概率论第二章习题及答案
概率论第二章习题答案

概率论第二章习题答案习题1:离散型随机变量及其分布律设随机变量X表示掷一枚公正的六面骰子得到的点数。
求X的分布律。
解答:随机变量X的可能取值为1, 2, 3, 4, 5, 6。
由于骰子是公正的,每个面出现的概率都是1/6。
因此,X的分布律为:\[ P(X=k) = \frac{1}{6}, \quad k = 1, 2, 3, 4, 5, 6 \]习题2:连续型随机变量及其概率密度函数设随机变量Y表示从标准正态分布中抽取的数值。
求Y的概率密度函数。
解答:标准正态分布的概率密度函数为高斯函数,其形式为:\[ f(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, \quad -\infty < y < \infty \]习题3:随机变量的期望值已知随机变量X的分布律为:\[ P(X=k) = p_k, \quad k = 1, 2, ..., n \]求X的期望值E(X)。
解答:随机变量X的期望值定义为:\[ E(X) = \sum_{k=1}^{n} k \cdot p_k \]习题4:随机变量的方差继续使用习题3中的随机变量X,求X的方差Var(X)。
解答:随机变量X的方差定义为期望值的平方与每个值乘以其概率之和的差:\[ Var(X) = E(X^2) - (E(X))^2 \]其中,\( E(X^2) = \sum_{k=1}^{n} k^2 \cdot p_k \)习题5:二项分布设随机变量X表示n次独立伯努利试验中成功的次数,每次试验成功的概率为p。
求X的分布律和期望值。
解答:X服从参数为n和p的二项分布。
其分布律为:\[ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n \]X的期望值为:\[ E(X) = np \]结束语:以上是概率论第二章的一些典型习题及其解答。
概率论第二章习题解答

a
b X t
ba
0
F
t
t b
a a
1
ta at b bt
2024年8月31日7时2分
P44 2.4.1 X ~ U 0,10,均匀分布 0, x 0
概率密度f
方程x2
x
1
=10
,
0,
Xx 1
0 x 10 分布函数F 其它
0有实根,
x
x 10 1
0 x 10 10 x
=X 2 4 0 X 2
1 P A1 A2 A3 1 P A1 A2 A3 1 P A1A2 A3
1 P A1 P A2 P A3 1 0.9730633 0.078654
设Y “3人维修的90台设备发生故障的台数”
近似
则Y ~ B 90,0.01, 2 =np 90 0.01 0.9,Y ~ 0.9
Probability
2024年8月31日7时2分
第二章 随机变量及其分布 P35练习2.2
1
P
X
k
k
A
k 1
k
1, 2,
,且
k 1
k
A
k 1
1
1
k 1
k
A
k 1
A
k 1
k
1
k 1
A 11
1 2
1 2
1 3
1 3
1 4
A
A1
2024年8月31日7时2分
P35练习2.2
2 解:设X =8次射击击中目标次数,则X ~ N 8,0.3
2024年8月31日7时2分
P49 2.5.1 Y sin X 1,0,1
X
概率论与数理统计2.第二章练习题(答案)

第二章练习题(答案)一、单项选择题1.已知连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=ππx x b kx x x F ,10,0,0)( 则常数k 和b 分别为 ( A )(A )0,1==b k π (B )π1,0b k = (C )0,21==b k π (D )π21,0==b k . 2.下列函数哪个是某随机变量的分布函数 ( A )A. f (x )={xa e −x 22a,x ≥01, x <0(a >0); B. f (x )={12cosx, 0< x <π0, 其他C. f (x )={cosx, −π2< x <π20, 其他D. f (x )={sinx, −π2< x <π20, 其他3.若函数()f x 是某随机变量X 的概率密度函数,则一定成立的是 ( C ) A. ()f x 的定义域是[0,1] B. ()f x 的值域为[0,1] C. ()f x 非负 D. ()f x 在(,)-∞+∞内连续4. 设)1,1(~N X ,密度函数为)(x f ,则有( C ) A.{}{}00>=≤X P X P B. )()(x f x f -= C. {}{}11>=≤X P X P D. )(1)(x F x F --=5. 设随机变量()16,~μN X ,()25,~μN Y ,记()41-<=μX P p ,()52+>=μY P p ,则正确的是 ( A ).(A )对任意μ,均有21p p = (B )对任意μ,均有21p p < (C )对任意μ,均有21p p > (D )只对μ的个别值有21p p = 6. 设随机变量2~(10,)X N ,则随着的增加{10}P X ( C )A.递增B.递减C.不变D.不能确定7.设F 1(x )与F 2(x )分别为随机变量X 1、X 2的分布函数,为使F (x )=aF 1(x )-bF 2(x )是某一随机变量的分布函数,在下列给定的多组数值中应取 ( A )A . a =53, b =52-; B . a =32, b =32;C . 21-=a , 23=b ; D . 21=a , 23-=b .8.设X 1与X 2是任意两个相互独立的连续型随机变量,它们的概率密度函数分别为f 1(x )和f 2(x ),分布函数分别为F 1(x )和F 2(x ),则 ( D ) (A) f 1(x )+f 2(x ) 必为某个随机变量的概率密度; (B )f 1(x )•f 2(x ) 必为某个随机变量的概率密度; (C )F 1(x )+F 2(x ) 必为某个随机变量的分布函数; (D) F 1(x ) •F 2(x ) 必为某个随机变量的分布函数。
