数学必修五知识点总结归纳
高中数学必修五知识点大全

知识点串讲必修五第一章:解三角形1.1.1正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abA B =sin cC =一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
2、已知∆ABC 中,∠A 060=,a =求sin sin sin a b c A B C++++ 证明出sin sin a b A B =sin c C ==sin sin sin a b c A B C++++ 解:设sin sin a b A B =(>o)sin c k k C== 则有sin a k A =,sin b k B =,sin c k C = 从而sin sin sin a b c A B C ++++=sin sin sin sin sin sin k A k B k C A B C++++=k又sin a A =2k ==,所以sin sin sin a b c A B C++++=2 评述:在∆ABC 中,等式sin sin a b A B =sin c C ==()0sin sin sin a b c k k A B C ++=>++ 恒成立。
3、已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c(答案:1:2:3)1.1.2余弦定理1、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即 2222cos a b c bc A =+-2222cos b a c ac B =+-2222cos c a b ab C =+-从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc 222cos 2+-=a c b B ac 222cos 2+-=b a c C ba2、在∆ABC 中,已知=a c 060=B ,求b 及A⑴解:∵2222cos =+-b a c ac B=222+-⋅cos 045=2121)+-=8∴=b求A 可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos 2222221,22+-=b c a A bc ∴060.=A解法二:∵sin 0sin sin45,=a A B b2.4 1.43.8,+=21.8 3.6,⨯=∴a <c ,即00<A <090,∴060.=A评述:解法二应注意确定A 的取值范围。
高中数学必修五知识点总结

高中数学必修五知识点总结一、代数部分:1.多项式的基本概念与运算:包括多项式的定义、次数、系数、单项式、多项式的加减乘除等。
2.因式分解与提取公因式:掌握对多项式进行因式分解与提取公因式的方法,包括一元二次、三项完全平方差、简单三项和复杂多项式的因式分解。
3.方程与不等式:掌握一元二次方程与一元二次不等式的解法,包括配方法、公式法、图像法和根与系数关系等。
4.等差数列与等比数列:了解等差数列和等比数列的概念、公式及其应用,包括求和公式、通项公式、项数和值与项数关系等。
二、函数部分:1.函数的基本概念与性质:掌握函数的定义、函数图像、值域、定义域、奇偶性等基本性质。
2.一次函数与二次函数:了解一次函数和二次函数的定义、图像、性质和特征等,包括函数的增减性、最值、交点、轴对称点等内容。
3.三角函数:熟练掌握正弦函数、余弦函数和正切函数的定义、图像、性质和应用,包括变化规律、周期、幅值、对称性和反函数等。
4.指数函数与对数函数:了解指数函数和对数函数的定义、性质和应用,包括指数函数的增减性和指数函数与对数函数的互逆关系等。
三、几何部分:1.平面向量与坐标表示:了解平面向量的定义、平移、线性运算和坐标表示方法,包括平面向量的加减、数量积和向量共线的判定等。
2.绝对值与不等式:熟练掌握绝对值的性质和变形,以及利用绝对值解决各种绝对值不等式的方法。
3.平面几何应用:包括相似三角形的判定与性质、三角形的三边、两边一角和正弦定理、余弦定理及其应用等内容。
四、概率与统计部分:1.事件与概率:了解事件和概率的基本概念和性质,包括样本空间、事件的发生、概率公理及其应用等。
2.随机变量与概率分布:掌握离散型和连续型随机变量及其概率分布的定义、性质和应用,包括离散型随机变量的期望和方差的计算等。
3.抽样与统计推断:了解统计样本、样本估计和假设检验的基本原理和方法,包括样本均值、样本比例的估计和显著性检验等。
五、数学建模部分:1.数学建模的基本步骤:掌握数学建模中的问题分析和模型假设、模型建立、模型求解和模型评价等基本步骤。
数学必修五知识点总结

