶芯机构 一体、开合模机构、下顶芯机构)

铝合金铸造工艺

铝合金铸造工艺
增长 • 绿色制造、环保节能的发展趋势将推动铝合金铸造工艺的发展
和应用
铝02合金铸造工艺的分类及
特点
重力铸造工艺及特点
重力铸造工艺是将熔融铝倒入模具中,依靠重力作 用使铝液充满模具并凝固成型的一种工艺
• 重力铸造工艺简单、投资成本低,适 用于中小型铸件的生产 • 重力铸造工艺对模具的要求较低,模 具使用寿命较长
学性能
• 挤压铸造工艺适用于对力学性能要求 较高的铸件生产,如汽车制造领域的零 部件 • 挤压铸造工艺对模具和挤压设备的要 求较高,投资成本较大
铝03合金铸造工艺的主要原
材料与辅助材料
铝合金铸造原料的选择及特点
铝合金铸造原料主要包括铝合金锭、合金元素、精炼剂等
• 铝合金锭是铝合金铸造的主要原料,根据不同的性能要求,可以选择不同的铝合 金牌号 • 合金元素用于调整铝合金的成分,改善其性能,如镁、硅、铜等 • 精炼剂用于改善铝合金熔炼过程中的气体含量和杂质含量,提高铸件的质量
铝合金铸造模具的设计需要考虑铸件的形状、尺寸、壁厚等因素
• 模具设计应满足铸件的成型要求,保证铸件的尺寸精度和表面质量 • 模具设计应考虑铸造过程中的温度、压力、时间等参数,确保铸件的质量
铝合金铸造工具的种类及用途
铝合金铸造工具主要包括铸造工具、测量工具、清理工具等
• 铸造工具用于成型铝合金铸件,如压铸工具、重力铸造工具、低压铸造工具等 • 测量工具用于检测铸件的尺寸、形状、质量等,如卡尺、千分尺、投影仪等 • 清理工具用于清理铸件表面的杂质、氧化皮等,如砂轮机、抛光机、喷砂机等
其他铝合金铸造工艺及特点
真空铸造工艺:在真空条件下进行铸造,可以降低 熔融铝中的气体含量,提高铸件的质量
• 真空铸造工艺适用于对气密性要求较 高的铸件生产,如航空航天领域的零部 件 • 真空铸造工艺对设备要求较高,投资 成本较大