《概率论与数理统计》习题及答案 第二章

《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
概率论第二章习题解答(全)

概率论第二章习题1考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。
解设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010;0.9988,于是得分布律为X20(万)5万0xp 0.00020.00100.99882.(1)一袋中装有5只球,编号为1,2,3,4,5。
在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。
解(1)在袋中同时取3个球,最大的号码是3,4,5。
每次取3个球,其总取法:35541021C ⋅==⋅,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。
因而其概率为22335511{3}10C P X C C ====若最大号码为4,则号码为有1,2,4;1,3,4;2,3,4共3种取法,其概率为23335533{4}10C P X C C ====若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法其概率为25335566{5}10C P X C C ====一般地3521)(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为X 345xp 101103610(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,则样本点为S ={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件,X 的取值为1,2,3,4,5,6,最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11{1}36P X ==;最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3),9{2}36P X ==;最小点数为3的共有7种,7{3}36P X ==;最小点数为4的共有5种,5{4}36P X ==;最小点数为5的共有3种,3{5}36P X ==;最小点数为6的共有1种,1{6}36P X ==于是其分布律为X 123456kp 11369367365363361363设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品的次数,(1)求X 的分布律;(2)画出分布律的图形。
(完整版)概率论第二章答案

(完整版)概率论第⼆章答案习题2-21. 设A 为任⼀随机事件, 且P (A )=p (01,,0,A X A =??发⽣不发⽣.写出随机变量X 的分布律.解 P {X =1}=p , P {X =0}=1-p . 或者2. 已知随机变量X 只能取-1,0,1,2四个值, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠13571,24816c c c c+++= 所以3716c=. 所求概率为 P {X <1| X0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 3. 设随机变量X 服从参数为2, p 的⼆项分布, 随机变量Y 服从参数为3, p 的⼆项分布, 若{P X ≥51}9 =, 求{P Y ≥1}.解注意p{x=k}=kk n k n C p q -,由题设5{9P X =≥21}1{0}1,P X q =-==-故213qp =-=. 从⽽{P Y ≥32191}1{0}1().327P Y =-==-=4. 在三次独⽴的重复试验中, 每次试验成功的概率相同, 已知⾄少成功⼀次的概率为1927, 求每次试验成功的概率.解设每次试验成功的概率为p , 由题意知⾄少成功⼀次的概率是2719,那么⼀次都没有成功的概率是278. 即278)1(3=-p , 故 p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解由泊松分布的分布律可知6=λ.6. ⼀袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表⽰取出的3只球中的最⼤号码, 写出随机变量X 的分布律.