数学必修五知识点总结一、函数的概念与性质1. 函数的定义- 函数的概念- 函数的表示方法:解析式、图象、表格- 函数的域与值域2. 函数的运算- 函数的四则运算- 复合函数- 反函数3. 函数的性质- 单调性- 奇偶性- 周期性- 极限与连续性二、三角函数1. 角的概念- 任意角- 弧度制与角度制的转换2. 三角函数的定义- 正弦、余弦、正切函数- 三角函数的图像与性质3. 三角恒等变换- 基本恒等式- 恒等变换的应用4. 解三角形- 正弦定理与余弦定理- 三角形的面积公式三、数列与数学归纳法1. 数列的概念- 数列的定义- 有穷数列与无穷数列2. 等差数列与等比数列- 等差数列的通项公式与求和公式 - 等比数列的通项公式与求和公式3. 数学归纳法- 数学归纳法的原理- 证明方法与步骤四、解析几何1. 平面直角坐标系- 坐标系的定义- 点的坐标与距离公式2. 直线与圆的方程- 直线的斜率与方程- 圆的方程3. 圆锥曲线- 椭圆、双曲线、抛物线的方程与性质五、概率与统计1. 随机事件与概率- 事件的概率定义- 条件概率与独立事件2. 随机变量及其分布- 离散型随机变量与连续型随机变量- 概率分布与期望值3. 统计量与抽样分布- 样本均值、方差与标准差- 抽样分布的概念4. 参数估计- 点估计与区间估计- 置信区间的计算请将以上内容复制到Word文档中,并根据需要进行编辑和格式化。
您可以添加具体的公式、图像、例题和解析来丰富文档内容。
记得在编辑时使用清晰和专业的语言风格,并确保文档的结构逻辑清晰且连贯。
数学必修5知识点总结(全面版)

数学必修5知识点总结(全面版)数学必修5内容主要涉及系统动力学、几何与概率的数学分析,旨在帮助学生强化和巩固数学概念、解决实际问题的能力,提升学生的数学技能。
一、系统动力学1、概念:系统动力学是研究动力系统状态随时间变化的动力学学科,是研究相互作用系统初值问题及相关系统和过程的精确模型,它就像一个让人们能够在复杂因素激励或约束下做出正确结论的辅助类别。
2、模型:系统动力学设计了很多模型以及解决复杂系统动力学问题的方法,其中包括:内构模型,求解系统的时域响应;全动力模型,研究长期的稳定性;基于控制的模型和系统,研究系统的操纵性能;基于模型预测控制系统,预测系统之间的相互作用和变化;以及线性分析模拟,用于系统动力学学习和教学。
3、应用:系统动力学的应用有很多,广泛应用于机械、航空航天、电子器件、生物、应用数学、经济学等领域,包括但不限于:汽车制动系统设计及分析;飞机安全领域的控制及发动机性能优化;电子器件的测试及容错;生物新技术的设计与模拟;应用数学在政治、军事等决策模式的分析;机器人轨迹规划系统的性能优化;以及动态仓储管理等等。
二、几何1、概念:几何是一门研究拓扑空间和图形结构的数学学科,囊括了平面几何、立体几何与投影几何等分支。
它涉及几何学中图形之间的关系及其运动,并可以通过几何证明等方法来判断几何定理的真假。
2、计算公式:几何学中的计算公式可分为数学公式和几何公式两大类,数学公式涉及数量的计算,例如三角函数的值、面积和体积的计算;几何公式涉及几何形状的构造,例如求直线的弦长、求三角形的外接圆半径、求圆的截面等。
3、应用:几何学的应用也是极其广泛的,它可以用于工程、计算机辅助设计、物理与天文、几何描述语言中等,几何学可以帮助人们在制图设计中将复杂的模型表示为简单的形状,也可以用来描述坐标变换、运动轨迹、变形和路径规划等。
三、概率1、概念:概率是一门关于抽样空间、随机事件及其发生概率的数学学科,是研究未知变量结果本身知之甚少,即“抽象平均”的观点,同时涵盖离散概率论、连续概率论等学科。
数学必修五知识点总结归纳

数学必修五知识点总结归纳1.数列与数学归纳法-数列:数列是按照一定规律排列的一组数。
常见的数列有等差数列、等比数列和斐波那契数列等。
- 数列的通项公式:通项公式可以用来计算数列中的任意一项。
对于等差数列,通项公式为an = a1 + (n-1)d;对于等比数列,通项公式为an = a1 * r^(n-1)。
-数学归纳法:数学归纳法是一种证明数学命题的方法。
通过证明一个命题在n=k成立的情况下也在n=k+1成立,然后再证明在n=1成立的情况下在n=1成立,可以得出该命题对于所有正整数n都成立。
2.三角函数-弧度制与角度制:三角函数可以在弧度制和角度制之间互相转换。
在弧度制中,一个角的度数等于它所对应的弧长与半径的比值;在角度制中,圆周分为360度。
- 三角函数的定义关系:正弦函数sinθ = y/r,余弦函数cosθ =x/r,正切函数tanθ = y/x。
其中,θ为角,x、y为点P在单位圆上的坐标,r为半径。
-三角函数的性质:三角函数具有周期性、对称性和函数值的范围性等性质。
三角函数还可以通过图像和函数关系来进行研究。
- 三角函数的基本公式:三角函数之间有一些基本的关系式,如sin^2θ + cos^2θ = 1,1 + tan^2θ = sec^2θ等。
3.指数与对数函数-指数函数:指数函数是以一个常数为底数,自变量是指数的函数。
指数函数具有单调递增性质,当底数大于1时,函数为增长函数;当底数在0和1之间时,函数为衰减函数。
-对数函数:对数函数是指底数为常数,真数为自变量的函数。
对数函数用于求解指数方程,其中底数为真数对应的指数就是对数的值。
-指数与对数的性质:指数与对数具有互为逆运算、乘方法则、对数关系式等性质。
这些性质可以用来简化复杂的指数和对数计算。
4.排列与组合-排列:排列是从n个不同元素中取出m个元素按照一定顺序排列的方式。
排列的计算可以用阶乘来表示,即A(n,m)=n!/(n-m)!-组合:组合是从n个不同元素中取出m个元素不考虑顺序的方式。
必修五数学知识点总结