铝加工深井铸造工艺

铝加工深井铸造工艺

铝加工深井铸造工艺铝加工深井铸造工艺是一种铝合金材料的加工方法,它通过在高温状态下将熔融的铝合金倒入预制的砂型中来制造复杂的铝合金零件。

深井铸造工艺具有以下优点:1. 高精度:深井铸造工艺可以制造出高精度的铝合金零件,因为砂型的准确性和稳定性可以得到有效控制。

2. 复杂形状:深井铸造工艺可以生产出复杂形状的铝合金零件,如叶片、齿轮等。

这是由于砂型具有良好的流动性和填充性能。

3. 节约材料:深井铸造工艺可以最大限度地减少材料浪费,因为砂型可以重复使用。

这对于铝合金这种昂贵的材料来说,是非常有利的。

4. 良好的机械性能:深井铸造工艺可以获得优良的机械性能,如高强度、高耐热性和高耐腐蚀性。

这是由于合金材料在高温状态下得到充分的均匀混合。

铝加工深井铸造工艺的主要步骤包括模具设计、原材料准备、熔炼和倒铸等。

在模具设计中,需要考虑到零件的复杂形状和材料的流动性。

原材料准备包括铝合金的配制和其他辅助材料的选取。

熔炼过程中,需要将铝合金加热到足够的温度使其熔化,并通过浇注口将熔融铝合金倒入砂型中。

在倒铸过程中,需要控制铸造时间和温度,以保证铝合金的流动性和填充性能。

值得一提的是,铝加工深井铸造工艺还可以通过添加一些合金元素,如硅、铜和镁等,来改善铝合金的性能。

这些元素可以增强合金的强度、硬度和耐磨性。

总之,铝加工深井铸造工艺是一种先进的铝合金加工方法,它可以制造出高精度、复杂形状的铝合金零件,并具有良好的机械性能。

这种工艺在航空航天、汽车制造和机械制造等领域具有广泛的应用前景。

铝棒铸造工艺流程

铝棒铸造工艺流程

铝棒铸造工艺流程铝棒铸造工艺流程是指将铝合金熔化后注入铸型,冷却凝固后得到所需产品的一系列操作方法。

下面将以700字的篇幅,详细介绍铝棒铸造的工艺流程。

铝棒铸造工艺流程主要包括原材料准备、合金熔炼、铸型设计、浇注、冷却凝固、除砂、去毛刺、热处理、机械加工和质量检验等多个步骤。

首先,原材料准备阶段主要包括铝合金的选择和准备。

根据产品的使用要求和性能指标,选择合适的铝合金,并对原材料进行化学成分分析和性能测试等。

其次,合金熔炼阶段是将选定的铝合金放入熔炉中进行高温熔化,使其变成可注入铸型的液态铝合金。

熔炉通常采用电阻炉或电弧炉等设备,根据不同的合金成分和生产需求进行调整温度和时间。

然后,铸型设计阶段是根据产品的形状和尺寸要求,制作出用来注入熔化铝合金的铸型。

铸型通常采用砂型、金属型或陶瓷型等,根据产品要求进行造型和加工。

接下来,即将进入铸造过程,将熔化的铝合金注入铸型中。

在注入过程中,需要注意温度的控制和操作的准确性,以确保铝合金能够充分填充铸型并达到预期的形状和尺寸。

随后,冷却凝固阶段是使注入铸型中的铝合金冷却并凝固成型的过程。

通过合理的冷却时间和方式,确保铝合金能够完全凝固,避免出现缩孔、气孔等缺陷。

完成凝固后,需要进行除砂和去毛刺的处理,以去除外表的砂粒和毛刺等杂质。

这一步骤可以采用机械处理或化学处理的方法,使产品外表更加平整和光滑。

然后,还需要进行热处理的操作。

热处理是通过加热和冷却的方式,改善铝合金的力学性能和组织结构。

热处理过程中需要控制温度和保持时间等参数,以达到预期的效果。

最后,进行机械加工和质量检验。

机械加工是对产品外形和尺寸进行修整和加工,以满足客户的要求。

质量检验则是通过检测产品的物理性能、化学成分和产品外观等指标,确保产品质量达标。

以上就是铝棒铸造的主要工艺流程。

每个环节都需要经验丰富的工作人员严格操作,以确保铝棒的质量和性能达到预期要求。

铝棒广泛应用于航空、航天、汽车、建筑等领域,具有优良的导热性能、耐腐蚀性和轻质高强度等特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心铸造一、概述离心铸造是将液体金属浇入旋转的铸型中,使液体金属在离心力的作用下充填铸型和凝固形成的一种铸造方法。