解从1,2,3,4,5中随机取3个,以X 表⽰3个数中的最⼤值,X 的可能取值是3,4,5,在5个数中取3个共有1035=C 种取法.{X =3}表⽰取出的3个数以3为最⼤值,P{X =3}=2235C C =101;{X =4}表⽰取出的3个数以4为最⼤值,P{X =4}=1033523=C C ;{X =5}表⽰取出的3个数以5为最⼤值,P{X =5}=533524=C C .X 的分布律是1. 设X求分布函数解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-??-(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1; (4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ?+-===?+= 于是 11()arctan ,.2F x x x π=+-∞<<+∞(2) {11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+-11111().24242ππππ=+?---=3. 设随机变量X 的分布函数为F (x )=0, 0,01,21,1,,x xx x <求P {X ≤-1}, P {0.3解 P {X 1}(1)0F -=-=≤,P {0.3P {05. 假设随机变量X 的绝对值不⼤于1;11{1},{1}84P X P X =-===; 在事件{11}X -<<出现的条件下, X 在(-1,1)内任⼀⼦区间上取值的条件概率与该区间的长度成正⽐. (1) 求X 的分布函数(){F x P X =≤x }; (2) 求X 取负值的概率p .解 (1) 由条件可知, 当1x <-时, ()0F x =; 当1x =-时,1(1)8F -=;当1x =时, F (1)=P {X ≤1}=P (S )=1. 所以115{11}(1)(1){1}1.848P X F F P X -<<=---==--=易见, 在X 的值属于(1,1)-的条件下, 事件{1}X x -<<的条件概率为{1P X -<≤|11}[(1)]x X k x -<<=--,取x =1得到 1=k (1+1), 所以k =12. 因此{1P X -<≤|11}12x X x -<<=+. 于是, 对于11x -<<, 有 {1P X -<≤}{1x P X =-<≤,11}x X -<<{11}{1|11}≤P X P X x X =-<<-<-<< 5155.8216x x ++=?=对于x ≥1, 有() 1.F x = 从⽽0,1,57(),11,161,1.x x F x x x <-+=-<7{0}(0){0}(0)[(0)(0)](0).16p P X F P X F F F F =<=-==---=-=习题2-41. 选择题 (1) 设2, [0,],()0, [0,].x x c f x x c ∈=如果c =( ), 则()f x 是某⼀随机变量的概率密度函数. (A)13. (B) 12. (C) 1. (D) 32.解由概率密度函数的性质()d 1f x x +∞-∞=?可得02d 1cx x =?, 于是1=c , 故本题应选(C ).(2) 设~(0,1),XN ⼜常数c 满⾜{}{}P X c P X c =<≥, 则c 等于( ).(A) 1. (B) 0. (C) 12. (D) -1.解因为{}{}P X c P X c =<≥, 所以1{}{}P X c P X c -<=<,即2{}1P X c <=, 从⽽{}0.5P X c <=,即()0.5c Φ=, 得c =0. 因此本题应选(B).(3) 下列函数中可以作为某⼀随机变量的概率密度的是( ).(A)cos ,[0,],()0,x x f x π∈=??其它. (B) 1,2,()20,x f x <=其它.(C)22()2,0,()0,0.≥x x f x x µσ--==?可知本题应选(D).(4) 设随机变量2~(,4)XN µ, 2~(,5)Y N µ, 1{X P P =≤4µ-}, {2P P Y =≥5µ+}, 则( ).(A) 对任意的实数12,P P µ=. (B) 对任意的实数12,P P µ<. (C) 只对实数µ的个别值, 有12P P =. (D) 对任意的实数12,P P µ>. 解由正态分布函数的性质可知对任意的实数µ, 有12(1)1(1)P P ΦΦ=-=-=. 因此本题应选(A).(5) 设随机变量X 的概率密度为()f x , 且()()f x f x =-, ⼜F (x )为分布函数, 则对任意实数a , 有( ).(A)()1d ()∫aF a x f x -=-. (B) 01()d 2()∫aF a x f x -=-.(C) ()()F a F a -=. (D) ()2()1F a F a -=-.解由分布函数的⼏何意义及概率密度的性质知答案为(B). (6) 设随机变量X服从正态分布211(,)N µσ,Y服从正态分布222(,)N µσ,且12{1}{1},P X P Y µµ-<>-< 则下式中成⽴的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) µ1 <µ2. (D) µ1 >µ2.