必修五数学知识点总结一、函数的概念与性质1. 函数的定义:一个从集合A到集合B的映射,记作f: A → B。
2. 函数的表示方法:解析式、表格、图象。
3. 函数的性质:单调性、奇偶性、周期性、有界性。
4. 函数的运算:和、差、积、商以及复合函数。
二、指数与对数函数1. 指数函数:形如y = a^x (a > 0, a ≠ 1)的函数。
2. 对数函数:形如y = log_a(x) (a > 0, a ≠ 1)的函数。
3. 指数与对数的关系:y = log_a(x) 与 x = a^y 互为反函数。
4. 指数函数的性质:单调性、特殊点、特殊值。
5. 对数函数的性质:单调性、特殊点、特殊值。
三、三角函数1. 三角函数的定义:正弦、余弦、正切等。
2. 三角函数的图象与性质:周期性、最值、单调区间。
3. 三角函数的和差公式、倍角公式、半角公式。
4. 三角函数的应用:解三角形问题、振动与波动问题。
四、数列与数学归纳法1. 数列的概念:按照一定顺序排列的一列数。
2. 等差数列与等比数列:定义、通项公式、求和公式。
3. 数列的极限:数列极限的定义、性质、计算方法。
4. 数学归纳法:证明方法、步骤、应用。
五、解析几何1. 平面直角坐标系:点的坐标、距离公式、中点公式。
2. 直线的方程:点斜式、两点式、一般式。
3. 圆的方程:标准式、一般式。
4. 圆锥曲线:椭圆、双曲线、抛物线的方程与性质。
六、概率与统计1. 随机事件与概率:事件的定义、概率的计算。
2. 条件概率与独立事件:条件概率公式、独立事件的概率。
3. 随机变量及其分布:离散型与连续型随机变量、概率分布。
4. 统计量:均值、方差、标准差、相关系数。
5. 抽样与估计:抽样方法、总体参数的估计。
七、微积分初步1. 导数的概念:函数在某一点的导数、左导数、右导数。
2. 导数的运算:和、差、积、商的导数、链式法则。
3. 函数的极值与最值:极值的定义、求导数确定极值。
数学必修五知识点总结10篇

数学必修五知识点总结数学必修五知识点总结10篇数学必修五知识点总结1一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1) 列举法:{a,b,c……}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x?R| x-3>2} ,{x| x-3>2}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。
A?A②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A?B, B?C ,那么 A?C④ 如果A?B 同时 B?A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B 的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
高中数学必修5的知识点