为实现上述工艺过程,必须采用离心铸造机创造使铸旋转的条件。

根据铸型旋转轴在空间位置的不同,常用的有立式离心铸造机和卧式离心铸造机两种类型。

立式离心铸造机上的铸型是绕垂直轴旋转的(图1),它主要用来生产高度小于直径的圆环类铸件,有时也可用此种离心铸造机浇注异形铸件。

卧式离心铸造机的铸型是绕水平轴旋转的(图2),它主要用来生产长度大于直径的套类和管类铸件。

图1 立式离心铸造示意图图1 立式离心铸造示意图1-浇包 2-铸型 3-液体金属 4-皮带轮和皮带 5-旋转轴 6-铸件 7-电动机图2 卧式离心铸造示意图1-浇包 2-浇注槽 3-铸型 4-液体金属 5-端差 6-铸件由于离心铸造时,液体金属是在旋转情况下充填铸型并进行凝固的,因而离心铸造便具有下述的一些特点:1)液体金属能在铸型中形成中空的圆柱形自由表面,这样便可不用型芯就能铸出中空的铸件,大大简化了套筒,管类铸件的生产过程;2)由于旋转时液体金属所产生的离心力作用,离心铸造工艺可提高金属充镇铸型的能力,因此一些流动性较差的合金和薄壁铸件都可用离心铸造法生产;3)由于离心力的作用,改善了补缩条件,气体和非金属夹杂也易于自液体金属中排出,因此离心铸件的组织较致密,缩孔(缩松)、气孔、夹杂等缺陷较少;4)消除或大大节省浇注系统和冒口方面的金属消耗;5)铸件易产生偏析,铸件内表面较粗糙。

内表面尺寸不易控制。

离心铸造的第一个专利是在1809年由英国人爱尔恰尔特(Erchardt)提出的,直到二十世纪初期这一方法在生产方面才逐步地被采用。

我国在三十年代也开始利用离心管、筒类铸件如铁管、铜套、缸套、双金属钢背铜套等方面,离心铸造几乎是一种主要的方法;此外在耐热钢辊道、一些特殊钢无缝纲管的毛坯,造纸机干燥滚筒等生产方面,离心铸造法也用得很有成效。

目前已制出高度机械化、自动化的离心铸造机,已建起大量生产的机械化离心铸管车间。

几乎一切铸造合金都可用于离心铸造法生产,离心铸件的最小内径可达8毫米,最大直径可达3m,铸件的最大长度可达8m,离心铸件的重量范围为几牛至几万牛(零点几公斤至十多吨)。

二、离心铸造工艺1)离心铸型转速的选择选择离心铸型的转速时,主要应考虑两个问题:(1)离心铸型的转速起码应保证液体金属在进入铸型后立刻能形成圆筒彩,绕轴线旋转;(2)充分利用离心力的作用,保证得到良好的铸件内部质量,避免铸件内产生缩孔、缩松、夹杂和气孔。

采用砂型离心铸造时,也要注意忽使液体金属对型壁具有太大的离心压力而引起铸件粘砂胀砂等的缺陷。

2)离心铸造用铸型离心铸造时使用的铸型有两大类,即金属型和非金属型。

非金属型可为砂型、壳型、熔模壳型等。

由于金属型在大量生产、成批生产时具有一系列的优点,所以在离心铸造时广泛地采用金属型。

卧式悬臂离心铸造机上的金属型按其主体的结构特点可分为单层金属型和双层金属型两种。

在单层金属型中,型壁由一层组成,单层金属型结构简单,操作方便,但它损坏后需要制作新的铸型才能开始生产,在此铸型中只能浇注单一外径尺寸的铸件。

而在双层金属型中,型壁由两层组成,铸件在内型表面成形。

双层金属型结构虽复杂性,但只要改变内型的工作表面尺寸就可浇注多种外径尺寸的离心铸件。

长期工作后,只需更换结构较简单的内型就可把旧铸型当作新的铸型使用。

3)涂料金属型离心铸造时,常需在金属型的工作表面喷刷涂料。

对离心铸造金属型用涂料的要求与一般金属型铸造时相同。

为防止铸件与金属型粘合和铸铁件产生白口,在离心金属型上的涂料层有时较厚。

离心铸造用涂料大多用水作载体。

有时也用于态涂料,如石墨粉,以使铸件能较易地自型中取出。

喷刷涂料时应注意控制金属型的温度。

在生产大型铸件时,如果铸型本身的热量不足以把涂料洪干,可以把铸型放在加热炉中加热,并保持铸型的工作温度,等待浇注。

生产小型铸件时,尤其是采用悬臂离心铸造机生产时,希望尽可能利用铸型本身的热量洪干涂料,等待浇注。

4)浇注离心铸造时,浇注工艺有其本身的特点,首先由于铸件的内表面是自由表面,而铸件厚度的控制全由所浇注液体金属的数量决定,故离心铸造浇注时,对所浇注金属的定量要求较高。