解答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满⾜{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A)2u α . (B) 21α-u. (C)1-2u α. (D) α-1u .解答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布, 要使1{2}4P k X k <<=成⽴, 应当怎样选择数k ?解因为随机变量X 服从参数为λ的指数分布, 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=??由题意可知221{2}(2)()(1e )(1e )e e 4k k k k P k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3. 设随机变量X 有概率密度34,01,()0,x x f x <<=??其它, 要使{}{}≥P X a P X a =<(其中a >0)成⽴, 应当怎样选择数a ?解由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是304d 0.5a x x =?,因此a =.4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 根据分布函数与概率密度的关系()()F x f x '=,可得2,01,()0,其它.x x f x <(2)22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )=2,01,0,x x ??≤≤ 其它, 求P {X ≤12}与P {14X <≤2}.解{P X ≤12201112d 224}x x x ===?;1{4P X <≤12141152}2d 1164x x x ===?. 6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得12221121111d ()d []122x x A x x xAx x A =+-=+-=-??,于是2A =;(2) 由公式()()d x F x f x x -∞=?可得当x ≤0时,()0F x =;当0x <≤1时, 201()d 2xF x x x x ==;当1x <≤2时, 2101()d (2)d 212x x F x x x x x x =+-=--??;当x >2时,()1F x =.所以220,0,1()221, 2.1,021,12x F x x x x x x x =->≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x+<<=其它,对X 独⽴观察3次, 求⾄少有2次的结果⼤于1的概率.解根据概率密度与分布函数的关系式{P a X <≤}()()()d bab F b F a f x x =-=?,可得2115{1}(1)d 48P X x x >=+=.所以, 3次观察中⾄少有2次的结果⼤于1的概率为223333535175()()()888256C C +=. 8. 设~(0,5)X U , 求关于x 的⽅程24420x Xx ++=有实根的概率.解随机变量X 的概率密度为105,()50,,x f x <=≤其它,若⽅程有实根, 则21632X -≥0, 于是2X ≥2. 故⽅程有实根的概率为 P {2X ≥2}=21{2}P X -<1{P X =-<<1d 5x =-15=-.9. 设随机变量)2,3(~2N X.(1) 计算{25}P X <≤, {410}P X -<≤, {||2}P X >, }3{>X P ; (2) 确定c 使得{}{};P X c P X c >=≤ (3) 设d 满⾜{}0.9P X d >≥, 问d ⾄多为多少?解 (1) 由P {a}()()22222a Xb b a ΦΦ-----<=-≤公式, 得到P {2{||2}P X >={2}P X >+{2}P X <-=123()2Φ--+23()2Φ--=0.6977,}3{>X P =133{3}1()1(0)2P X ΦΦ-=-=-≤=0.5 .(2) 若{}{}≤P X c P X c >=,得1{}{}P X c P x c -=≤≤,所以{}0.5P X c =≤由(0)Φ=0推得30,2c -=于是c =3. (3){}0.9≥P X d > 即13()0.92d Φ--≥, 也就是3()0.9(1.282)2d ΦΦ--=≥,因分布函数是⼀个不减函数, 故(3)1.282,2d --≥ 解得 32( 1.282)0.436d +?-=≤.10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解因为()~2,X N σ2,所以~(0,1)X Z N µσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--,于是22()10.3Φσ-=, 从⽽2()0.65Φσ=. 所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=. 习题2-51. 