2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 3.解线性规划实际问题的步骤:
(1)将数据列成表格; ( 2)列出约束条件与目标函数; ( 3)根据求最值方法:①画:画可行域;②移:移
与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;
( 4)验证。
两类主要的目标函数的几何意义 :
高中数学必修 5 知识点总结
(一)解三角形:
1、正弦定理:在
C 中, a 、 b 、 c 分别为角 、 、 C 的对边,,则有 a
b
c 2R
sin sin sin C
( R为
C 的外接圆的半径 )
2、正弦定理的变形公式:① a 2Rsin , b 2Rsin , c 2Rsin C ;
② sin
a , sin
ap aq Sn , S3n
S2 n 成等差数列
则 am an a p aq 3. Sn , S2n Sn , S3n
S2n 成等比
数列
(三)不等式
1、 a b 0 a b ; a b 0 a b ; a b 0 a b .
2、不等式的性质: ① a b b a ; ② a b, b c a c ; ③ a b a c b c ;
5、均值定理的应用:设 x 、 y 都为正数,则有
s2 ⑴若 x y s (和为定值) ,则当 x y 时,积 xy 取得最大值 .
4
⑵若 xy p (积为定值) ,则当 x y 时,和 x y 取得最小值 2 p .
注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。
高考试题来源: /zyk/gkst/
赠送以下资料
英语万能作文 (模板型) Along with the advance of the society more and more problems are brought to our
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修五知识点总结归纳
(一)解三角形
1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外
接圆的半径,则有
2sin sin sin a b c
R C
===A B . 正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;
②sin 2a R A =,sin 2b R B =,sin 2c
C R
=;
③::sin :sin :sin a b c C =A B ;
④sin sin sin sin sin sin a b c a b c
C C
++===
A +
B +A B . 2、三角形面积公式:111
sin sin sin 222
C S bc ab C ac ∆AB =A ==B .
3、余弦定理:在C ∆AB 中,有2
2
2
2cos a b c bc =+-A ,2
2
2
2cos b a c ac =+-B ,
2222cos c a b ab C =+-.
4、余弦定理的推论:222cos 2b c a bc +-A =,222
cos 2a c b ac
+-B =,222cos 2a b c C ab +-=.
5、射影定理:cos cos ,cos cos ,cos cos a b C c B b a C c A c a B b A =+=+=+
6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若2
2
2
a b c +=,则90C =; ②若2
2
2
a b c +>,则90C <;③若2
2
2
a b c +<,则90C >.
(二)数列
1、数列:按照一定顺序排列着的一列数.
2、数列的项:数列中的每一个数.
3、有穷数列:项数有限的数列.
4、无穷数列:项数无限的数列.
5、递增数列:从第2项起,每一项都不小于它的前一项的数列.10n n a a +->
6、递减数列:从第2项起,每一项都不大于它的前一项的数列.10n n a a +-<
7、常数列:各项相等的数列.
8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 9、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.
10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.
12、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2
a c
b +=
,则称b 为a 与c 的等差中项. 13、若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-. 14、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③1
1
n a a d n -=-; ④11n a a n d -=
+;⑤n
m
a a d n m
-=-. 15、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*
q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+.
16、等差数列的前n 项和的公式:①()12n n n a a S +=
;②()
112
n n n S na d -=+
. 17、等差数列的前n 项和的性质:①若项数为(
)*
2n n ∈N
,则()21n
n n S
n a a +=+,且
S S nd -=偶奇,
1
n n S a
S a +=奇偶.
②若项数为()
*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1
S n
S n =
-奇偶 (其中n S na =奇,()1n S n a =-偶).
18、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.
19、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比项 .若2
G ab =,则称G 为a 与b 的等比中项.注意:a 与b 的等比中项可能是G ±
20、若等比数列{}n a 的首项是1a ,公比是q ,则1
1n n a a q -=.
21、通项公式的变形:①n m n m a a q -=;②()11n n a a q --=;③11
n n a q a -=;④n m
n m
a q
a -=. 22、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*
q ∈N ),则m n p q a a a a ⋅=⋅;
若{}n a 是等比数列,且2n p q =+(n 、p 、*
q ∈N ),则2
n p q a a a =⋅.
23、等比数列{}n a 的前n 项和的公式:()
()()11111111n n n na q S a q a a q q q q =⎧⎪
=-⎨-=≠⎪
--⎩
.
24、等比数列的前n 项和的性质:①若项数为()
*2n n ∈N ,则
S q S =偶奇
.
②n
n m n m S S q S +=+⋅.③n S ,2n n S S -,32n n S S -成等比数列(0n S ≠).
(三)不等式
1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.
2、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+; ④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+;
⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n n a b a b n n >>⇒>∈N >; ⑧()0,1n n a b a b n n >>⇒>∈N >.
3、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.
4、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系: 判别式2
4b ac ∆=- 0∆> 0∆= 0∆<
二
次
函
数
2y ax bx c =++
()0a >的图象
一元二次方程2
ax bx +
0c +=()0a >的根
有两个相异实数根
1,22b x a
-±∆=()12x x < 有两个相等实数根
122b
x x a
==-
没有实数根
一元二次不等式的解集
20
ax bx c ++>()0a >
{}1
2
x x x x x <>或
2b x x a ⎧⎫≠-⎨⎬⎩
⎭
R
20
ax bx c ++<()0a >
{}1
2x x
x x <<
∅ ∅
若二次项系数为负,先变为正 5、设a 、b 是两个正数,则2
a b
+称为正数a 、b ab a 、b 的几何平均数.
6、均值不等式定理: 若0a >,0b >,则2a b ab +≥,即
2
a b
ab +≥ 7、常用的基本不等式:①()2
2
2,a b ab a b R +≥∈;②()22
,2
a b ab a b R +≤∈;
③()20,02a b ab a b +⎛⎫
≤>> ⎪⎝⎭;④()2
22,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭
.
8、极值定理:设x 、y 都为正数,则有
⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值2
4
s .
⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值.。