此外由于浇注是在铸型旋转情况下进行的为了尽可能地消除金属飞溅的现象,要很好控制金属进入铸型时的方向。

液体金属的定量有重量法、容积法和定自由表面高度(液体金属厚度)法等。

容积法用一定体积的浇包控制所浇注液体金属的数量,此法较简便,但受金属的温度,熔渣等影响,定量不太准确,在生产中用的较多。

为尽可能地消除浇注时金属的飞溅现象,要控制好液体金属进入铸型时的流动方向。

差压铸造差压铸造又称反压铸造、压差铸造。

它是在低压铸造的基础上,铸型外罩个密封罩,同时向坩埚和罩内通入压缩空气,但坩埚内的压力略高,使坩埚内的金属液在压力差的作用下经升液管充填铸型,并在压力下结晶。

它是低压铸造与压力下结晶两种铸造方法的结合。

一、基本原理与工艺过程形成金属液充型时的压力差面△P有两种方式:一种是增压法,即增加下压力筒压力,使P2>P;形成△P 进行充型;另一种是减压法,即减少上压力筒压力,使P1<P2而形成△P。

(1)增压法压力为P0的干燥压缩空气经e阀、a阀和b阀分别同时进入互通的上、下压力筒(图1 a),当达到所需的工作压力冲P1时,上下压力筒内压力平衡,坩埚内金属液处于静止状态。

关团互通阀d,使上下压力筒相互隔绝。

关闭a阀,使压缩空气继续经b阀进入下压力筒,下压力筒内压力由P1增至P2(图1 b),上下压力筒间产生一个压力差△P=P2一P1,使坩埚树锅内金属液通过升液管,经浇道进入铸型中。

充型结束后,保压一段时间,使铸件在高压下凝固。

凝固完毕后,打开互通阀,上下压力筒同时放气。

升液管中金属液靠自重流回流。

因而差压铸造具有比低压铸造更理想的结晶、凝固条件。

(2)减压法使上、下压力筒中同时达到工作压力P1的工序与增压法同,而后关闭a、b、d阀,使上压力筒中压力逐渐减为P2(图1 c),上下压力筒间产生压力差△P=P1-P2,坩埚内金属液通过升液管充型。

充型结束后关闭C阀。

减压充型可避免上任简内铸型由于金属液充填升温,产生蒸汽和气体膨胀而影响人的变化。

减压法充型时可按浇注工艺控制放气速度。

二、铸造工艺特点因差压铸造金属液是在一定压力下充型,故带来一系列有利于获得优质铸件的因素。

1)可获得最佳的充型速度;2)可获得最优质的充型金属液,可避免外来夹杂物进入型内。

3)可获得致密的铸件;4)可获得无针孔、少针孔的铸件;5)铸件尺寸精度与表面质量改善,不会引起铸型的变形或使铸件表面机械粘砂;6)可提高铸件力学性能,与低压铸造相比,差压铸造的铸件材料的抗拉强度可提高10~50%,伸长率可提高25~50%;7)能用气体作为合金元素,高压下能提高气体溶解度,故可往一些合金(如钢)中溶入N2,提高合金强度和耐磨性能。