选择题(1) 设X 的分布函数为F (x ), 则31Y X =+的分布函数()G y 为( ).(A) 11()33F y -. (B) (31)F y +.(C)3()1F y +. (D)1133()F y -. 解由随机变量函数的分布可得, 本题应选(A).(2) 设()~01,XN ,令2Y X =--, 则~Y ( ).(A)(2,1)N --. (B)(0,1)N . (C)(2,1)N -. (D)(2,1)N .解由正态分布函数的性质可知本题应选(C).2. 设~(1,2),23X N Z X =+, 求Z 所服从的分布及概率密度. 解若随机变量2~(,)X N µσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a µσ=++ 这⾥1,µσ==, 所以Z ~(5,8)N .概率密度为()f z=2(5)16,x x ---∞<<+∞.3. 已知随机变量X 的分布律为(1) 求解 (1)(2)4. ()X f x =1142ln 20x x <, , , 其它,且Y =2-X , 试求Y 的概率密度.解先求Y 的分布函数)(y F Y :)(y F Y ={P Y ≤}{2y P X =-≤}{y P X=≥2}y -1{2}P Xy =-<-=1-2()d yX f x x --∞.于是可得Y 的概率密度为()(2)(2)Y X f y f y y '=---=12(2)ln 20,.,124,其它y y -?<-即 121,2(2)ln 20, ,()其它.Y y y f y -<<-?=5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解由题意可知随机变量X 的概率密度为()0,.1,22,4其它X f x x =?-<因为对于0(){Y F y P Y =≤2}{y P X =≤}{y P =X于是随机变量2YX =的概率密度函数为()Y fy (X X f f =+0 4.y =<<即()04,0,.其它f y y =<总习题⼆1. ⼀批产品中有20%的次品, 现进⾏有放回抽样, 共抽取5件样品. 分别计算这5件样品中恰好有3件次品及⾄多有3件次品的概率.解以X 表⽰抽取的5件样品中含有的次品数. 依题意知~(5,0.2)X B .(1) 恰好有3件次品的概率是P {X =3}=23358.02.0C .(2) ⾄多有3件次品的概率是k k k k C-=∑5358.02.0.2. ⼀办公楼装有5个同类型的供⽔设备. 调查表明, 在任⼀时刻t 每个设备被使⽤的概率为0.1. 问在同⼀时刻(1) 恰有两个设备被使⽤的概率是多少? (2) ⾄少有1个设备被使⽤的概率是多少? (3) ⾄多有3个设备被使⽤的概率是多少?(4) ⾄少有3个设备被使⽤的概率是多少?解以X 表⽰同⼀时刻被使⽤的设备的个数,则X ~B (5,0.1),C -559.01.0,k =0,1, (5)(1) 所求的概率是P {X =2}=0729.09.01.03225=C ; (2)所求的概率是P {X ≥1}=140951.0)1.01(5=--;(3) 所求的概率是 P {X ≤3}=1-P{X =4}-P {X =5}=0.99954;(4) 所求的概率是P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=0.00856. 3. 设随机变量X 的概率密度为e ,0,()00,≥,x k x f x x θθ-=且已知1{1}2P X>=, 求常数k , θ.解由概率密度的性质可知e d 1xkx θθ-+∞=?得到k =1.由已知条件111e d 2xx θθ-, 得1ln 2θ=.4. 某产品的某⼀质量指标2~(160,)X N σ, 若要求{120P ≤X ≤200}≥0.8, 问允许σ最⼤是多少?解由{120P ≤X ≤} 200120160160200160{}X P σσσ---=≤≤=404040()(1())2()1ΦΦΦσσσ--=-≥0.8,得到40()Φσ≥0.9, 查表得40σ≥1.29, 由此可得允许σ最⼤值为31.20.5. 设随机变量X 的概率密度为φ(x ) = A e -|x |, -∞试求: (1) 常数A ; (2) P {0解 (1) 由于||()d e d 1,x x x A x ?+∞==?即02e d 1x A x +∞-=?故2A = 1, 得到A =12.所以φ(x ) =12e -|x |.(2) P {011111e e d (e )0.316.0222xxx ----=-=≈?(3) 因为||1()e d ,2xx F x x --∞=得到当x <0时, 11()e d e ,22x x x F x x -∞==?当x ≥0时, 00111()e d e d 1e ,222 x x x xF x x x ---∞=+=-??所以X 的分布函数为 1,0,2()11,0.2x x F x x -?。
概率论第二章练习答案解析

《概率论》第二章 练习答案一、填空题:1.设随机变量X 的密度函数为f(x)=⎩⎨⎧02x 其它1〈⨯〈o 则用Y 表示对X 的3次独立重复的观察中事件(X≤21)出现的次数,则P (Y =2)= 。
⎰==≤412021)21(xdx X P649)43()41()2(1223===C Y p 2. 设连续型随机变量的概率密度函数为:ax+b 0<x<1f (x) =0 其他 且EX =31,则a = _____-2___________, b = _____2___________。
⎪⎪⎩⎪⎪⎨⎧=+=+→⎰⎰解之31)(011)(01dx b ax x dx b ax 3. 已知随机变量X 在[ 10,22 ] 上服从均匀分布,则EX= 16 , DX= 124. 设=+==)(,则,为随机变量,1041132ξξξξE E E 22104=+ξE =+)104(ξD []32161622=-=)(ξξξE E D 5. 已知X 的密度为=)(x ϕ 0b ax + 且其他,10<<x P (31<x )=P(X>31) ,则a = , b =⎰⎰⎰+=+⇒==+∞∞-10133131311dx b ax dx b ax x P x P dx x )()()〉()〈()(ϕ联立解得:4723=-=b a ,6.若f(x)为连续型随机变量X 的分布密度,则⎰+∞∞-=dx x f )(__1____。
7. 设连续型随机变量ξ的分布函数⎪⎩⎪⎨⎧≥<≤<=2,110,4/0,0)(2x x x x x F ,则 P (ξ=0.8)= 0 ;)62.0(<<ξP = 0.99 。
8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ϕ=()⎪⎩⎪⎨⎧≥)(01001002其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。
概率统计(概率论)第二章练习题答案及解析

第二章习题与答案同学们根据自己作答的实际情况,并结合总正误率和单个题目正误统计以及答案解析来总结和分析习题!!!标红表示正确答案标蓝表示解析1、为掌握商品销售情况,对占该地区商品销售额60%的10家大型商场进行调查,这种调查方式属于( )。
A普查B抽样调查【解析:抽取一部分单位进行调查;习惯上将概率抽样(根据随机原则来抽取样本)称为抽样调查】C重点调查【解析:在调查对象中选择一部分重点单位进行调查的一种非全面调查】D统计报表2、人口普查规定标准时间是为了()。
A确定调查对象和调查单位B避免资料的重复和遗漏。
C使不同时间的资料具有可比性D便于登记资料【解析:规定时间只是为了统计该时间段内的人口数据,没有不同时间数据对比的需要】3、对一批灯泡的使用寿命进行调查,应该采用( )。
A普查 B重点调查 C典型调查D抽样调查4、分布数列反映( )。
A总体单位标志值在各组的分布状况B总体单位在各组的分布状况【解析:课本30页1.分布数列的概念一段最后一句】C总体单位标志值的差异情况D总体单位的差异情况5、与直方图比较,茎叶图( )。
A没有保留原始数据的信息B保留了原始数据的信息【解析:直方图展示了总体数据的主要分布特征,但它掩盖了各组内数据的具体差异。
为了弥补这一局限,对于未分组的原始数据则可以用茎叶图来观察其分布。
课本P38】C更适合描述分类数据D不能很好反映数据的分布特征6、在累计次数分布中,某组的向上累计次数表明( )。
A大于该组上限的次数是多少B大于该组下限的次数是多少C小于该组上限的次数是多少【解析:向上累计是由变量值小的组向变量值大的组累计各组的次数或频率,各组的累计次数表明小于该组上限的次数或百分数共有多少。
课本P33】D小于该组下限的次数是多少7、对某连续变量编制组距数列,第一组上限为500,第二组组中值是750,则第一组组中值为 ( )。
A. 200B. 250C. 500D. 300【解析:组中值=下限+组距/2=上限+组距/2】8、下列图形中最适合描述一组定量数据分布的是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并设 PX xk pk k 1, 2,
则称上式为离散型随机变量 X 的分布律.
离散型随机变量 X 的分布律还可列成下表.
X
x1
x2
xk
P
p1
p2
pk
返回主目录
第二章 随机变量及其分布
返回主目录
第二章 习题课
分布函数的性质
10 F( x) 是一个不减的函数 ,
即 当x2 x1时 ,F ( x2 ) F ( x1 ).
20 0 F ( x) 1,且
F () lim F ( x) 0; F () lim F ( x) 1.
x
x
30 F ( x 0) F ( x), 即 F ( x)是 右 连 续 的. 40 对于任意的实数 x1 , x2 ( x1 x2 ),有:
说明 1. 离散型随机变量可完全由其分布律来刻
划. 即离散型随机变量可完全由其可能取值 以及取这些值的概率唯一确定.
2. {X x1}{X x2 }{X xk } S
且 {X xi}{X x j} , (i j)
离散型随机变量分布律的性质:
⑴ 对任意的自然数k,有
第二章 随机变量及其分布
习题课
返回主目录
第二章 随机变量及其分布
• 随机变量 • 离散型随机变量及其分布律
• 随机变量的分布函数
• 连续型随机变量及其概率密度
• 随机变量的函数的分布
返回主目录
要 求:
1. 了解随机变量的概念,会用随机变量表示随 机事件。
2. 理解分布函数的定义及性质,会利用分布函 数表示事件的概率。
p nk
k 0, 1, , n
则称随机变量X 服从参数为n, p的二项分布, 记作 X ~ Bn, p.