三、应用范围差压铸适除了可用砂型外,也可用金属型。

单件、小批量生产时可用砂型,生产批量大时,可用金属型。

铸件重量可从小于1kg至100kg以上。

目前国内最大铸造直径540mm、高度890mm、壁厚8~10mm的大型复杂薄壁整体舱铸件。

可铸造的合金有铝合金、锌合金、镁合金、铜合金,还有铸钢。

生产的铸件有电机壳、阀门、叶轮、气缸、轮毂、坦克导轮、船体等。

在压力铸造机上生产受投影面积或壁厚限制的铸件均可用差压铸造法生产。

差压铸造技术还可应用到注塑机上生产泡沫塑料结构件,通过发泡剂的加入量和压力控制生产出不同厚度的表面致密层。

低压铸造一、概述低压铸造是便液体金属在压力作用下充填型腔,以形成铸件的一种方法。

由于所用的压力较低,所以叫做低压铸造。

其工艺过程是:在密封的坩埚(或密封罐)中,通入干燥的压缩空气,金属液在气体压力的作用下,沿升液管上升,通过浇口平稳地进入型腔,并保持坩埚内液面上的气体压力,一直到铸件完全凝固为止。

然后解除液面上的气体压力,使升液管中未凝固的金属液流回坩埚,再由气缸开型并推出铸件。

低压铸造独特的优点表现在以下几个方面:1.液体金属充型比较平稳;2.铸件成形性好,有利于形成轮廓清晰、表面光洁的铸件,对于大型薄壁铸件的成形更为有利;3.铸件组织致密,机械性能高;4.提高了金属液的工艺收得率,一般情况下不需要冒口,使金属液的收得率大大提高,收得率一般可达90%。

此外,劳动条件好;设备简单,易实现机械化和自动化,也是低压铸造的突出优点。

二、低压铸造工艺设计低压铸造所用的铸型,有金属型和非金属型两类。

金属型多用于大批、大量生产的有色金属铸件,非金属铸型多用于单件小批量生产,如砂型,石墨型,陶瓷型和熔模型壳等都可用于低压铸造,而生产中采用较多的还是砂型。

但低压铸造用砂型的造型材料的透气性和强度应比重力浇注时高,型腔中的气体,全靠排气道和砂粒孔隙排出。

为充分利用低压铸造时液体金属在压力作用下自下而上地补缩铸件,在进行工艺设计时,应考虑使铸件远离浇口的部位先凝固,让浇口最后凝固,使铸件在凝固过程中通过浇口得到补缩,实现顺序凝固。

常采用下述措施:1.浇口设在铸件的厚壁部位,而使薄壁部位远离浇口;2.用加工余量调整铸件壁厚,以调节铸件的方向性凝固;3.改变铸件的冷却条件。

对于壁厚差大的铸件,用上述一般措施又难于得到顾序凝固的条件时,可采用一些特殊的办法,如在铸件厚壁处进行局部冷却,以实现顺序凝固。

三、低压铸造工艺低压铸造的工艺规范包括充型、增压、铸型预热温度、浇注温度,以及铸型的涂料等。

(1)充型和增压升液压力是指当金属液面上升到浇口,附所需要的压力。

金属液在升液管内的上升速度应尽可能缓慢,以便有利于型腔内气体的排出,同时也可使金属液在进入浇口时不致产生喷溅。

(2)充型压力和充型速度充型压力Pa是指使金属液充型上升到铸型顶部所需的压力。

在充型阶段,金属液面上的升压速度就是充型速度。

(3)增压和增压速度金属液充满型腔后,再继续增压,使铸件的结晶凝固在一定大小的压力作用下进行,这时的压力叫结晶压力。

结晶压力越大,补缩效果越好,最后获得的铸件组织也愈致密。

但通过结晶增大压力来提高铸件质量,不是任何情况下都能采用的。

(4)保压时间型腔压力增至结晶压力后,并在结晶压力下保持一段时间,直到铸件完全凝固所需要的时间叫保压时间。

如果保压时间不够,铸件未完全凝固就卸压,型腔中的金属液将会全部或部分流回批捐,造成铸件“放空”报废:如果保压时间过久,则浇口残留过长,这不仅降低工艺收得率,而且还会造成浇口“冻结”,使铸件出型困难,故生产中必须选择一适宜的保压时间。

(5)铸型温度及浇注温度低压铸造可采用各种铸型,对非金属型的工作温度一般都为室温,先特殊要求,而对金属型的工作温度就有一定的要求。

相关文档
最新文档