其中n为自然数,0 p 1 为参数
返回主目录
第二章 随机变量及其分布
3)Poisson 分布
如果随机变量 X 的分布律为
PX k k e
P{ x1 X x2 } P{ X x2 } P{ X x1 } F ( x2 ) F ( x1 ). 返回主目录
第二章 习题课
五、连续型随机变量的概念与性质
如果对于随机变量X 的分布函数 F(x) , 存在非负实函数 f (x) ,使得对于任意
x
实数 x ,有 F ( x) f (t )dt,
则称随机变量 X 服从参数为 p 的 Bernoulli分布.
记作 X ~ B1, p. 其中0 p 1 为参数
Bernoulli分布也称作 0-1 分布或二点分布. 返回主目录
第二章 随机变量及其分布
2)二 项 分 布
如果随机变量 X 的分布律为
PX
k
C
k n
pk 1
则称随机变量X 服从参数为p的几何分布.
返回主目录
第二章 随机变量及其分布
5)超 几 何 分 布
如果随机变量 X 的分布律为
P
X k
C C k nk M NM
k 0, 1, , minM, n
C
n N
其中N, M, n均为自然数.
则称随机变量X 服从参数为N, M, n的超几何分布.
5. 了解随机变量函数的概念,会求随机变量的 简单函数的分布。
第二章 随机变量及其分布
一、 随机变量的定义
设E是一个随机试验,S是其样本空间.若对每一个
S, 都有唯一确定的一个实数X 与之对应,则称
X 为一个随机变量.
X
R
S
第二章 习题课
二、离散型随机变量的分布律
返回主目录
第二章 习题课
四、分布函数的定义及其性质
定义 设 X 是一个随机变量,x 是任意实数, 函数
F ( x) P{ X x}
称为 X 的分布函数.
X
0x
x
F (x) P{X x}
说明 分 布 函 数F ( x)是 x 的 实 值 单 值 函 数, 其 定 义 域 为(,) ,值 域 为[ 0 , 1 ]。
返回主目录
第二章 习题课
六、一些常用的连续型随机变量
1.均 匀 分 布
f (x)
若随机变量 X 的密度函数为
这两条性质是f判(x定) 一个 函数 f(x)是否为某r.vX的 概率密度函数的充要条件.
1
0
x
返回主目录
第二章 习题课
30 P{ x1 X x2 } F ( x2 ) F ( x1 )
x2
f(x)
f ( x)dx. ( 若f ( x)在 点x处 连 续 , 则 有 F ( x) f ( x).
则称 X 为连续型随机变量,其中函数 f ( x) 称为X 的概率密度函数,简称概率密度或密度 函数.
返回主目录
第二章 习题课
说明 f ( x) 不 一 定 连 续 , 但F( x)一 定 连 续 。
概率密度 f(x) 具有以下性质:
10 f ( x) 0.
20
f ( x)dx 1.
k!
其中 0为常数
k 0, 1, 2,
则称随机变量 X 服从参数为λ的Poisson 分布.
返回主目录
第二章 随机变量及其分布
4)几 何 分 布
若随机变量 X 的分布律为
PX k qk1 p k 1, 2,
其中 p 0,q 0,p q 1
3. 理解离散型随机变量及其分布率的定义、性 质,会求离散型随机变量的分布率及分布函 数,掌握常见的离散型随机变量分布:两点 分布、二项分布、泊松分布。
4. 理解连续型随机变量及概率密度的定义、性 质,掌握概率密度与分布函数之间关系及其 运算,熟悉常见的连续型随机变量分布:均 匀分布、指数分布和正态分布。
pk 0.
⑵ pk 1.
k
返回主目录
第二章 随机变量及其分布
三、一些常用的离散型随机变量
1) Bernoulli分布 如果随机变量 X 的分布律为
PX 01 p q , PX 1 p
或 P{ X k} pkq1k (k 0 , 1)
X
0
1
P
1-p
p